2017-01-25 18:51:41 +01:00
// Copyright 2015-2017 Parity Technologies (UK) Ltd.
2016-02-05 13:40:41 +01:00
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
2017-03-21 17:36:38 +01:00
use std ::cmp ::{ max , min } ;
use std ::io ::{ self , Read } ;
use byteorder ::{ ByteOrder , BigEndian } ;
2016-08-30 11:10:59 +02:00
use crypto ::sha2 ::Sha256 as Sha256Digest ;
use crypto ::ripemd160 ::Ripemd160 as Ripemd160Digest ;
2016-01-08 00:26:52 +01:00
use crypto ::digest ::Digest ;
2017-03-21 17:36:38 +01:00
use num ::{ BigUint , Zero , One } ;
2017-08-30 19:18:28 +02:00
use hash ::keccak ;
2018-01-10 13:35:18 +01:00
use ethereum_types ::{ H256 , U256 } ;
2017-09-06 20:47:45 +02:00
use bytes ::BytesRef ;
2016-08-30 11:10:59 +02:00
use ethkey ::{ Signature , recover as ec_recover } ;
2016-04-09 19:20:35 +02:00
use ethjson ;
2015-12-20 21:45:43 +01:00
2017-03-22 02:01:46 +01:00
#[ derive(Debug) ]
2017-03-25 21:30:11 +01:00
pub struct Error ( pub & 'static str ) ;
2017-03-22 02:01:46 +01:00
impl From < & 'static str > for Error {
fn from ( val : & 'static str ) -> Self {
2017-03-25 21:30:11 +01:00
Error ( val )
2017-03-22 02:01:46 +01:00
}
}
2017-08-01 12:37:57 +02:00
impl Into < ::vm ::Error > for Error {
fn into ( self ) -> ::vm ::Error {
::vm ::Error ::BuiltIn ( self . 0 )
2017-07-12 13:09:17 +02:00
}
}
2016-08-30 11:10:59 +02:00
/// Native implementation of a built-in contract.
pub trait Impl : Send + Sync {
/// execute this built-in on the given input, writing to the given output.
2017-03-22 02:01:46 +01:00
fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > ;
2015-12-20 21:45:43 +01:00
}
2016-01-04 22:47:45 +01:00
2016-08-30 11:10:59 +02:00
/// A gas pricing scheme for built-in contracts.
pub trait Pricer : Send + Sync {
2017-03-21 17:36:38 +01:00
/// The gas cost of running this built-in for the given input data.
fn cost ( & self , input : & [ u8 ] ) -> U256 ;
2016-08-30 11:10:59 +02:00
}
2016-01-11 11:51:31 +01:00
2016-08-30 11:10:59 +02:00
/// A linear pricing model. This computes a price using a base cost and a cost per-word.
struct Linear {
base : usize ,
word : usize ,
2016-01-07 19:10:29 +01:00
}
2017-03-21 17:36:38 +01:00
/// A special pricing model for modular exponentiation.
2017-09-15 21:07:54 +02:00
struct ModexpPricer {
2017-03-21 17:36:38 +01:00
divisor : usize ,
}
2016-08-30 11:10:59 +02:00
impl Pricer for Linear {
2017-03-21 17:36:38 +01:00
fn cost ( & self , input : & [ u8 ] ) -> U256 {
U256 ::from ( self . base ) + U256 ::from ( self . word ) * U256 ::from ( ( input . len ( ) + 31 ) / 32 )
}
}
2017-09-15 21:07:54 +02:00
/// A alt_bn128_parinig pricing model. This computes a price using a base cost and a cost per pair.
struct AltBn128PairingPricer {
base : usize ,
pair : usize ,
}
impl Pricer for AltBn128PairingPricer {
fn cost ( & self , input : & [ u8 ] ) -> U256 {
let cost = U256 ::from ( self . base ) + U256 ::from ( self . pair ) * U256 ::from ( input . len ( ) / 192 ) ;
cost
}
}
impl Pricer for ModexpPricer {
2017-03-21 17:36:38 +01:00
fn cost ( & self , input : & [ u8 ] ) -> U256 {
let mut reader = input . chain ( io ::repeat ( 0 ) ) ;
let mut buf = [ 0 ; 32 ] ;
// read lengths as U256 here for accurate gas calculation.
let mut read_len = | | {
reader . read_exact ( & mut buf [ .. ] ) . expect ( " reading from zero-extended memory cannot fail; qed " ) ;
U256 ::from ( H256 ::from_slice ( & buf [ .. ] ) )
} ;
let base_len = read_len ( ) ;
let exp_len = read_len ( ) ;
let mod_len = read_len ( ) ;
2017-10-11 16:41:28 +02:00
if mod_len . is_zero ( ) & & base_len . is_zero ( ) {
return U256 ::zero ( )
}
2017-09-15 21:07:54 +02:00
let max_len = U256 ::from ( u32 ::max_value ( ) / 2 ) ;
2017-10-11 16:41:28 +02:00
if base_len > max_len | | mod_len > max_len | | exp_len > max_len {
2017-09-15 21:07:54 +02:00
return U256 ::max_value ( ) ;
}
2017-10-11 16:41:28 +02:00
let ( base_len , exp_len , mod_len ) = ( base_len . low_u64 ( ) , exp_len . low_u64 ( ) , mod_len . low_u64 ( ) ) ;
2017-09-15 21:07:54 +02:00
2017-03-21 17:36:38 +01:00
let m = max ( mod_len , base_len ) ;
2017-09-15 21:07:54 +02:00
// read fist 32-byte word of the exponent.
let exp_low = if base_len + 96 > = input . len ( ) as u64 { U256 ::zero ( ) } else {
let mut buf = [ 0 ; 32 ] ;
let mut reader = input [ ( 96 + base_len as usize ) .. ] . chain ( io ::repeat ( 0 ) ) ;
let len = min ( exp_len , 32 ) as usize ;
reader . read_exact ( & mut buf [ ( 32 - len ) .. ] ) . expect ( " reading from zero-extended memory cannot fail; qed " ) ;
U256 ::from ( H256 ::from_slice ( & buf [ .. ] ) )
} ;
let adjusted_exp_len = Self ::adjusted_exp_len ( exp_len , exp_low ) ;
2017-10-13 16:06:53 +02:00
let ( gas , overflow ) = Self ::mult_complexity ( m ) . overflowing_mul ( max ( adjusted_exp_len , 1 ) ) ;
if overflow {
return U256 ::max_value ( ) ;
}
( gas / self . divisor as u64 ) . into ( )
2017-09-15 21:07:54 +02:00
}
}
impl ModexpPricer {
fn adjusted_exp_len ( len : u64 , exp_low : U256 ) -> u64 {
let bit_index = if exp_low . is_zero ( ) { 0 } else { ( 255 - exp_low . leading_zeros ( ) ) as u64 } ;
if len < = 32 {
bit_index
2017-10-11 16:41:28 +02:00
} else {
2017-09-15 21:07:54 +02:00
8 * ( len - 32 ) + bit_index
}
}
fn mult_complexity ( x : u64 ) -> u64 {
match x {
x if x < = 64 = > x * x ,
x if x < = 1024 = > ( x * x ) / 4 + 96 * x - 3072 ,
x = > ( x * x ) / 16 + 480 * x - 199680 ,
2017-03-21 17:36:38 +01:00
}
2016-01-05 19:11:41 +01:00
}
2016-08-30 11:10:59 +02:00
}
2016-01-05 19:11:41 +01:00
2017-03-21 17:36:38 +01:00
/// Pricing scheme, execution definition, and activation block for a built-in contract.
