openethereum/ethcore/light/src/net/mod.rs

1148 lines
34 KiB
Rust
Raw Normal View History

2016-10-05 15:35:31 +02:00
// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! LES Protocol Version 1 implementation.
//!
2016-11-07 19:16:23 +01:00
//! This uses a "Provider" to answer requests.
2016-10-10 18:48:47 +02:00
//! See https://github.com/ethcore/parity/wiki/Light-Ethereum-Subprotocol-(LES)
2016-10-05 15:35:31 +02:00
2016-12-05 17:09:05 +01:00
use ethcore::transaction::SignedTransaction;
2016-12-07 13:52:45 +01:00
use ethcore::receipt::Receipt;
2016-10-10 18:48:47 +02:00
use io::TimerToken;
use network::{NetworkProtocolHandler, NetworkContext, NetworkError, PeerId};
use rlp::{RlpStream, Stream, UntrustedRlp, View};
2016-10-10 18:48:47 +02:00
use util::hash::H256;
2016-12-07 13:52:45 +01:00
use util::{Bytes, Mutex, RwLock, U256};
use time::{Duration, SteadyTime};
2016-10-10 18:48:47 +02:00
2016-12-07 15:27:04 +01:00
use std::collections::HashMap;
use std::sync::Arc;
2016-11-18 19:12:20 +01:00
use std::sync::atomic::{AtomicUsize, Ordering};
2016-10-10 18:48:47 +02:00
2016-12-05 17:09:05 +01:00
use provider::Provider;
use request::{self, Request};
2016-11-09 15:36:26 +01:00
use self::buffer_flow::{Buffer, FlowParams};
use self::context::Ctx;
2016-11-09 15:36:26 +01:00
use self::error::{Error, Punishment};
2016-11-04 17:19:01 +01:00
2016-11-06 19:04:30 +01:00
mod buffer_flow;
mod context;
2016-11-09 15:36:26 +01:00
mod error;
2016-11-07 19:16:23 +01:00
mod status;
2016-11-06 19:04:30 +01:00
#[cfg(test)]
mod tests;
pub use self::context::{EventContext, IoContext};
pub use self::status::{Status, Capabilities, Announcement};
2016-10-10 18:48:47 +02:00
const TIMEOUT: TimerToken = 0;
const TIMEOUT_INTERVAL_MS: u64 = 1000;
// minimum interval between updates.
const UPDATE_INTERVAL_MS: i64 = 5000;
// Supported protocol versions.
pub const PROTOCOL_VERSIONS: &'static [u8] = &[1];
2016-10-10 18:48:47 +02:00
// Max protocol version.
pub const MAX_PROTOCOL_VERSION: u8 = 1;
// Packet count for LES.
pub const PACKET_COUNT: u8 = 15;
2016-10-10 18:48:47 +02:00
// packet ID definitions.
mod packet {
// the status packet.
pub const STATUS: u8 = 0x00;
2016-11-06 19:05:19 +01:00
// announcement of new block hashes or capabilities.
pub const ANNOUNCE: u8 = 0x01;
2016-10-10 18:48:47 +02:00
// request and response for block headers
pub const GET_BLOCK_HEADERS: u8 = 0x02;
pub const BLOCK_HEADERS: u8 = 0x03;
// request and response for block bodies
pub const GET_BLOCK_BODIES: u8 = 0x04;
pub const BLOCK_BODIES: u8 = 0x05;
// request and response for transaction receipts.
pub const GET_RECEIPTS: u8 = 0x06;
pub const RECEIPTS: u8 = 0x07;
// request and response for merkle proofs.
pub const GET_PROOFS: u8 = 0x08;
pub const PROOFS: u8 = 0x09;
// request and response for contract code.
pub const GET_CONTRACT_CODES: u8 = 0x0a;
pub const CONTRACT_CODES: u8 = 0x0b;
// relay transactions to peers.
pub const SEND_TRANSACTIONS: u8 = 0x0c;
// request and response for header proofs in a CHT.
pub const GET_HEADER_PROOFS: u8 = 0x0d;
pub const HEADER_PROOFS: u8 = 0x0e;
2016-11-04 18:40:31 +01:00
}
2016-11-18 19:12:20 +01:00
/// A request id.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct ReqId(usize);
2016-11-09 15:36:26 +01:00
// A pending peer: one we've sent our status to but
// may not have received one for.
struct PendingPeer {
sent_head: H256,
last_update: SteadyTime,
2016-11-09 15:36:26 +01:00
}
2016-10-10 18:48:47 +02:00
// data about each peer.
struct Peer {
local_buffer: Buffer, // their buffer relative to us
2016-11-09 15:36:26 +01:00
remote_buffer: Buffer, // our buffer relative to them
status: Status,
capabilities: Capabilities,
remote_flow: FlowParams,
sent_head: H256, // last head we've given them.
last_update: SteadyTime,
2016-10-10 18:48:47 +02:00
}
2016-10-05 15:35:31 +02:00
2016-11-15 18:19:16 +01:00
impl Peer {
// check the maximum cost of a request, returning an error if there's
// not enough buffer left.
