openethereum/sync/src/light_sync/sync_round.rs

554 lines
17 KiB
Rust
Raw Normal View History

2016-12-14 22:57:30 +01:00
// Copyright 2015, 2016 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Header download state machine.
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap, HashSet, VecDeque};
use std::fmt;
2016-12-14 22:57:30 +01:00
use ethcore::header::Header;
2016-12-15 21:51:08 +01:00
use light::net::ReqId;
2016-12-14 22:57:30 +01:00
use light::request::Headers as HeadersRequest;
use network::PeerId;
2016-12-15 21:51:08 +01:00
use util::{Bytes, H256};
2016-12-14 22:57:30 +01:00
use super::response;
2016-12-14 22:57:30 +01:00
// number of attempts to make to get a full scaffold for a sync round.
const SCAFFOLD_ATTEMPTS: usize = 3;
/// Context for a headers response.
pub trait ResponseContext {
/// Get the peer who sent this response.
fn responder(&self) -> PeerId;
/// Get the request ID this response corresponds to.
2016-12-15 21:51:08 +01:00
fn req_id(&self) -> &ReqId;
/// Get the (unverified) response data.
fn data(&self) -> &[Bytes];
/// Punish the responder.
fn punish_responder(&self);
}
/// Reasons for sync round abort.
#[derive(Debug, Clone)]
pub enum AbortReason {
/// Bad sparse header chain along with a list of peers who contributed to it.
BadScaffold(Vec<PeerId>),
/// No incoming data.
NoResponses,
/// Sync rounds completed.
TargetReached,
}
// A request for headers with a known starting header hash.
2016-12-14 22:57:30 +01:00
// and a known parent hash for the last block.
#[derive(PartialEq, Eq)]
struct SubchainRequest {
subchain_parent: (u64, H256),
headers_request: HeadersRequest,
subchain_end: (u64, H256),
downloaded: VecDeque<Header>,
2016-12-14 22:57:30 +01:00
}
// ordered by subchain parent number so pending requests towards the
// front of the round are dispatched first.
impl PartialOrd for SubchainRequest {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2016-12-16 23:21:51 +01:00
self.subchain_parent.0
.partial_cmp(&other.subchain_parent.0)
.map(Ordering::reverse)
}
}
impl Ord for SubchainRequest {
fn cmp(&self, other: &Self) -> Ordering {
2016-12-16 23:21:51 +01:00
self.subchain_parent.0.cmp(&other.subchain_parent.0).reverse()
}
}
/// Manages downloading of interior blocks of a sparse header chain.
2016-12-14 22:57:30 +01:00
pub struct Fetcher {
sparse: VecDeque<Header>, // sparse header chain.
requests: BinaryHeap<SubchainRequest>,
complete_requests: HashMap<H256, SubchainRequest>,
pending: HashMap<ReqId, SubchainRequest>,
scaffold_contributors: Vec<PeerId>,
2016-12-15 17:33:25 +01:00
ready: VecDeque<Header>,
end: (u64, H256),
target: (u64, H256),
2016-12-14 22:57:30 +01:00
}
impl Fetcher {
// Produce a new fetcher given a sparse headerchain, in ascending order along
// with a list of peers who helped produce the chain.
2016-12-15 17:33:25 +01:00
// The headers must be valid RLP at this point and must have a consistent
// non-zero gap between them. Will abort the round if found wrong.