///
/// Call `cost` to compute cost for the given input, `execute` to execute the contract
/// on the given input, and `is_active` to determine whether the contract is active.
///
/// Unless `is_active` is true,
2016-08-30 11:10:59 +02:00
pub struct Builtin {
pricer : Box < Pricer > ,
native : Box < Impl > ,
2017-03-21 17:36:38 +01:00
activate_at : u64 ,
2016-08-30 11:10:59 +02:00
}
2016-01-05 19:11:41 +01:00
2016-08-30 11:10:59 +02:00
impl Builtin {
2016-01-14 21:58:37 +01:00
/// Simple forwarder for cost.
2017-03-21 17:36:38 +01:00
pub fn cost ( & self , input : & [ u8 ] ) -> U256 { self . pricer . cost ( input ) }
2016-01-14 21:58:37 +01:00
/// Simple forwarder for execute.
2017-06-17 21:18:52 +02:00
pub fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
2017-03-22 15:43:19 +01:00
self . native . execute ( input , output )
2017-03-22 02:01:46 +01:00
}
2017-03-21 17:36:38 +01:00
/// Whether the builtin is activated at the given block number.
pub fn is_active ( & self , at : u64 ) -> bool { at > = self . activate_at }
2016-04-09 19:20:35 +02:00
}
2016-01-14 21:58:37 +01:00
2016-04-09 19:20:35 +02:00
impl From < ethjson ::spec ::Builtin > for Builtin {
fn from ( b : ethjson ::spec ::Builtin ) -> Self {
2017-03-21 17:36:38 +01:00
let pricer : Box < Pricer > = match b . pricing {
2016-04-09 19:20:35 +02:00
ethjson ::spec ::Pricing ::Linear ( linear ) = > {
2016-08-30 11:10:59 +02:00
Box ::new ( Linear {
base : linear . base ,
word : linear . word ,
} )
2016-01-05 19:11:41 +01:00
}
2017-03-21 17:36:38 +01:00
ethjson ::spec ::Pricing ::Modexp ( exp ) = > {
2017-09-15 21:07:54 +02:00
Box ::new ( ModexpPricer {
2017-03-21 17:36:38 +01:00
divisor : if exp . divisor = = 0 {
warn! ( " Zero modexp divisor specified. Falling back to default. " ) ;
10
} else {
exp . divisor
}
} )
}
2017-09-15 21:07:54 +02:00
ethjson ::spec ::Pricing ::AltBn128Pairing ( pricer ) = > {
Box ::new ( AltBn128PairingPricer {
base : pricer . base ,
pair : pricer . pair ,
} )
}
2016-08-30 11:10:59 +02:00
} ;
Builtin {
pricer : pricer ,
native : ethereum_builtin ( & b . name ) ,
2017-03-21 17:36:38 +01:00
activate_at : b . activate_at . map ( Into ::into ) . unwrap_or ( 0 ) ,
2016-01-05 19:11:41 +01:00
}
}
}
2016-08-30 11:10:59 +02:00
// Ethereum builtin creator.
fn ethereum_builtin ( name : & str ) -> Box < Impl > {
match name {
" identity " = > Box ::new ( Identity ) as Box < Impl > ,
" ecrecover " = > Box ::new ( EcRecover ) as Box < Impl > ,
" sha256 " = > Box ::new ( Sha256 ) as Box < Impl > ,
" ripemd160 " = > Box ::new ( Ripemd160 ) as Box < Impl > ,
2017-03-21 17:36:38 +01:00
" modexp " = > Box ::new ( ModexpImpl ) as Box < Impl > ,
2017-09-15 21:07:54 +02:00
" alt_bn128_add " = > Box ::new ( Bn128AddImpl ) as Box < Impl > ,
" alt_bn128_mul " = > Box ::new ( Bn128MulImpl ) as Box < Impl > ,
" alt_bn128_pairing " = > Box ::new ( Bn128PairingImpl ) as Box < Impl > ,
2016-08-30 11:10:59 +02:00
_ = > panic! ( " invalid builtin name: {} " , name ) ,
2016-01-08 00:26:52 +01:00
}
2016-01-04 22:47:45 +01:00
}
2016-08-30 11:10:59 +02:00
// Ethereum builtins:
//
// - The identity function
// - ec recovery
// - sha256
// - ripemd160
2017-03-21 17:36:38 +01:00
// - modexp (EIP198)
2016-08-30 11:10:59 +02:00
#[ derive(Debug) ]
struct Identity ;
#[ derive(Debug) ]
struct EcRecover ;
#[ derive(Debug) ]
struct Sha256 ;
#[ derive(Debug) ]
struct Ripemd160 ;
2017-03-21 17:36:38 +01:00
#[ derive(Debug) ]
struct ModexpImpl ;
2017-03-22 02:01:46 +01:00
#[ derive(Debug) ]
struct Bn128AddImpl ;
#[ derive(Debug) ]
struct Bn128MulImpl ;
2017-03-27 17:39:21 +02:00
#[ derive(Debug) ]
2017-04-06 10:04:28 +02:00
struct Bn128PairingImpl ;
2017-03-27 17:39:21 +02:00
2016-08-30 11:10:59 +02:00
impl Impl for Identity {
2017-03-22 02:01:46 +01:00
fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
2016-09-22 14:50:00 +02:00
output . write ( 0 , input ) ;
2017-03-22 02:01:46 +01:00
Ok ( ( ) )
2016-08-30 11:10:59 +02:00
}
}
impl Impl for EcRecover {
2017-03-22 02:01:46 +01:00
fn execute ( & self , i : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
2016-08-30 11:10:59 +02:00
let len = min ( i . len ( ) , 128 ) ;
let mut input = [ 0 ; 128 ] ;
input [ .. len ] . copy_from_slice ( & i [ .. len ] ) ;
let hash = H256 ::from_slice ( & input [ 0 .. 32 ] ) ;