// returns the calculated maximum cost.
fn deduct_max(&mut self, flow_params: &FlowParams, kind: request::Kind, max: usize) -> Result<U256, Error> {
flow_params.recharge(&mut self.local_buffer);
2016-11-15 18:19:16 +01:00
let max_cost = flow_params.compute_cost(kind, max);
try!(self.local_buffer.deduct_cost(max_cost));
2016-11-15 18:19:16 +01:00
Ok(max_cost)
}
// refund buffer for a request. returns new buffer amount.
fn refund(&mut self, flow_params: &FlowParams, amount: U256) -> U256 {
flow_params.refund(&mut self.local_buffer, amount);
2016-11-15 18:19:16 +01:00
self.local_buffer.current()
}
// recharge remote buffer with remote flow params.
fn recharge_remote(&mut self) {
let flow = &mut self.remote_flow;
flow.recharge(&mut self.remote_buffer);
2016-11-15 18:19:16 +01:00
}
}
/// An LES event handler.
2016-12-07 13:52:45 +01:00
///
/// Each handler function takes a context which describes the relevant peer
/// and gives references to the IO layer and protocol structure so new messages
/// can be dispatched immediately.
///
/// Request responses are not guaranteed to be complete or valid, but passed IDs will be correct.
/// Response handlers are not given a copy of the original request; it is assumed
/// that relevant data will be stored by interested handlers.
pub trait Handler: Send + Sync {
/// Called when a peer connects.
fn on_connect(&self, _ctx: &EventContext, _status: &Status, _capabilities: &Capabilities) { }
2016-12-07 13:52:45 +01:00
/// Called when a peer disconnects, with a list of unfulfilled request IDs as
/// of yet.
fn on_disconnect(&self, _ctx: &EventContext, _unfulfilled: &[ReqId]) { }
/// Called when a peer makes an announcement.
fn on_announcement(&self, _ctx: &EventContext, _announcement: &Announcement) { }
/// Called when a peer requests relay of some transactions.
fn on_transactions(&self, _ctx: &EventContext, _relay: &[SignedTransaction]) { }
2016-12-07 13:52:45 +01:00
/// Called when a peer responds with block bodies.
fn on_block_bodies(&self, _ctx: &EventContext, _req_id: ReqId, _bodies: &[Bytes]) { }
2016-12-07 13:52:45 +01:00
/// Called when a peer responds with block headers.
fn on_block_headers(&self, _ctx: &EventContext, _req_id: ReqId, _headers: &[Bytes]) { }
2016-12-07 13:52:45 +01:00
/// Called when a peer responds with block receipts.
fn on_receipts(&self, _ctx: &EventContext, _req_id: ReqId, _receipts: &[Vec<Receipt>]) { }
2016-12-07 13:52:45 +01:00
/// Called when a peer responds with state proofs. Each proof is a series of trie
/// nodes in ascending order by distance from the root.
fn on_state_proofs(&self, _ctx: &EventContext, _req_id: ReqId, _proofs: &[Vec<Bytes>]) { }
2016-12-07 13:52:45 +01:00
/// Called when a peer responds with contract code.
fn on_code(&self, _ctx: &EventContext, _req_id: ReqId, _codes: &[Bytes]) { }
2016-12-07 15:27:04 +01:00
/// Called when a peer responds with header proofs. Each proof is a block header coupled
/// with a series of trie nodes is ascending order by distance from the root.
fn on_header_proofs(&self, _ctx: &EventContext, _req_id: ReqId, _proofs: &[(Bytes, Vec<Bytes>)]) { }
/// Called on abort.
fn on_abort(&self) { }
}
2016-12-07 15:27:04 +01:00
// a request, the peer who it was made to, and the time it was made.
2016-11-18 19:12:20 +01:00
struct Requested {
request: Request,
timestamp: SteadyTime,
2016-12-07 15:27:04 +01:00
peer_id: PeerId,
2016-11-18 19:12:20 +01:00
}
/// Protocol parameters.
pub struct Params {
/// Network id.
pub network_id: u64,
2016-11-18 19:12:20 +01:00
/// Buffer flow parameters.
pub flow_params: FlowParams,
/// Initial capabilities.
pub capabilities: Capabilities,
}
2016-11-04 18:40:31 +01:00
/// This is an implementation of the light ethereum network protocol, abstracted
/// over a `Provider` of data and a p2p network.
///
/// This is simply designed for request-response purposes. Higher level uses
/// of the protocol, such as synchronization, will function as wrappers around
/// this system.
2016-11-18 19:27:32 +01:00
//
// LOCK ORDER:
// Locks must be acquired in the order declared, and when holding a read lock
// on the peers, only one peer may be held at a time.