fn new(sparse_headers: Vec<Header>, contributors: Vec<PeerId>, target: (u64, H256)) -> SyncRound {
let mut requests = BinaryHeap::with_capacity(sparse_headers.len() - 1);
2016-12-14 22:57:30 +01:00
for pair in sparse_headers.windows(2) {
let low_rung = &pair[0];
let high_rung = &pair[1];
let diff = high_rung.number() - low_rung.number();
// should never happen as long as we verify the gaps
// gotten from SyncRound::Start
if diff < 2 { continue }
2016-12-14 22:57:30 +01:00
let needed_headers = HeadersRequest {
start: high_rung.parent_hash().clone().into(),
max: diff as usize - 1,
skip: 0,
reverse: true,
};
requests.push(SubchainRequest {
headers_request: needed_headers,
subchain_end: (high_rung.number() - 1, *high_rung.parent_hash()),
downloaded: VecDeque::new(),
subchain_parent: (low_rung.number(), low_rung.hash()),
2016-12-14 22:57:30 +01:00
});
}
2016-12-15 17:33:25 +01:00
let end = match sparse_headers.last().map(|h| (h.number(), h.hash())) {
Some(end) => end,
None => return SyncRound::abort(AbortReason::BadScaffold(contributors), VecDeque::new()),
2016-12-15 17:33:25 +01:00
};
SyncRound::Fetch(Fetcher {
sparse: sparse_headers.into(),
2016-12-14 22:57:30 +01:00
requests: requests,
complete_requests: HashMap::new(),
2016-12-14 22:57:30 +01:00
pending: HashMap::new(),
scaffold_contributors: contributors,
2016-12-15 17:33:25 +01:00
ready: VecDeque::new(),
end: end,
target: target,
2016-12-15 17:33:25 +01:00
})
}
// collect complete requests and their subchain from the sparse header chain
// into the ready set in order.
fn collect_ready(&mut self) {
loop {
let start_hash = match self.sparse.front() {
Some(first) => first.hash(),
None => break,
};
match self.complete_requests.remove(&start_hash) {
None => break,
Some(complete_req) => {
self.ready.push_back(self.sparse.pop_front().expect("first known to exist; qed"));
self.ready.extend(complete_req.downloaded);
}
}
}
// frames are between two sparse headers and keyed by subchain parent, so the last
// remaining will be the last header.
if self.sparse.len() == 1 {
self.ready.push_back(self.sparse.pop_back().expect("sparse known to have one entry; qed"))
2016-12-14 22:57:30 +01:00
}
trace!(target: "sync", "{} headers ready to drain", self.ready.len());
2016-12-14 22:57:30 +01:00
}
fn process_response<R: ResponseContext>(mut self, ctx: &R) -> SyncRound {
2016-12-15 21:51:08 +01:00
let mut request = match self.pending.remove(ctx.req_id()) {
Some(request) => request,
None => return SyncRound::Fetch(self),
};
trace!(target: "sync", "Received response for subchain ({} -> {})",
request.subchain_parent.0 + 1, request.subchain_end.0);
let headers = ctx.data();
if headers.len() == 0 {
trace!(target: "sync", "Punishing peer {} for empty response", ctx.responder());
ctx.punish_responder();
self.requests.push(request);
return SyncRound::Fetch(self);
}
match response::decode_and_verify(headers, &request.headers_request) {
Err(e) => {
trace!(target: "sync", "Punishing peer {} for invalid response ({})", ctx.responder(), e);
ctx.punish_responder();
// TODO: track number of attempts per request,
// abort if failure rate too high.
self.requests.push(request);
SyncRound::Fetch(self)
}
Ok(headers) => {
let mut parent_hash = None;
for header in headers {
if parent_hash.as_ref().map_or(false, |h| h != &header.hash()) {
trace!(target: "sync", "Punishing peer {} for parent mismatch", ctx.responder());
ctx.punish_responder();
self.requests.push(request);
return SyncRound::Fetch(self);
}
// incrementally update the frame request as we go so we can
// return at any time in the loop.
parent_hash = Some(header.parent_hash().clone());
request.headers_request.start = header.parent_hash().clone().into();
request.headers_request.max -= 1;
request.downloaded.push_front(header);
}
let subchain_parent = request.subchain_parent.1;
// check if the subchain portion has been completely filled.
if request.headers_request.max == 0 {
if parent_hash.map_or(true, |hash| hash != subchain_parent) {
let abort = AbortReason::BadScaffold(self.scaffold_contributors);
return SyncRound::abort(abort, self.ready);
}
self.complete_requests.insert(subchain_parent, request);
self.collect_ready();
}
// state transition not triggered until drain is finished.
(SyncRound::Fetch(self))
}
}
2016-12-14 22:57:30 +01:00
}
2016-12-15 16:19:28 +01:00
fn requests_abandoned(mut self, abandoned: &[ReqId]) -> SyncRound {
for abandoned in abandoned {
match self.pending.remove(abandoned) {
None => {},
Some(req) => self.requests.push(req),
}
}
// TODO: track failure rate and potentially abort.