let v = H256 ::from_slice ( & input [ 32 .. 64 ] ) ;
let r = H256 ::from_slice ( & input [ 64 .. 96 ] ) ;
let s = H256 ::from_slice ( & input [ 96 .. 128 ] ) ;
let bit = match v [ 31 ] {
2016-09-01 12:23:31 +02:00
27 | 28 if & v . 0 [ .. 31 ] = = & [ 0 ; 31 ] = > v [ 31 ] - 27 ,
2017-03-22 02:01:46 +01:00
_ = > { return Ok ( ( ) ) ; } ,
2016-08-30 11:10:59 +02:00
} ;
let s = Signature ::from_rsv ( & r , & s , bit ) ;
if s . is_valid ( ) {
if let Ok ( p ) = ec_recover ( & s , & hash ) {
2017-08-30 19:18:28 +02:00
let r = keccak ( p ) ;
2016-09-22 14:50:00 +02:00
output . write ( 0 , & [ 0 ; 12 ] ) ;
output . write ( 12 , & r [ 12 .. r . len ( ) ] ) ;
2016-01-07 19:10:29 +01:00
}
2016-04-09 19:20:35 +02:00
}
2017-03-22 02:01:46 +01:00
Ok ( ( ) )
2016-01-04 22:47:45 +01:00
}
}
2016-08-30 11:10:59 +02:00
impl Impl for Sha256 {
2017-03-22 02:01:46 +01:00
fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
2016-08-30 11:10:59 +02:00
let mut sha = Sha256Digest ::new ( ) ;
sha . input ( input ) ;
2016-01-05 19:11:41 +01:00
2016-09-22 14:50:00 +02:00
let mut out = [ 0 ; 32 ] ;
sha . result ( & mut out ) ;
2016-01-05 19:11:41 +01:00
2016-09-22 14:50:00 +02:00
output . write ( 0 , & out ) ;
2017-03-22 02:01:46 +01:00
Ok ( ( ) )
2016-08-30 11:10:59 +02:00
}
2016-01-05 19:23:40 +01:00
}
2016-08-30 11:10:59 +02:00
impl Impl for Ripemd160 {
2017-03-22 02:01:46 +01:00
fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
2016-08-30 11:10:59 +02:00
let mut sha = Ripemd160Digest ::new ( ) ;
sha . input ( input ) ;
2016-09-22 14:50:00 +02:00
let mut out = [ 0 ; 32 ] ;
sha . result ( & mut out [ 12 .. 32 ] ) ;
2016-01-08 00:26:52 +01:00
2016-09-22 14:50:00 +02:00
output . write ( 0 , & out ) ;
2017-03-22 02:01:46 +01:00
Ok ( ( ) )
2016-08-30 11:10:59 +02:00
}
2016-01-08 00:26:52 +01:00
}
2017-09-02 20:08:34 +02:00
// calculate modexp: exponentiation by squaring. the `num` crate has pow, but not modular.
fn modexp ( mut base : BigUint , mut exp : BigUint , modulus : BigUint ) -> BigUint {
use num ::Integer ;
2017-09-15 21:07:54 +02:00
if modulus < = BigUint ::one ( ) { // n^m % 0 || n^m % 1
return BigUint ::zero ( ) ;
}
if exp . is_zero ( ) { // n^0 % m
return BigUint ::one ( ) ;
}
if base . is_zero ( ) { // 0^n % m, n>0
return BigUint ::zero ( ) ;
2017-09-02 20:08:34 +02:00
}
let mut result = BigUint ::one ( ) ;
base = base % & modulus ;
// fast path for base divisible by modulus.
if base . is_zero ( ) { return BigUint ::zero ( ) }
while ! exp . is_zero ( ) {
if exp . is_odd ( ) {
result = ( result * & base ) % & modulus ;
}
exp = exp > > 1 ;
base = ( base . clone ( ) * base ) % & modulus ;
}
result
}
2017-03-21 17:36:38 +01:00
impl Impl for ModexpImpl {
2017-03-22 02:01:46 +01:00
fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
2017-03-21 17:36:38 +01:00
let mut reader = input . chain ( io ::repeat ( 0 ) ) ;
let mut buf = [ 0 ; 32 ] ;
// read lengths as usize.
// ignoring the first 24 bytes might technically lead us to fall out of consensus,
// but so would running out of addressable memory!
let mut read_len = | reader : & mut io ::Chain < & [ u8 ] , io ::Repeat > | {
reader . read_exact ( & mut buf [ .. ] ) . expect ( " reading from zero-extended memory cannot fail; qed " ) ;
BigEndian ::read_u64 ( & buf [ 24 .. ] ) as usize
} ;
let base_len = read_len ( & mut reader ) ;
let exp_len = read_len ( & mut reader ) ;
let mod_len = read_len ( & mut reader ) ;
2017-09-15 21:07:54 +02:00
// Gas formula allows arbitrary large exp_len when base and modulus are empty, so we need to handle empty base first.
let r = if base_len = = 0 & & mod_len = = 0 {
BigUint ::zero ( )
} else {
// read the numbers themselves.
let mut buf = vec! [ 0 ; max ( mod_len , max ( base_len , exp_len ) ) ] ;
let mut read_num = | len | {
reader . read_exact ( & mut buf [ .. len ] ) . expect ( " reading from zero-extended memory cannot fail; qed " ) ;
BigUint ::from_bytes_be ( & buf [ .. len ] )
} ;
2017-03-21 17:36:38 +01:00
2017-09-15 21:07:54 +02:00
let base = read_num ( base_len ) ;
let exp = read_num ( exp_len ) ;
let modulus = read_num ( mod_len ) ;
modexp ( base , exp , modulus )
} ;
2017-03-21 17:36:38 +01:00
// write output to given memory, left padded and same length as the modulus.