2016-11-04 18:40:31 +01:00
pub struct LightProtocol {
provider: Arc<Provider>,
2016-10-10 18:48:47 +02:00
genesis_hash: H256,
network_id: u64,
2016-11-09 15:36:26 +01:00
pending_peers: RwLock<HashMap<PeerId, PendingPeer>>,
peers: RwLock<HashMap<PeerId, Mutex<Peer>>>,
2016-11-18 19:12:20 +01:00
pending_requests: RwLock<HashMap<usize, Requested>>,
2016-11-09 15:36:26 +01:00
capabilities: RwLock<Capabilities>,
flow_params: FlowParams, // assumed static and same for every peer.
handlers: Vec<Box<Handler>>,
2016-10-27 15:45:59 +02:00
req_id: AtomicUsize,
2016-10-10 18:48:47 +02:00
}
2016-11-04 18:40:31 +01:00
impl LightProtocol {
2016-11-18 19:12:20 +01:00
/// Create a new instance of the protocol manager.
pub fn new(provider: Arc<Provider>, params: Params) -> Self {
2016-12-09 00:35:34 +01:00
debug!(target: "les", "Initializing LES handler");
let genesis_hash = provider.chain_info().genesis_hash;
2016-11-18 19:12:20 +01:00
LightProtocol {
provider: provider,
genesis_hash: genesis_hash,
2016-11-18 19:12:20 +01:00
network_id: params.network_id,
pending_peers: RwLock::new(HashMap::new()),
peers: RwLock::new(HashMap::new()),
pending_requests: RwLock::new(HashMap::new()),
capabilities: RwLock::new(params.capabilities),
flow_params: params.flow_params,
handlers: Vec::new(),
req_id: AtomicUsize::new(0),
}
}
/// Check the maximum amount of requests of a specific type
/// which a peer would be able to serve.
pub fn max_requests(&self, peer: PeerId, kind: request::Kind) -> Option<usize> {
self.peers.read().get(&peer).map(|peer| {
let mut peer = peer.lock();
peer.recharge_remote();
2016-11-18 19:12:20 +01:00
peer.remote_flow.max_amount(&peer.remote_buffer, kind)
})
}
/// Make a request to a peer.
///
/// Fails on: nonexistent peer, network error,
/// insufficient buffer. Does not check capabilities before sending.
/// On success, returns a request id which can later be coordinated
/// with an event.
pub fn request_from(&self, io: &IoContext, peer_id: &PeerId, request: Request) -> Result<ReqId, Error> {
let peers = self.peers.read();
let peer = try!(peers.get(peer_id).ok_or_else(|| Error::UnknownPeer));
let mut peer = peer.lock();
peer.recharge_remote();
2016-11-18 19:12:20 +01:00
let max = peer.remote_flow.compute_cost(request.kind(), request.amount());
try!(peer.remote_buffer.deduct_cost(max));
let req_id = self.req_id.fetch_add(1, Ordering::SeqCst);
let packet_data = encode_request(&request, req_id);
let packet_id = match request.kind() {
request::Kind::Headers => packet::GET_BLOCK_HEADERS,
request::Kind::Bodies => packet::GET_BLOCK_BODIES,
request::Kind::Receipts => packet::GET_RECEIPTS,
request::Kind::StateProofs => packet::GET_PROOFS,
request::Kind::Codes => packet::GET_CONTRACT_CODES,
request::Kind::HeaderProofs => packet::GET_HEADER_PROOFS,
};
io.send(*peer_id, packet_id, packet_data);
2016-11-18 19:12:20 +01:00
self.pending_requests.write().insert(req_id, Requested {
request: request,
timestamp: SteadyTime::now(),
2016-12-07 15:27:04 +01:00
peer_id: *peer_id,
2016-11-18 19:12:20 +01:00
});
Ok(ReqId(req_id))
}
/// Make an announcement of new chain head and capabilities to all peers.
/// The announcement is expected to be valid.
pub fn make_announcement(&self, io: &IoContext, mut announcement: Announcement) {
let mut reorgs_map = HashMap::new();
let now = SteadyTime::now();
// update stored capabilities
self.capabilities.write().update_from(&announcement);
// calculate reorg info and send packets
for (peer_id, peer_info) in self.peers.read().iter() {
let mut peer_info = peer_info.lock();
// TODO: "urgent" announcements like new blocks?
// the timer approach will skip 1 (possibly 2) in rare occasions.
if peer_info.sent_head == announcement.head_hash ||
peer_info.status.head_num >= announcement.head_num ||
now - peer_info.last_update < Duration::milliseconds(UPDATE_INTERVAL_MS) {
continue
}
peer_info.last_update = now;
let reorg_depth = reorgs_map.entry(peer_info.sent_head)
.or_insert_with(|| {
match self.provider.reorg_depth(&announcement.head_hash, &peer_info.sent_head) {
Some(depth) => depth,
None => {
// both values will always originate locally -- this means something
// has gone really wrong
debug!(target: "les", "couldn't compute reorganization depth between {:?} and {:?}",
&announcement.head_hash, &peer_info.sent_head);
0
}
}
});
peer_info.sent_head = announcement.head_hash;
announcement.reorg_depth = *reorg_depth;
io.send(*peer_id, packet::ANNOUNCE, status::write_announcement(&announcement));
}
2016-10-27 15:45:59 +02:00
}
/// Add an event handler.