SyncRound::Fetch(self)
}
2016-12-15 17:33:25 +01:00
2016-12-16 15:26:39 +01:00
fn dispatch_requests<D>(mut self, mut dispatcher: D) -> SyncRound
where D: FnMut(HeadersRequest) -> Option<ReqId>
2016-12-15 17:33:25 +01:00
{
while let Some(pending_req) = self.requests.pop() {
match dispatcher(pending_req.headers_request.clone()) {
Some(req_id) => {
trace!(target: "sync", "Assigned request for subchain ({} -> {})",
pending_req.subchain_parent.0 + 1, pending_req.subchain_end.0);
self.pending.insert(req_id, pending_req);
}
None => {
self.requests.push(pending_req);
break;
}
}
}
SyncRound::Fetch(self)
}
2016-12-15 21:51:08 +01:00
fn drain(mut self, headers: &mut Vec<Header>, max: Option<usize>) -> SyncRound {
let max = ::std::cmp::min(max.unwrap_or(usize::max_value()), self.ready.len());
2016-12-15 17:33:25 +01:00
headers.extend(self.ready.drain(0..max));
if self.sparse.is_empty() && self.ready.is_empty() {
trace!(target: "sync", "sync round complete. Starting anew from {:?}", self.end);
SyncRound::begin(self.end, self.target)
2016-12-15 17:33:25 +01:00
} else {
SyncRound::Fetch(self)
}
}
2016-12-14 22:57:30 +01:00
}
// Compute scaffold parameters from non-zero distance between start and target block: (skip, pivots).
fn scaffold_params(diff: u64) -> (u64, usize) {
// default parameters.
// amount of blocks between each scaffold pivot.
const ROUND_SKIP: u64 = 255;
// amount of scaffold pivots: these are the Xs in "X___X___X"
const ROUND_PIVOTS: usize = 256;
let rem = diff % (ROUND_SKIP + 1);
if diff <= ROUND_SKIP {
// just request headers from the start to the target.
(0, rem as usize)
} else {
// the number of pivots necessary to exactly hit or overshoot the target.
let pivots_to_target = (diff / (ROUND_SKIP + 1)) + if rem == 0 { 0 } else { 1 };
let num_pivots = ::std::cmp::min(pivots_to_target, ROUND_PIVOTS as u64) as usize;
(ROUND_SKIP, num_pivots)
}
}
/// Round started: get stepped header chain.
/// from a start block with number X we request ROUND_PIVOTS headers stepped by ROUND_SKIP from
/// block X + 1 to a target >= X + 1.
/// If the sync target is within ROUND_SKIP of the start, we request
/// only those blocks. If the sync target is within (ROUND_SKIP + 1) * (ROUND_PIVOTS - 1) of
/// the start, we reduce the number of pivots so the target is outside it.
pub struct RoundStart {
2016-12-14 22:57:30 +01:00
start_block: (u64, H256),
target: (u64, H256),
2016-12-14 22:57:30 +01:00
pending_req: Option<(ReqId, HeadersRequest)>,
sparse_headers: Vec<Header>,
contributors: HashSet<PeerId>,
attempt: usize,
skip: u64,
pivots: usize,
2016-12-14 22:57:30 +01:00
}
impl RoundStart {
fn new(start: (u64, H256), target: (u64, H256)) -> Self {
let (skip, pivots) = scaffold_params(target.0 - start.0);
trace!(target: "sync", "Beginning sync round: {} pivots and {} skip from block {}",
pivots, skip, start.0);
2016-12-14 22:57:30 +01:00
RoundStart {
start_block: start,
target: target,
2016-12-14 22:57:30 +01:00
pending_req: None,
sparse_headers: Vec::new(),
contributors: HashSet::new(),
attempt: 0,
skip: skip,
pivots: pivots,
2016-12-14 22:57:30 +01:00
}
}
2016-12-15 17:33:25 +01:00
// called on failed attempt. may trigger a transition after a number of attempts.