2017-09-15 21:07:54 +02:00
let bytes = r . to_bytes_be ( ) ;
2017-03-21 17:36:38 +01:00
// always true except in the case of zero-length modulus, which leads to
// output of length and value 1.
if bytes . len ( ) < = mod_len {
let res_start = mod_len - bytes . len ( ) ;
output . write ( res_start , & bytes ) ;
}
2017-03-22 02:01:46 +01:00
Ok ( ( ) )
2017-03-21 17:36:38 +01:00
}
}
2017-03-22 14:31:43 +01:00
fn read_fr ( reader : & mut io ::Chain < & [ u8 ] , io ::Repeat > ) -> Result < ::bn ::Fr , Error > {
let mut buf = [ 0 u8 ; 32 ] ;
2017-06-17 21:18:52 +02:00
2017-03-22 14:31:43 +01:00
reader . read_exact ( & mut buf [ .. ] ) . expect ( " reading from zero-extended memory cannot fail; qed " ) ;
::bn ::Fr ::from_slice ( & buf [ 0 .. 32 ] ) . map_err ( | _ | Error ::from ( " Invalid field element " ) )
}
2017-03-22 02:01:46 +01:00
2017-03-22 14:31:43 +01:00
fn read_point ( reader : & mut io ::Chain < & [ u8 ] , io ::Repeat > ) -> Result < ::bn ::G1 , Error > {
use bn ::{ Fq , AffineG1 , G1 , Group } ;
2017-06-17 21:18:52 +02:00
2017-03-22 14:31:43 +01:00
let mut buf = [ 0 u8 ; 32 ] ;
2017-06-17 21:18:52 +02:00
2017-03-22 14:31:43 +01:00
reader . read_exact ( & mut buf [ .. ] ) . expect ( " reading from zero-extended memory cannot fail; qed " ) ;
let px = Fq ::from_slice ( & buf [ 0 .. 32 ] ) . map_err ( | _ | Error ::from ( " Invalid point x coordinate " ) ) ? ;
reader . read_exact ( & mut buf [ .. ] ) . expect ( " reading from zero-extended memory cannot fail; qed " ) ;
2017-07-15 19:58:52 +02:00
let py = Fq ::from_slice ( & buf [ 0 .. 32 ] ) . map_err ( | _ | Error ::from ( " Invalid point y coordinate " ) ) ? ;
2017-03-22 14:31:43 +01:00
Ok (
if px = = Fq ::zero ( ) & & py = = Fq ::zero ( ) {
2017-03-22 13:41:32 +01:00
G1 ::zero ( )
} else {
AffineG1 ::new ( px , py ) . map_err ( | _ | Error ::from ( " Invalid curve point " ) ) ? . into ( )
2017-03-22 14:31:43 +01:00
}
)
}
2017-03-22 02:01:46 +01:00
2017-03-22 14:31:43 +01:00
impl Impl for Bn128AddImpl {
2017-03-22 15:43:19 +01:00
// Can fail if any of the 2 points does not belong the bn128 curve
2017-03-22 14:31:43 +01:00
fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
use bn ::AffineG1 ;
let mut padded_input = input . chain ( io ::repeat ( 0 ) ) ;
let p1 = read_point ( & mut padded_input ) ? ;
let p2 = read_point ( & mut padded_input ) ? ;
2017-03-22 02:01:46 +01:00
2017-03-22 13:41:32 +01:00
let mut write_buf = [ 0 u8 ; 64 ] ;
if let Some ( sum ) = AffineG1 ::from_jacobian ( p1 + p2 ) {
// point not at infinity
2017-03-22 13:54:19 +01:00
sum . x ( ) . to_big_endian ( & mut write_buf [ 0 .. 32 ] ) . expect ( " Cannot fail since 0..32 is 32-byte length " ) ;
sum . y ( ) . to_big_endian ( & mut write_buf [ 32 .. 64 ] ) . expect ( " Cannot fail since 32..64 is 32-byte length " ) ; ;
2017-03-22 13:41:32 +01:00
}
output . write ( 0 , & write_buf ) ;
2017-03-22 02:01:46 +01:00
Ok ( ( ) )
2017-06-17 21:18:52 +02:00
}
2017-03-22 02:01:46 +01:00
}
impl Impl for Bn128MulImpl {
2017-03-22 15:43:19 +01:00
// Can fail if first paramter (bn128 curve point) does not actually belong to the curve
2017-03-22 02:01:46 +01:00
fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
2017-03-22 14:31:43 +01:00
use bn ::AffineG1 ;
let mut padded_input = input . chain ( io ::repeat ( 0 ) ) ;
let p = read_point ( & mut padded_input ) ? ;
let fr = read_fr ( & mut padded_input ) ? ;
let mut write_buf = [ 0 u8 ; 64 ] ;
if let Some ( sum ) = AffineG1 ::from_jacobian ( p * fr ) {
// point not at infinity
sum . x ( ) . to_big_endian ( & mut write_buf [ 0 .. 32 ] ) . expect ( " Cannot fail since 0..32 is 32-byte length " ) ;
sum . y ( ) . to_big_endian ( & mut write_buf [ 32 .. 64 ] ) . expect ( " Cannot fail since 32..64 is 32-byte length " ) ; ;
}
output . write ( 0 , & write_buf ) ;
2017-03-22 02:01:46 +01:00
Ok ( ( ) )
2017-06-17 21:18:52 +02:00
}
2017-03-22 02:01:46 +01:00
}
2017-04-06 10:04:28 +02:00
impl Impl for Bn128PairingImpl {
2017-03-31 16:53:26 +02:00
/// Can fail if:
/// - input length is not a multiple of 192
/// - any of odd points does not belong to bn128 curve
/// - any of even points does not belong to the twisted bn128 curve over the field F_p^2 = F_p[i] / (i^2 + 1)
2017-03-27 18:44:35 +02:00
fn execute ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
2017-06-17 21:18:52 +02:00
if input . len ( ) % 192 ! = 0 {
return Err ( " Invalid input length, must be multiple of 192 (3 * (32*2)) " . into ( ) )
2017-03-27 18:44:35 +02:00
}
2017-09-15 21:07:54 +02:00
if let Err ( err ) = self . execute_with_error ( input , output ) {
trace! ( " Pairining error: {:?} " , err ) ;
return Err ( err )
}
Ok ( ( ) )
}
}
impl Bn128PairingImpl {
fn execute_with_error ( & self , input : & [ u8 ] , output : & mut BytesRef ) -> Result < ( ) , Error > {
use bn ::{ AffineG1 , AffineG2 , Fq , Fq2 , pairing , G1 , G2 , Gt , Group } ;
let elements = input . len ( ) / 192 ; // (a, b_a, b_b - each 64-byte affine coordinates)
2017-03-27 18:44:35 +02:00
let ret_val = if input . len ( ) = = 0 {
U256 ::one ( )
} else {
let mut vals = Vec ::new ( ) ;
for idx in 0 .. elements {
let a_x = Fq ::from_slice ( & input [ idx * 192 .. idx * 192 + 32 ] )
. map_err ( | _ | Error ::from ( " Invalid a argument x coordinate " ) ) ? ;
let a_y = Fq ::from_slice ( & input [ idx * 192 + 32 .. idx * 192 + 64 ] )
. map_err ( | _ | Error ::from ( " Invalid a argument y coordinate " ) ) ? ;
2017-09-15 21:07:54 +02:00
let b_a_y = Fq ::from_slice ( & input [ idx * 192 + 64 .. idx * 192 + 96 ] )
2017-03-27 18:44:35 +02:00