/// Ownership will be transferred to the protocol structure,
/// and the handler will be kept alive as long as it is.
2016-12-07 13:52:45 +01:00
/// These are intended to be added when the protocol structure
/// is initialized as a means of customizing its behavior.
pub fn add_handler(&mut self, handler: Box<Handler>) {
self.handlers.push(handler);
}
2016-12-07 15:27:04 +01:00
/// Signal to handlers that network activity is being aborted
/// and clear peer data.
pub fn abort(&self) {
for handler in &self.handlers {
handler.on_abort();
}
// acquire in order and hold.
let mut pending_peers = self.pending_peers.write();
let mut peers = self.peers.write();
let mut pending_requests = self.pending_requests.write();
pending_peers.clear();
peers.clear();
pending_requests.clear();
}
2016-12-07 15:27:04 +01:00
// Does the common pre-verification of responses before the response itself
// is actually decoded:
// - check whether peer exists
// - check whether request was made
// - check whether request kinds match
fn pre_verify_response(&self, peer: &PeerId, kind: request::Kind, raw: &UntrustedRlp) -> Result<ReqId, Error> {
let req_id: usize = try!(raw.val_at(0));
let cur_buffer: U256 = try!(raw.val_at(1));
trace!(target: "les", "pre-verifying response from peer {}, kind={:?}", peer, kind);
match self.pending_requests.write().remove(&req_id) {
None => return Err(Error::UnsolicitedResponse),
Some(requested) => {
if requested.peer_id != *peer || requested.request.kind() != kind {
return Err(Error::UnsolicitedResponse)
}
}
}
let peers = self.peers.read();
match peers.get(peer) {
Some(peer_info) => {
let mut peer_info = peer_info.lock();
let actual_buffer = ::std::cmp::min(cur_buffer, *peer_info.remote_flow.limit());
peer_info.remote_buffer.update_to(actual_buffer);
Ok(ReqId(req_id))
}
None => Err(Error::UnknownPeer), // probably only occurs in a race of some kind.
}
}
// handle a packet using the given io context.
fn handle_packet(&self, io: &IoContext, peer: &PeerId, packet_id: u8, data: &[u8]) {
let rlp = UntrustedRlp::new(data);
2016-12-09 00:35:34 +01:00
trace!(target: "les", "Incoming packet {} from peer {}", packet_id, peer);
// handle the packet
let res = match packet_id {
packet::STATUS => self.status(peer, io, rlp),
packet::ANNOUNCE => self.announcement(peer, io, rlp),
packet::GET_BLOCK_HEADERS => self.get_block_headers(peer, io, rlp),
packet::BLOCK_HEADERS => self.block_headers(peer, io, rlp),
packet::GET_BLOCK_BODIES => self.get_block_bodies(peer, io, rlp),
packet::BLOCK_BODIES => self.block_bodies(peer, io, rlp),
packet::GET_RECEIPTS => self.get_receipts(peer, io, rlp),
packet::RECEIPTS => self.receipts(peer, io, rlp),
packet::GET_PROOFS => self.get_proofs(peer, io, rlp),
packet::PROOFS => self.proofs(peer, io, rlp),
packet::GET_CONTRACT_CODES => self.get_contract_code(peer, io, rlp),
packet::CONTRACT_CODES => self.contract_code(peer, io, rlp),
packet::GET_HEADER_PROOFS => self.get_header_proofs(peer, io, rlp),
packet::HEADER_PROOFS => self.header_proofs(peer, io, rlp),
packet::SEND_TRANSACTIONS => self.relay_transactions(peer, io, rlp),
other => {
Err(Error::UnrecognizedPacket(other))
}
};
// if something went wrong, figure out how much to punish the peer.
if let Err(e) = res {
match e.punishment() {
Punishment::None => {}
Punishment::Disconnect => {
debug!(target: "les", "Disconnecting peer {}: {}", peer, e);
io.disconnect_peer(*peer)
}
Punishment::Disable => {
debug!(target: "les", "Disabling peer {}: {}", peer, e);
io.disable_peer(*peer)
}
}
}
}
}
2016-10-27 15:45:59 +02:00
impl LightProtocol {
2016-10-10 18:48:47 +02:00
// called when a peer connects.