2016-12-16 14:53:36 +01:00
// a failed attempt is defined as any time a peer returns invalid or incomplete response
2016-12-15 16:19:28 +01:00
fn failed_attempt(mut self) -> SyncRound {
self.attempt += 1;
if self.attempt >= SCAFFOLD_ATTEMPTS {
return if self.sparse_headers.len() > 1 {
Fetcher::new(self.sparse_headers, self.contributors.into_iter().collect(), self.target)
2016-12-15 16:19:28 +01:00
} else {
let fetched_headers = if self.skip == 0 {
self.sparse_headers.into()
} else {
VecDeque::new()
};
SyncRound::abort(AbortReason::NoResponses, fetched_headers)
2016-12-15 16:19:28 +01:00
}
} else {
SyncRound::Start(self)
}
}
fn process_response<R: ResponseContext>(mut self, ctx: &R) -> SyncRound {
2016-12-14 22:57:30 +01:00
let req = match self.pending_req.take() {
2016-12-15 21:51:08 +01:00
Some((id, ref req)) if ctx.req_id() == &id => { req.clone() }
2016-12-14 22:57:30 +01:00
other => {
self.pending_req = other;
return SyncRound::Start(self);
2016-12-14 22:57:30 +01:00
}
};
match response::decode_and_verify(ctx.data(), &req) {
2016-12-14 22:57:30 +01:00
Ok(headers) => {
2016-12-15 17:33:25 +01:00
if self.sparse_headers.len() == 0
&& headers.get(0).map_or(false, |x| x.parent_hash() != &self.start_block.1) {
trace!(target: "sync", "Wrong parent for first header in round");
ctx.punish_responder(); // or should we reset?
}
self.contributors.insert(ctx.responder());
2016-12-14 22:57:30 +01:00
self.sparse_headers.extend(headers);
if self.sparse_headers.len() == self.pivots {
return if self.skip == 0 {
SyncRound::abort(AbortReason::TargetReached, self.sparse_headers.into())
} else {
trace!(target: "sync", "Beginning fetch of blocks between {} sparse headers",
self.sparse_headers.len());
Fetcher::new(
self.sparse_headers,
self.contributors.into_iter().collect(),
self.target
)
}
2016-12-14 22:57:30 +01:00
}
}
Err(e) => {
trace!(target: "sync", "Punishing peer {} for malformed response ({})", ctx.responder(), e);
ctx.punish_responder();
}
};
2016-12-15 16:19:28 +01:00
self.failed_attempt()
}
fn requests_abandoned(mut self, abandoned: &[ReqId]) -> SyncRound {
match self.pending_req.take() {
Some((id, req)) => {
if abandoned.iter().any(|r| r == &id) {
self.pending_req = None;
self.failed_attempt()
} else {
self.pending_req = Some((id, req));
SyncRound::Start(self)
}
}
2016-12-15 16:19:28 +01:00
None => SyncRound::Start(self),
2016-12-14 22:57:30 +01:00
}
}
2016-12-15 17:33:25 +01:00
2016-12-16 15:26:39 +01:00
fn dispatch_requests<D>(mut self, mut dispatcher: D) -> SyncRound
where D: FnMut(HeadersRequest) -> Option<ReqId>
2016-12-15 17:33:25 +01:00
{
if self.pending_req.is_none() {
// beginning offset + first block expected after last header we have.
let start = (self.start_block.0 + 1)
+ self.sparse_headers.len() as u64 * (self.skip + 1);
2016-12-15 17:33:25 +01:00
let max = self.pivots - self.sparse_headers.len();
2016-12-15 17:33:25 +01:00
let headers_request = HeadersRequest {
start: start.into(),
max: max,
skip: self.skip,
2016-12-15 17:33:25 +01:00
reverse: false,
};
2016-12-16 14:53:36 +01:00
if let Some(req_id) = dispatcher(headers_request.clone()) {
trace!(target: "sync", "Requesting scaffold: {} headers forward from {}, skip={}",
max, start, self.skip);
2016-12-16 14:53:36 +01:00
self.pending_req = Some((req_id, headers_request));
2016-12-15 17:33:25 +01:00
}
}
SyncRound::Start(self)
}
2016-12-14 22:57:30 +01:00
}
/// Sync round state machine.
pub enum SyncRound {
2016-12-14 22:57:30 +01:00
/// Beginning a sync round.
Start(RoundStart),
2016-12-14 22:57:30 +01:00
/// Fetching intermediate blocks during a sync round.