. map_err ( | _ | Error ::from ( " Invalid b argument imaginary coeff x coordinate " ) ) ? ;
2017-09-15 21:07:54 +02:00
let b_a_x = Fq ::from_slice ( & input [ idx * 192 + 96 .. idx * 192 + 128 ] )
2017-03-27 18:44:35 +02:00
. map_err ( | _ | Error ::from ( " Invalid b argument imaginary coeff y coordinate " ) ) ? ;
2017-09-15 21:07:54 +02:00
let b_b_y = Fq ::from_slice ( & input [ idx * 192 + 128 .. idx * 192 + 160 ] )
2017-06-17 21:18:52 +02:00
. map_err ( | _ | Error ::from ( " Invalid b argument real coeff x coordinate " ) ) ? ;
2017-03-27 18:44:35 +02:00
2017-09-15 21:07:54 +02:00
let b_b_x = Fq ::from_slice ( & input [ idx * 192 + 160 .. idx * 192 + 192 ] )
2017-06-17 21:18:52 +02:00
. map_err ( | _ | Error ::from ( " Invalid b argument real coeff y coordinate " ) ) ? ;
2017-09-15 21:07:54 +02:00
let b_a = Fq2 ::new ( b_a_x , b_a_y ) ;
let b_b = Fq2 ::new ( b_b_x , b_b_y ) ;
let b = if b_a . is_zero ( ) & & b_b . is_zero ( ) {
G2 ::zero ( )
} else {
G2 ::from ( AffineG2 ::new ( b_a , b_b ) . map_err ( | _ | Error ::from ( " Invalid b argument - not on curve " ) ) ? )
} ;
let a = if a_x . is_zero ( ) & & a_y . is_zero ( ) {
G1 ::zero ( )
} else {
G1 ::from ( AffineG1 ::new ( a_x , a_y ) . map_err ( | _ | Error ::from ( " Invalid a argument - not on curve " ) ) ? )
} ;
vals . push ( ( a , b ) ) ;
2017-03-27 18:44:35 +02:00
} ;
2017-04-03 11:57:18 +02:00
let mul = vals . into_iter ( ) . fold ( Gt ::one ( ) , | s , ( a , b ) | s * pairing ( a , b ) ) ;
2017-03-27 18:44:35 +02:00
2017-09-15 21:07:54 +02:00
if mul = = Gt ::one ( ) {
2017-03-27 18:44:35 +02:00
U256 ::one ( )
} else {
U256 ::zero ( )
}
} ;
2017-03-27 17:39:21 +02:00
2017-03-27 20:34:02 +02:00
let mut buf = [ 0 u8 ; 32 ] ;
ret_val . to_big_endian ( & mut buf ) ;
output . write ( 0 , & buf ) ;
2017-03-27 17:39:21 +02:00
Ok ( ( ) )
}
}
2016-08-30 11:10:59 +02:00
#[ cfg(test) ]
mod tests {
2017-09-15 21:07:54 +02:00
use super ::{ Builtin , Linear , ethereum_builtin , Pricer , ModexpPricer , modexp as me } ;
2016-08-30 11:10:59 +02:00
use ethjson ;
2018-01-10 13:35:18 +01:00
use ethereum_types ::U256 ;
2017-09-06 20:47:45 +02:00
use bytes ::BytesRef ;
2017-07-06 11:26:14 +02:00
use rustc_hex ::FromHex ;
2017-09-02 20:08:34 +02:00
use num ::{ BigUint , Zero , One } ;
#[ test ]
fn modexp_func ( ) {
// n^0 % m == 1
let mut base = BigUint ::parse_bytes ( b " 12345 " , 10 ) . unwrap ( ) ;
let mut exp = BigUint ::zero ( ) ;
let mut modulus = BigUint ::parse_bytes ( b " 789 " , 10 ) . unwrap ( ) ;
assert_eq! ( me ( base , exp , modulus ) , BigUint ::one ( ) ) ;
// 0^n % m == 0
base = BigUint ::zero ( ) ;
exp = BigUint ::parse_bytes ( b " 12345 " , 10 ) . unwrap ( ) ;
modulus = BigUint ::parse_bytes ( b " 789 " , 10 ) . unwrap ( ) ;
assert_eq! ( me ( base , exp , modulus ) , BigUint ::zero ( ) ) ;
// n^m % 1 == 0
base = BigUint ::parse_bytes ( b " 12345 " , 10 ) . unwrap ( ) ;
exp = BigUint ::parse_bytes ( b " 789 " , 10 ) . unwrap ( ) ;
modulus = BigUint ::one ( ) ;
assert_eq! ( me ( base , exp , modulus ) , BigUint ::zero ( ) ) ;
// if n % d == 0, then n^m % d == 0
base = BigUint ::parse_bytes ( b " 12345 " , 10 ) . unwrap ( ) ;
exp = BigUint ::parse_bytes ( b " 789 " , 10 ) . unwrap ( ) ;
modulus = BigUint ::parse_bytes ( b " 15 " , 10 ) . unwrap ( ) ;
assert_eq! ( me ( base , exp , modulus ) , BigUint ::zero ( ) ) ;
// others
base = BigUint ::parse_bytes ( b " 12345 " , 10 ) . unwrap ( ) ;
exp = BigUint ::parse_bytes ( b " 789 " , 10 ) . unwrap ( ) ;
modulus = BigUint ::parse_bytes ( b " 97 " , 10 ) . unwrap ( ) ;
assert_eq! ( me ( base , exp , modulus ) , BigUint ::parse_bytes ( b " 55 " , 10 ) . unwrap ( ) ) ;
}
2016-01-08 00:31:21 +01:00
2016-08-30 11:10:59 +02:00
#[ test ]
fn identity ( ) {
let f = ethereum_builtin ( " identity " ) ;
2016-01-08 00:31:21 +01:00
2016-08-30 11:10:59 +02:00
let i = [ 0 u8 , 1 , 2 , 3 ] ;
2016-01-08 00:31:21 +01:00
2016-08-30 11:10:59 +02:00
let mut o2 = [ 255 u8 ; 2 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o2 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( i [ 0 .. 2 ] , o2 ) ;
2016-01-08 00:31:21 +01:00
2016-08-30 11:10:59 +02:00
let mut o4 = [ 255 u8 ; 4 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o4 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( i , o4 ) ;
2016-01-07 23:55:14 +01:00
2016-08-30 11:10:59 +02:00
let mut o8 = [ 255 u8 ; 8 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o8 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( i , o8 [ .. 4 ] ) ;
assert_eq! ( [ 255 u8 ; 4 ] , o8 [ 4 .. ] ) ;
}
2016-04-09 19:20:35 +02:00
2016-08-30 11:10:59 +02:00
#[ test ]
fn sha256 ( ) {
let f = ethereum_builtin ( " sha256 " ) ;
2016-01-05 19:23:40 +01:00
2016-08-30 11:10:59 +02:00
let i = [ 0 u8 ; 0 ] ;
let mut o = [ 255 u8 ; 32 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 " ) . unwrap ( ) ) [ .. ] ) ;
let mut o8 = [ 255 u8 ; 8 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o8 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o8 [ .. ] , & ( FromHex ::from_hex ( " e3b0c44298fc1c14 " ) . unwrap ( ) ) [ .. ] ) ;
let mut o34 = [ 255 u8 ; 34 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o34 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o34 [ .. ] , & ( FromHex ::from_hex ( " e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855ffff " ) . unwrap ( ) ) [ .. ] ) ;
2016-09-22 14:50:00 +02:00
let mut ov = vec! [ ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Flexible ( & mut ov ) ) . expect ( " Builtin should not fail " ) ;
2016-09-22 14:50:00 +02:00