fn on_connect(&self, peer: &PeerId, io: &IoContext) {
2016-10-10 18:48:47 +02:00
let peer = *peer;
2016-11-09 15:36:26 +01:00
2016-12-09 00:35:34 +01:00
trace!(target: "les", "Peer {} connecting", peer);
2016-10-10 18:48:47 +02:00
match self.send_status(peer, io) {
2016-11-09 15:36:26 +01:00
Ok(pending_peer) => {
self.pending_peers.write().insert(peer, pending_peer);
2016-10-10 18:48:47 +02:00
}
Err(e) => {
trace!(target: "les", "Error while sending status: {}", e);
2016-11-09 15:36:26 +01:00
io.disconnect_peer(peer);
2016-10-10 18:48:47 +02:00
}
}
}
// called when a peer disconnects.
fn on_disconnect(&self, peer: PeerId, io: &IoContext) {
2016-12-09 00:35:34 +01:00
trace!(target: "les", "Peer {} disconnecting", peer);
2016-11-09 15:36:26 +01:00
self.pending_peers.write().remove(&peer);
2016-12-07 15:27:04 +01:00
if self.peers.write().remove(&peer).is_some() {
let unfulfilled: Vec<_> = self.pending_requests.read()
.iter()
.filter(|&(_, r)| r.peer_id == peer)
.map(|(&id, _)| ReqId(id))
.collect();
2016-12-07 13:52:45 +01:00
{
let mut pending = self.pending_requests.write();
for &ReqId(ref inner) in &unfulfilled {
pending.remove(inner);
}
}
for handler in &self.handlers {
handler.on_disconnect(&Ctx {
2016-12-07 13:52:45 +01:00
peer: peer,
io: io,
proto: self,
}, &unfulfilled)
}
}
2016-10-10 18:48:47 +02:00
}
2016-11-09 15:36:26 +01:00
// send status to a peer.
fn send_status(&self, peer: PeerId, io: &IoContext) -> Result<PendingPeer, NetworkError> {
let chain_info = self.provider.chain_info();
2016-10-10 18:48:47 +02:00
2016-11-09 15:36:26 +01:00
// TODO: could update capabilities here.
2016-10-10 18:48:47 +02:00
2016-11-09 15:36:26 +01:00
let status = Status {
head_td: chain_info.total_difficulty,
head_hash: chain_info.best_block_hash,
head_num: chain_info.best_block_number,
genesis_hash: chain_info.genesis_hash,
protocol_version: MAX_PROTOCOL_VERSION as u32,
2016-11-09 15:36:26 +01:00
network_id: self.network_id,
last_head: None,
};
let capabilities = self.capabilities.read().clone();
let status_packet = status::write_handshake(&status, &capabilities, &self.flow_params);
io.send(peer, packet::STATUS, status_packet);
2016-11-09 15:36:26 +01:00
Ok(PendingPeer {
sent_head: chain_info.best_block_hash,
last_update: SteadyTime::now(),
2016-11-09 15:36:26 +01:00
})
2016-10-27 15:45:59 +02:00
}
2016-11-09 15:36:26 +01:00
// Handle status message from peer.
fn status(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
2016-11-09 15:36:26 +01:00
let pending = match self.pending_peers.write().remove(peer) {
Some(pending) => pending,
None => {
return Err(Error::UnexpectedHandshake);
}
};
let (status, capabilities, flow_params) = try!(status::parse_handshake(data));
trace!(target: "les", "Connected peer with chain head {:?}", (status.head_hash, status.head_num));
if (status.network_id, status.genesis_hash) != (self.network_id, self.genesis_hash) {
return Err(Error::WrongNetwork);
}
self.peers.write().insert(*peer, Mutex::new(Peer {
local_buffer: self.flow_params.create_buffer(),
2016-11-09 15:36:26 +01:00
remote_buffer: flow_params.create_buffer(),
status: status.clone(),
capabilities: capabilities.clone(),
2016-11-09 15:36:26 +01:00
remote_flow: flow_params,
sent_head: pending.sent_head,
last_update: pending.last_update,
}));
2016-11-09 15:36:26 +01:00
for handler in &self.handlers {
handler.on_connect(&Ctx {
2016-12-07 13:52:45 +01:00
peer: *peer,
io: io,
proto: self,
}, &status, &capabilities)
}
2016-11-09 15:36:26 +01:00
Ok(())
2016-10-10 18:48:47 +02:00
}
2016-11-06 19:05:19 +01:00
// Handle an announcement.
fn announcement(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
2016-11-09 16:21:09 +01:00
if !self.peers.read().contains_key(peer) {
debug!(target: "les", "Ignoring announcement from unknown peer");
return Ok(())
}
2016-10-10 18:48:47 +02:00
2016-11-09 16:21:09 +01:00
let announcement = try!(status::parse_announcement(data));
2016-12-07 13:52:45 +01:00
// scope to ensure locks are dropped before moving into handler-space.
{
let peers = self.peers.read();
let peer_info = match peers.get(peer) {
Some(info) => info,
None => return Ok(()),
};
let mut peer_info = peer_info.lock();
2016-11-09 16:21:09 +01:00
2016-12-07 13:52:45 +01:00
// update status.