Fetch(Fetcher),
/// Aborted + Sequential headers
Abort(AbortReason, VecDeque<Header>),
2016-12-14 22:57:30 +01:00
}
impl SyncRound {
fn abort(reason: AbortReason, remaining: VecDeque<Header>) -> Self {
trace!(target: "sync", "Aborting sync round: {:?}. To drain: {}", reason, remaining.len());
SyncRound::Abort(reason, remaining)
}
/// Begin sync rounds from a starting block, but not to go past a given target
pub fn begin(start: (u64, H256), target: (u64, H256)) -> Self {
if target.0 <= start.0 {
SyncRound::abort(AbortReason::TargetReached, VecDeque::new())
} else {
SyncRound::Start(RoundStart::new(start, target))
}
2016-12-16 14:53:36 +01:00
}
/// Process an answer to a request. Unknown requests will be ignored.
pub fn process_response<R: ResponseContext>(self, ctx: &R) -> Self {
2016-12-14 22:57:30 +01:00
match self {
SyncRound::Start(round_start) => round_start.process_response(ctx),
SyncRound::Fetch(fetcher) => fetcher.process_response(ctx),
other => other,
2016-12-14 22:57:30 +01:00
}
}
/// Return unfulfilled requests from disconnected peer. Unknown requests will be ignored.
pub fn requests_abandoned(self, abandoned: &[ReqId]) -> Self {
2016-12-15 16:19:28 +01:00
match self {
SyncRound::Start(round_start) => round_start.requests_abandoned(abandoned),
SyncRound::Fetch(fetcher) => fetcher.requests_abandoned(abandoned),
other => other,
}
2016-12-14 22:57:30 +01:00
}
/// Dispatch pending requests. The dispatcher provided will attempt to
/// find a suitable peer to serve the request.
2016-12-15 17:33:25 +01:00
// TODO: have dispatcher take capabilities argument? and return an error as
// to why no suitable peer can be found? (no buffer, no chain heads that high, etc)
pub fn dispatch_requests<D>(self, dispatcher: D) -> Self
2016-12-16 15:26:39 +01:00
where D: FnMut(HeadersRequest) -> Option<ReqId>
2016-12-14 22:57:30 +01:00
{
2016-12-15 17:33:25 +01:00
match self {
SyncRound::Start(round_start) => round_start.dispatch_requests(dispatcher),
SyncRound::Fetch(fetcher) => fetcher.dispatch_requests(dispatcher),
other => other,
}
}
2016-12-15 21:51:08 +01:00
/// Drain up to a maximum number (None -> all) of headers (continuous, starting with a child of
2016-12-15 17:33:25 +01:00
/// the round start block) from the round, starting a new one once finished.
2016-12-15 21:51:08 +01:00
pub fn drain(self, v: &mut Vec<Header>, max: Option<usize>) -> Self {
2016-12-15 17:33:25 +01:00
match self {
SyncRound::Fetch(fetcher) => fetcher.drain(v, max),
SyncRound::Abort(reason, mut remaining) => {
let len = ::std::cmp::min(max.unwrap_or(usize::max_value()), remaining.len());
v.extend(remaining.drain(..len));
SyncRound::Abort(reason, remaining)
}
2016-12-15 17:33:25 +01:00
other => other,
}
2016-12-14 22:57:30 +01:00
}
}
impl fmt::Debug for SyncRound {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
SyncRound::Start(ref state) => write!(f, "Scaffolding from {:?}", state.start_block),
SyncRound::Fetch(ref fetcher) => write!(f, "Filling scaffold up to {:?}", fetcher.end),
SyncRound::Abort(ref reason, ref remaining) =>
write!(f, "Aborted: {:?}, {} remain", reason, remaining.len()),
}
}
}
#[cfg(test)]
mod tests {
use super::scaffold_params;
#[test]
fn scaffold_config() {
// within a certain distance of the head, we download
// sequentially.
assert_eq!(scaffold_params(1), (0, 1));
assert_eq!(scaffold_params(6), (0, 6));
// when scaffolds are useful, download enough frames to get
// within a close distance of the goal.
assert_eq!(scaffold_params(1000), (255, 4));
assert_eq!(scaffold_params(1024), (255, 4));
}
}