assert_eq! ( & ov [ .. ] , & ( FromHex ::from_hex ( " e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 " ) . unwrap ( ) ) [ .. ] ) ;
2016-08-30 11:10:59 +02:00
}
#[ test ]
fn ripemd160 ( ) {
let f = ethereum_builtin ( " ripemd160 " ) ;
let i = [ 0 u8 ; 0 ] ;
let mut o = [ 255 u8 ; 32 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " 0000000000000000000000009c1185a5c5e9fc54612808977ee8f548b2258d31 " ) . unwrap ( ) ) [ .. ] ) ;
let mut o8 = [ 255 u8 ; 8 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o8 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o8 [ .. ] , & ( FromHex ::from_hex ( " 0000000000000000 " ) . unwrap ( ) ) [ .. ] ) ;
let mut o34 = [ 255 u8 ; 34 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o34 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o34 [ .. ] , & ( FromHex ::from_hex ( " 0000000000000000000000009c1185a5c5e9fc54612808977ee8f548b2258d31ffff " ) . unwrap ( ) ) [ .. ] ) ;
}
#[ test ]
fn ecrecover ( ) {
let f = ethereum_builtin ( " ecrecover " ) ;
let i = FromHex ::from_hex ( " 47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03 " ) . unwrap ( ) ;
let mut o = [ 255 u8 ; 32 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " 000000000000000000000000c08b5542d177ac6686946920409741463a15dddb " ) . unwrap ( ) ) [ .. ] ) ;
let mut o8 = [ 255 u8 ; 8 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o8 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o8 [ .. ] , & ( FromHex ::from_hex ( " 0000000000000000 " ) . unwrap ( ) ) [ .. ] ) ;
let mut o34 = [ 255 u8 ; 34 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o34 [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o34 [ .. ] , & ( FromHex ::from_hex ( " 000000000000000000000000c08b5542d177ac6686946920409741463a15dddbffff " ) . unwrap ( ) ) [ .. ] ) ;
let i_bad = FromHex ::from_hex ( " 47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001a650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03 " ) . unwrap ( ) ;
let mut o = [ 255 u8 ; 32 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i_bad [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff " ) . unwrap ( ) ) [ .. ] ) ;
let i_bad = FromHex ::from_hex ( " 47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b000000000000000000000000000000000000000000000000000000000000001b0000000000000000000000000000000000000000000000000000000000000000 " ) . unwrap ( ) ;
let mut o = [ 255 u8 ; 32 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i_bad [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff " ) . unwrap ( ) ) [ .. ] ) ;
let i_bad = FromHex ::from_hex ( " 47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001b " ) . unwrap ( ) ;
let mut o = [ 255 u8 ; 32 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i_bad [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff " ) . unwrap ( ) ) [ .. ] ) ;
let i_bad = FromHex ::from_hex ( " 47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001bffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000000000000000000000000001b " ) . unwrap ( ) ;
let mut o = [ 255 u8 ; 32 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i_bad [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff " ) . unwrap ( ) ) [ .. ] ) ;
let i_bad = FromHex ::from_hex ( " 47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b000000000000000000000000000000000000000000000000000000000000001bffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff " ) . unwrap ( ) ;
let mut o = [ 255 u8 ; 32 ] ;
2017-03-22 13:54:19 +01:00
f . execute ( & i_bad [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff " ) . unwrap ( ) ) [ .. ] ) ;
// TODO: Should this (corrupted version of the above) fail rather than returning some address?
/* let i_bad = FromHex::from_hex("48173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03").unwrap();
let mut o = [ 255 u8 ; 32 ] ;
2016-09-22 14:50:00 +02:00
f . execute ( & i_bad [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( & o [ .. ] , & ( FromHex ::from_hex ( " ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff " ) . unwrap ( ) ) [ .. ] ) ; * /
}
2017-03-21 17:36:38 +01:00
#[ test ]
fn modexp ( ) {
let f = Builtin {
2017-09-15 21:07:54 +02:00
pricer : Box ::new ( ModexpPricer { divisor : 20 } ) ,
2017-03-21 17:36:38 +01:00
native : ethereum_builtin ( " modexp " ) ,
activate_at : 0 ,
} ;
2017-10-11 16:41:28 +02:00
2017-10-13 16:06:53 +02:00
// test for potential gas cost multiplication overflow
{
let input = FromHex ::from_hex ( " 0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000003b27bafd00000000000000000000000000000000000000000000000000000000503c8ac3 " ) . unwrap ( ) ;
let expected_cost = U256 ::max_value ( ) ;
assert_eq! ( f . cost ( & input [ .. ] ) , expected_cost . into ( ) ) ;
}
2017-10-11 16:41:28 +02:00
// test for potential exp len overflow
{
let input = FromHex ::from_hex ( " \
00000000000000000000000000000000000000000000000000000000000000 ff \
2 a1e530000000000000000000000000000000000000000000000000000000000 \
0000000000000000000000000000000000000000000000000000000000000000 "
) . unwrap ( ) ;
let mut output = vec! [ 0 u8 ; 32 ] ;
let expected = FromHex ::from_hex ( " 0000000000000000000000000000000000000000000000000000000000000000 " ) . unwrap ( ) ;
let expected_cost = U256 ::max_value ( ) ;
f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) . expect ( " Builtin should fail " ) ;
assert_eq! ( output , expected ) ;
assert_eq! ( f . cost ( & input [ .. ] ) , expected_cost . into ( ) ) ;
}
2017-03-21 17:36:38 +01:00
// fermat's little theorem example.