{
// TODO: punish peer if they've moved backwards.
let status = &mut peer_info.status;
let last_head = status.head_hash;
status.head_hash = announcement.head_hash;
status.head_td = announcement.head_td;
status.head_num = announcement.head_num;
status.last_head = Some((last_head, announcement.reorg_depth));
}
2016-12-07 13:52:45 +01:00
// update capabilities.
peer_info.capabilities.update_from(&announcement);
2016-11-09 16:21:09 +01:00
}
for handler in &self.handlers {
handler.on_announcement(&Ctx {
2016-12-07 13:52:45 +01:00
peer: *peer,
io: io,
proto: self,
}, &announcement);
}
2016-11-09 16:21:09 +01:00
Ok(())
2016-10-10 18:48:47 +02:00
}
// Handle a request for block headers.
fn get_block_headers(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_HEADERS: usize = 512;
2016-10-27 15:45:59 +02:00
2016-11-15 18:19:16 +01:00
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
2016-11-15 18:19:16 +01:00
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let req_id: u64 = try!(data.val_at(0));
2016-11-10 14:05:47 +01:00
let block = {
let rlp = try!(data.at(1));
(try!(rlp.val_at(0)), try!(rlp.val_at(1)))
};
let req = request::Headers {
2016-11-10 14:05:47 +01:00
block_num: block.0,
block_hash: block.1,
max: ::std::cmp::min(MAX_HEADERS, try!(data.val_at(2))),
skip: try!(data.val_at(3)),
reverse: try!(data.val_at(4)),
};
2016-11-15 18:19:16 +01:00
let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::Headers, req.max));
let response = self.provider.block_headers(req);
let actual_cost = self.flow_params.compute_cost(request::Kind::Headers, response.len());
2016-11-15 18:19:16 +01:00
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
2016-11-15 18:19:16 +01:00
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::BLOCK_HEADERS, {
let mut stream = RlpStream::new_list(response.len() + 2);
stream.append(&req_id).append(&cur_buffer);
for header in response {
stream.append_raw(&header, 1);
}
stream.out()
});
Ok(())
2016-10-10 18:48:47 +02:00
}
// Receive a response for block headers.
fn block_headers(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
2016-12-07 15:27:04 +01:00
let req_id = try!(self.pre_verify_response(peer, request::Kind::Headers, &raw));
let raw_headers: Vec<_> = raw.iter().skip(2).map(|x| x.as_raw().to_owned()).collect();
for handler in &self.handlers {
handler.on_block_headers(&Ctx {
2016-12-07 15:27:04 +01:00
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_headers);
}
Ok(())
2016-10-10 18:48:47 +02:00
}
// Handle a request for block bodies.
fn get_block_bodies(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_BODIES: usize = 256;
2016-11-04 18:40:31 +01:00
2016-11-15 18:19:16 +01:00
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
2016-11-15 18:19:16 +01:00
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let req_id: u64 = try!(data.val_at(0));
let req = request::Bodies {
block_hashes: try!(data.iter().skip(1).take(MAX_BODIES).map(|x| x.as_val()).collect())
};
2016-11-15 18:19:16 +01:00
let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::Bodies, req.block_hashes.len()));
let response = self.provider.block_bodies(req);
let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::Bodies, response_len);
2016-11-15 18:19:16 +01:00
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
2016-11-15 18:19:16 +01:00
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::BLOCK_BODIES, {
let mut stream = RlpStream::new_list(response.len() + 2);
stream.append(&req_id).append(&cur_buffer);
for body in response {
stream.append_raw(&body, 1);
}
stream.out()
});
Ok(())
2016-10-10 18:48:47 +02:00
}
// Receive a response for block bodies.
fn block_bodies(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
2016-12-07 15:27:04 +01:00
let req_id = try!(self.pre_verify_response(peer, request::Kind::Bodies, &raw));
let raw_bodies: Vec<Bytes> = raw.iter().skip(2).map(|x| x.as_raw().to_owned()).collect();
for handler in &self.handlers {
handler.on_block_bodies(&Ctx {
2016-12-07 15:27:04 +01:00
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_bodies);
}
Ok(())
2016-10-10 18:48:47 +02:00
}
2016-11-04 17:19:01 +01:00
// Handle a request for receipts.
fn get_receipts(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
2016-11-15 18:19:16 +01:00
const MAX_RECEIPTS: usize = 256;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
2016-11-15 18:19:16 +01:00
let req_id: u64 = try!(data.val_at(0));
let req = request::Receipts {
block_hashes: try!(data.iter().skip(1).take(MAX_RECEIPTS).map(|x| x.as_val()).collect())
};
let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::Receipts, req.block_hashes.len()));
let response = self.provider.receipts(req);
let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::Receipts, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::RECEIPTS, {
let mut stream = RlpStream::new_list(response.len() + 2);
stream.append(&req_id).append(&cur_buffer);
for receipts in response {
stream.append_raw(&receipts, 1);
}
stream.out()
});
Ok(())
2016-11-04 17:19:01 +01:00
}
// Receive a response for receipts.