{
let input = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000001 \
0000000000000000000000000000000000000000000000000000000000000020 \
0000000000000000000000000000000000000000000000000000000000000020 \
03 \
fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e \
fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f "
) . unwrap ( ) ;
let mut output = vec! [ 0 u8 ; 32 ] ;
let expected = FromHex ::from_hex ( " 0000000000000000000000000000000000000000000000000000000000000001 " ) . unwrap ( ) ;
2017-09-15 21:07:54 +02:00
let expected_cost = 13056 ;
2017-03-21 17:36:38 +01:00
2017-03-22 13:54:19 +01:00
f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2017-03-21 17:36:38 +01:00
assert_eq! ( output , expected ) ;
assert_eq! ( f . cost ( & input [ .. ] ) , expected_cost . into ( ) ) ;
}
// second example from EIP: zero base.
{
let input = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000000 \
2017-09-15 21:07:54 +02:00
0000000000000000000000000000000000000000000000000000000000000020 \
0000000000000000000000000000000000000000000000000000000000000020 \
fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e \
fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f "
2017-03-21 17:36:38 +01:00
) . unwrap ( ) ;
let mut output = vec! [ 0 u8 ; 32 ] ;
let expected = FromHex ::from_hex ( " 0000000000000000000000000000000000000000000000000000000000000000 " ) . unwrap ( ) ;
2017-09-15 21:07:54 +02:00
let expected_cost = 13056 ;
2017-03-21 17:36:38 +01:00
2017-03-22 13:54:19 +01:00
f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2017-03-21 17:36:38 +01:00
assert_eq! ( output , expected ) ;
assert_eq! ( f . cost ( & input [ .. ] ) , expected_cost . into ( ) ) ;
}
// another example from EIP: zero-padding
{
let input = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000001 \
0000000000000000000000000000000000000000000000000000000000000002 \
0000000000000000000000000000000000000000000000000000000000000020 \
03 \
ffff \
80 "
) . unwrap ( ) ;
let mut output = vec! [ 0 u8 ; 32 ] ;
let expected = FromHex ::from_hex ( " 3b01b01ac41f2d6e917c6d6a221ce793802469026d9ab7578fa2e79e4da6aaab " ) . unwrap ( ) ;
2017-09-15 21:07:54 +02:00
let expected_cost = 768 ;
2017-03-21 17:36:38 +01:00
2017-03-22 13:54:19 +01:00
f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2017-03-21 17:36:38 +01:00
assert_eq! ( output , expected ) ;
assert_eq! ( f . cost ( & input [ .. ] ) , expected_cost . into ( ) ) ;
}
// zero-length modulus.
{
let input = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000001 \
0000000000000000000000000000000000000000000000000000000000000002 \
0000000000000000000000000000000000000000000000000000000000000000 \
03 \
ffff "
) . unwrap ( ) ;
let mut output = vec! [ ] ;
let expected_cost = 0 ;
2017-03-22 13:54:19 +01:00
f . execute ( & input [ .. ] , & mut BytesRef ::Flexible ( & mut output ) ) . expect ( " Builtin should not fail " ) ;
2017-03-21 17:36:38 +01:00
assert_eq! ( output . len ( ) , 0 ) ; // shouldn't have written any output.
assert_eq! ( f . cost ( & input [ .. ] ) , expected_cost . into ( ) ) ;
}
}
2017-03-22 13:41:32 +01:00
#[ test ]
2017-03-24 13:35:00 +01:00
fn bn128_add ( ) {
2017-03-22 13:41:32 +01:00
let f = Builtin {
pricer : Box ::new ( Linear { base : 0 , word : 0 } ) ,
2017-09-15 21:07:54 +02:00
native : ethereum_builtin ( " alt_bn128_add " ) ,
2017-03-22 13:41:32 +01:00
activate_at : 0 ,
2017-06-17 21:18:52 +02:00
} ;
2017-03-22 13:41:32 +01:00
// zero-points additions
{
let input = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000000 \
0000000000000000000000000000000000000000000000000000000000000000 \
0000000000000000000000000000000000000000000000000000000000000000 \
0000000000000000000000000000000000000000000000000000000000000000 "
) . unwrap ( ) ;
let mut output = vec! [ 0 u8 ; 64 ] ;
let expected = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000000 \
0000000000000000000000000000000000000000000000000000000000000000 "
) . unwrap ( ) ;
f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
assert_eq! ( output , expected ) ;
2017-06-17 21:18:52 +02:00
}
2017-03-22 13:41:32 +01:00
2017-03-22 14:31:43 +01:00
// no input, should not fail
{
let mut empty = [ 0 u8 ; 0 ] ;
let input = BytesRef ::Fixed ( & mut empty ) ;
let mut output = vec! [ 0 u8 ; 64 ] ;
let expected = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000000 \
0000000000000000000000000000000000000000000000000000000000000000 "
) . unwrap ( ) ;
f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
assert_eq! ( output , expected ) ;
2017-06-17 21:18:52 +02:00
}
2017-03-22 14:31:43 +01:00
2017-03-22 13:41:32 +01:00
// should fail - point not on curve
{
let input = FromHex ::from_hex ( " \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 "
) . unwrap ( ) ;
let mut output = vec! [ 0 u8 ; 64 ] ;
let res = f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) ;
assert! ( res . is_err ( ) , " There should be built-in error here " ) ;
2017-06-17 21:18:52 +02:00
}
2017-03-22 13:41:32 +01:00
}
2017-03-22 14:31:43 +01:00
#[ test ]
2017-03-24 13:35:00 +01:00
fn bn128_mul ( ) {
2017-03-22 14:31:43 +01:00
let f = Builtin {
pricer : Box ::new ( Linear { base : 0 , word : 0 } ) ,
2017-09-15 21:07:54 +02:00
native : ethereum_builtin ( " alt_bn128_mul " ) ,
2017-03-22 14:31:43 +01:00
activate_at : 0 ,
2017-06-17 21:18:52 +02:00
} ;
2017-03-22 14:31:43 +01:00
// zero-point multiplication
{
let input = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000000 \
0000000000000000000000000000000000000000000000000000000000000000 \