fn receipts(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
2016-12-07 15:27:04 +01:00
let req_id = try!(self.pre_verify_response(peer, request::Kind::Receipts, &raw));
let raw_receipts: Vec<Vec<Receipt>> = try!(raw
.iter()
.skip(2)
.map(|x| x.as_val())
.collect());
for handler in &self.handlers {
handler.on_receipts(&Ctx {
2016-12-07 15:27:04 +01:00
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_receipts);
}
Ok(())
2016-11-04 17:19:01 +01:00
}
2016-10-10 18:48:47 +02:00
// Handle a request for proofs.
fn get_proofs(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
2016-11-15 18:19:16 +01:00
const MAX_PROOFS: usize = 128;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
2016-11-15 18:19:16 +01:00
let req_id: u64 = try!(data.val_at(0));
let req = {
let requests: Result<Vec<_>, Error> = data.iter().skip(1).take(MAX_PROOFS).map(|x| {
Ok(request::StateProof {
block: try!(x.val_at(0)),
key1: try!(x.val_at(1)),
key2: if try!(x.at(2)).is_empty() { None } else { Some(try!(x.val_at(2))) },
from_level: try!(x.val_at(3)),
})
}).collect();
request::StateProofs {
requests: try!(requests),
}
};
let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::StateProofs, req.requests.len()));
let response = self.provider.proofs(req);
let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::StateProofs, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::PROOFS, {
let mut stream = RlpStream::new_list(response.len() + 2);
stream.append(&req_id).append(&cur_buffer);
for proof in response {
stream.append_raw(&proof, 1);
}
stream.out()
});
Ok(())
2016-10-10 18:48:47 +02:00
}
// Receive a response for proofs.
fn proofs(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
2016-12-07 15:27:04 +01:00
let req_id = try!(self.pre_verify_response(peer, request::Kind::StateProofs, &raw));
let raw_proofs: Vec<Vec<Bytes>> = raw.iter()
.skip(2)
.map(|x| x.iter().map(|node| node.as_raw().to_owned()).collect())
.collect();
for handler in &self.handlers {
handler.on_state_proofs(&Ctx {
2016-12-07 15:27:04 +01:00
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_proofs);
}
Ok(())
2016-10-10 18:48:47 +02:00
}
// Handle a request for contract code.
fn get_contract_code(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
2016-11-15 18:19:16 +01:00
const MAX_CODES: usize = 256;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
2016-11-15 18:19:16 +01:00
let req_id: u64 = try!(data.val_at(0));
let req = {
let requests: Result<Vec<_>, Error> = data.iter().skip(1).take(MAX_CODES).map(|x| {
Ok(request::ContractCode {
block_hash: try!(x.val_at(0)),
account_key: try!(x.val_at(1)),
})
}).collect();
request::ContractCodes {
code_requests: try!(requests),
}
};
let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::Codes, req.code_requests.len()));
let response = self.provider.contract_code(req);
let response_len = response.iter().filter(|x| !x.is_empty()).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::Codes, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::CONTRACT_CODES, {
let mut stream = RlpStream::new_list(response.len() + 2);
stream.append(&req_id).append(&cur_buffer);
for code in response {
stream.append(&code);
2016-11-15 18:19:16 +01:00
}
stream.out()
});
Ok(())
2016-10-10 18:48:47 +02:00
}
// Receive a response for contract code.
fn contract_code(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
2016-12-07 15:27:04 +01:00
let req_id = try!(self.pre_verify_response(peer, request::Kind::Codes, &raw));
let raw_code: Vec<Bytes> = try!(raw.iter().skip(2).map(|x| x.as_val()).collect());
for handler in &self.handlers {
handler.on_code(&Ctx {
2016-12-07 15:27:04 +01:00
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_code);
}
Ok(())
2016-10-10 18:48:47 +02:00
}
// Handle a request for header proofs
fn get_header_proofs(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
2016-11-15 18:19:16 +01:00
const MAX_PROOFS: usize = 256;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
2016-11-15 18:19:16 +01:00
let req_id: u64 = try!(data.val_at(0));
let req = {
let requests: Result<Vec<_>, Error> = data.iter().skip(1).take(MAX_PROOFS).map(|x| {
Ok(request::HeaderProof {
cht_number: try!(x.val_at(0)),
block_number: try!(x.val_at(1)),
from_level: try!(x.val_at(2)),
})
}).collect();
request::HeaderProofs {
requests: try!(requests),
}
};
let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::HeaderProofs, req.requests.len()));
let response = self.provider.header_proofs(req);
let response_len = response.iter().filter(|x| &x[..] != ::rlp::EMPTY_LIST_RLP).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::HeaderProofs, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::HEADER_PROOFS, {
let mut stream = RlpStream::new_list(response.len() + 2);
stream.append(&req_id).append(&cur_buffer);
for proof in response {
stream.append_raw(&proof, 1);
}
stream.out()
});
Ok(())
2016-10-10 18:48:47 +02:00
}
// Receive a response for header proofs
fn header_proofs(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
2016-12-07 15:27:04 +01:00
fn decode_res(raw: UntrustedRlp) -> Result<(Bytes, Vec<Bytes>), ::rlp::DecoderError> {
Ok((
try!(raw.val_at(0)),
try!(raw.at(1)).iter().map(|x| x.as_raw().to_owned()).collect(),
))
}
let req_id = try!(self.pre_verify_response(peer, request::Kind::HeaderProofs, &raw));
let raw_proofs: Vec<_> = try!(raw.iter().skip(2).map(decode_res).collect());
for handler in &self.handlers {
handler.on_header_proofs(&Ctx {
2016-12-07 15:27:04 +01:00
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_proofs);
}
Ok(())
2016-10-10 18:48:47 +02:00
}
// Receive a set of transactions to relay.