0200000000000000000000000000000000000000000000000000000000000000 "
) . unwrap ( ) ;
let mut output = vec! [ 0 u8 ; 64 ] ;
let expected = FromHex ::from_hex ( " \
0000000000000000000000000000000000000000000000000000000000000000 \
0000000000000000000000000000000000000000000000000000000000000000 "
) . unwrap ( ) ;
f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
assert_eq! ( output , expected ) ;
2017-06-17 21:18:52 +02:00
}
2017-03-22 14:31:43 +01:00
// should fail - point not on curve
{
let input = FromHex ::from_hex ( " \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 \
0 f00000000000000000000000000000000000000000000000000000000000000 "
) . unwrap ( ) ;
let mut output = vec! [ 0 u8 ; 64 ] ;
let res = f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) ;
assert! ( res . is_err ( ) , " There should be built-in error here " ) ;
2017-06-17 21:18:52 +02:00
}
2017-03-22 14:31:43 +01:00
}
2017-03-28 00:38:04 +02:00
2017-04-21 11:10:41 +02:00
fn builtin_pairing ( ) -> Builtin {
2017-03-28 00:38:04 +02:00
Builtin {
pricer : Box ::new ( Linear { base : 0 , word : 0 } ) ,
2017-09-15 21:07:54 +02:00
native : ethereum_builtin ( " alt_bn128_pairing " ) ,
2017-03-28 00:38:04 +02:00
activate_at : 0 ,
}
}
fn empty_test ( f : Builtin , expected : Vec < u8 > ) {
let mut empty = [ 0 u8 ; 0 ] ;
2017-06-17 21:18:52 +02:00
let input = BytesRef ::Fixed ( & mut empty ) ;
2017-03-28 00:38:04 +02:00
let mut output = vec! [ 0 u8 ; expected . len ( ) ] ;
f . execute ( & input [ .. ] , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2017-06-17 21:18:52 +02:00
assert_eq! ( output , expected ) ;
2017-03-28 00:38:04 +02:00
}
fn error_test ( f : Builtin , input : & [ u8 ] , msg_contains : Option < & str > ) {
let mut output = vec! [ 0 u8 ; 64 ] ;
let res = f . execute ( input , & mut BytesRef ::Fixed ( & mut output [ .. ] ) ) ;
if let Some ( msg ) = msg_contains {
if let Err ( e ) = res {
if ! e . 0. contains ( msg ) {
panic! ( " There should be error containing ' {} ' here, but got: ' {} ' " , msg , e . 0 ) ;
}
}
} else {
assert! ( res . is_err ( ) , " There should be built-in error here " ) ;
}
}
fn bytes ( s : & 'static str ) -> Vec < u8 > {
FromHex ::from_hex ( s ) . expect ( " static str should contain valid hex bytes " )
}
2017-06-17 21:18:52 +02:00
2017-03-28 00:38:04 +02:00
#[ test ]
fn bn128_pairing_empty ( ) {
// should not fail, because empty input is a valid input of 0 elements
empty_test (
2017-06-17 21:18:52 +02:00
builtin_pairing ( ) ,
2017-03-28 00:38:04 +02:00
bytes ( " 0000000000000000000000000000000000000000000000000000000000000001 " ) ,
) ;
}
#[ test ]
fn bn128_pairing_notcurve ( ) {
// should fail - point not on curve
error_test (
2017-04-21 11:10:41 +02:00
builtin_pairing ( ) ,
2017-03-28 00:38:04 +02:00
& bytes ( " \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 "
) ,
Some ( " not on curve " ) ,
) ;
}
#[ test ]
fn bn128_pairing_fragmented ( ) {
// should fail - input length is invalid
error_test (
2017-04-21 11:10:41 +02:00
builtin_pairing ( ) ,
2017-03-28 00:38:04 +02:00
& bytes ( " \
1111111111111111111111111111111111111111111111111111111111111111 \
1111111111111111111111111111111111111111111111111111111111111111 \
111111111111111111111111111111 "
) ,
Some ( " Invalid input length " ) ,
) ;
2017-06-17 21:18:52 +02:00
}
2017-03-22 14:31:43 +01:00
2016-08-30 11:10:59 +02:00
#[ test ]
#[ should_panic ]
fn from_unknown_linear ( ) {
let _ = ethereum_builtin ( " foo " ) ;
}
2017-03-21 17:36:38 +01:00
#[ test ]
fn is_active ( ) {
let pricer = Box ::new ( Linear { base : 10 , word : 20 } ) ;
let b = Builtin {
pricer : pricer as Box < Pricer > ,
native : ethereum_builtin ( " identity " ) ,
activate_at : 100_000 ,
} ;
assert! ( ! b . is_active ( 99_999 ) ) ;
assert! ( b . is_active ( 100_000 ) ) ;
assert! ( b . is_active ( 100_001 ) ) ;
}
2016-08-30 11:10:59 +02:00
#[ test ]
fn from_named_linear ( ) {
let pricer = Box ::new ( Linear { base : 10 , word : 20 } ) ;
let b = Builtin {
pricer : pricer as Box < Pricer > ,
native : ethereum_builtin ( " identity " ) ,
2017-03-21 17:36:38 +01:00
activate_at : 1 ,
2016-08-30 11:10:59 +02:00
} ;
2017-03-21 17:36:38 +01:00
assert_eq! ( b . cost ( & [ 0 ; 0 ] ) , U256 ::from ( 10 ) ) ;
assert_eq! ( b . cost ( & [ 0 ; 1 ] ) , U256 ::from ( 30 ) ) ;
assert_eq! ( b . cost ( & [ 0 ; 32 ] ) , U256 ::from ( 30 ) ) ;
assert_eq! ( b . cost ( & [ 0 ; 33 ] ) , U256 ::from ( 50 ) ) ;
2016-08-30 11:10:59 +02:00
let i = [ 0 u8 , 1 , 2 , 3 ] ;
let mut o = [ 255 u8 ; 4 ] ;
2017-03-22 13:54:19 +01:00
b . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( i , o ) ;
}
#[ test ]
fn from_json ( ) {
let b = Builtin ::from ( ethjson ::spec ::Builtin {
name : " identity " . to_owned ( ) ,
pricing : ethjson ::spec ::Pricing ::Linear ( ethjson ::spec ::Linear {
base : 10 ,
word : 20 ,
2017-03-21 17:36:38 +01:00
} ) ,
activate_at : None ,
2016-08-30 11:10:59 +02:00
} ) ;
2017-03-21 17:36:38 +01:00
assert_eq! ( b . cost ( & [ 0 ; 0 ] ) , U256 ::from ( 10 ) ) ;
assert_eq! ( b . cost ( & [ 0 ; 1 ] ) , U256 ::from ( 30 ) ) ;
assert_eq! ( b . cost ( & [ 0 ; 32 ] ) , U256 ::from ( 30 ) ) ;
assert_eq! ( b . cost ( & [ 0 ; 33 ] ) , U256 ::from ( 50 ) ) ;
2016-08-30 11:10:59 +02:00
let i = [ 0 u8 , 1 , 2 , 3 ] ;
let mut o = [ 255 u8 ; 4 ] ;
2017-03-22 13:54:19 +01:00
b . execute ( & i [ .. ] , & mut BytesRef ::Fixed ( & mut o [ .. ] ) ) . expect ( " Builtin should not fail " ) ;
2016-08-30 11:10:59 +02:00
assert_eq! ( i , o ) ;
}
2017-06-17 21:18:52 +02:00
}