fn relay_transactions(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_TRANSACTIONS: usize = 256;
let txs: Vec<_> = try!(data.iter().take(MAX_TRANSACTIONS).map(|x| x.as_val::<SignedTransaction>()).collect());
debug!(target: "les", "Received {} transactions to relay from peer {}", txs.len(), peer);
for handler in &self.handlers {
handler.on_transactions(&Ctx {
2016-12-07 13:52:45 +01:00
peer: *peer,
io: io,
proto: self,
}, &txs);
}
Ok(())
2016-10-10 18:48:47 +02:00
}
}
2016-11-04 18:40:31 +01:00
impl NetworkProtocolHandler for LightProtocol {
2016-10-10 18:48:47 +02:00
fn initialize(&self, io: &NetworkContext) {
io.register_timer(TIMEOUT, TIMEOUT_INTERVAL_MS).expect("Error registering sync timer.");
}
fn read(&self, io: &NetworkContext, peer: &PeerId, packet_id: u8, data: &[u8]) {
self.handle_packet(io, peer, packet_id, data);
2016-10-10 18:48:47 +02:00
}
fn connected(&self, io: &NetworkContext, peer: &PeerId) {
self.on_connect(peer, io);
}
2016-12-07 13:52:45 +01:00
fn disconnected(&self, io: &NetworkContext, peer: &PeerId) {
self.on_disconnect(*peer, io);
2016-10-10 18:48:47 +02:00
}
fn timeout(&self, _io: &NetworkContext, timer: TimerToken) {
2016-10-10 18:48:47 +02:00
match timer {
TIMEOUT => {
// broadcast transactions to peers.
}
_ => warn!(target: "les", "received timeout on unknown token {}", timer),
}
}
2016-11-18 19:12:20 +01:00
}
// Helper for encoding the request to RLP with the given ID.
fn encode_request(req: &Request, req_id: usize) -> Vec<u8> {
match *req {
Request::Headers(ref headers) => {
let mut stream = RlpStream::new_list(5);
stream
.append(&req_id)
.begin_list(2)
.append(&headers.block_num)
.append(&headers.block_hash)
.append(&headers.max)
.append(&headers.skip)
.append(&headers.reverse);
stream.out()
}
Request::Bodies(ref request) => {
let mut stream = RlpStream::new_list(request.block_hashes.len() + 1);
stream.append(&req_id);
for hash in &request.block_hashes {
stream.append(hash);
}
stream.out()
}
Request::Receipts(ref request) => {
let mut stream = RlpStream::new_list(request.block_hashes.len() + 1);
stream.append(&req_id);
for hash in &request.block_hashes {
stream.append(hash);
}
stream.out()
}
Request::StateProofs(ref request) => {
let mut stream = RlpStream::new_list(request.requests.len() + 1);
stream.append(&req_id);
for proof_req in &request.requests {
stream.begin_list(4)
.append(&proof_req.block)
.append(&proof_req.key1);
match proof_req.key2 {
Some(ref key2) => stream.append(key2),
None => stream.append_empty_data(),
};
stream.append(&proof_req.from_level);
}
stream.out()
}
Request::Codes(ref request) => {
let mut stream = RlpStream::new_list(request.code_requests.len() + 1);
stream.append(&req_id);
for code_req in &request.code_requests {
stream.begin_list(2)
.append(&code_req.block_hash)
.append(&code_req.account_key);
}
stream.out()
}
Request::HeaderProofs(ref request) => {
let mut stream = RlpStream::new_list(request.requests.len() + 1);
stream.append(&req_id);
for proof_req in &request.requests {
stream.begin_list(3)
.append(&proof_req.cht_number)
.append(&proof_req.block_number)
.append(&proof_req.from_level);
}
stream.out()
}
}
2016-10-05 15:35:31 +02:00
}