openethereum/ethcore/src/evm/interpreter/gasometer.rs

262 lines
8.6 KiB
Rust
Raw Normal View History

// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use common::*;
use super::u256_to_address;
use evm::{self, CostType};
use evm::instructions::{self, Instruction, InstructionInfo};
use evm::interpreter::stack::Stack;
macro_rules! overflowing {
($x: expr) => {{
let (v, overflow) = $x;
if overflow { return Err(evm::Error::OutOfGas); }
v
}}
}
#[cfg_attr(feature="dev", allow(enum_variant_names))]
enum InstructionCost<Cost: CostType> {
Gas(Cost),
GasMem(Cost, Cost),
GasMemCopy(Cost, Cost, Cost)
}
pub struct Gasometer<Gas: CostType> {
pub current_gas: Gas,
}
impl<Gas: CostType> Gasometer<Gas> {
pub fn new(current_gas: Gas) -> Self {
Gasometer {
current_gas: current_gas,
}
}
pub fn verify_gas(&self, gas_cost: &Gas) -> evm::Result<()> {
match &self.current_gas < gas_cost {
true => Err(evm::Error::OutOfGas),
false => Ok(())
}
}
#[cfg_attr(feature="dev", allow(cyclomatic_complexity))]
pub fn get_gas_cost_mem(
&mut self,
ext: &evm::Ext,
instruction: Instruction,
info: &InstructionInfo,
stack: &Stack<U256>,
current_mem_size: usize,
) -> evm::Result<(Gas, usize)> {
let schedule = ext.schedule();
let tier = instructions::get_tier_idx(info.tier);
let default_gas = Gas::from(schedule.tier_step_gas[tier]);
let cost = match instruction {
instructions::SSTORE => {
let address = H256::from(stack.peek(0));
let newval = stack.peek(1);
let val = U256::from(ext.storage_at(&address).as_slice());
let gas = if U256::zero() == val && &U256::zero() != newval {
schedule.sstore_set_gas
} else {
// Refund for below case is added when actually executing sstore
// !self.is_zero(&val) && self.is_zero(newval)
schedule.sstore_reset_gas
};
InstructionCost::Gas(Gas::from(gas))
},
instructions::SLOAD => {
InstructionCost::Gas(Gas::from(schedule.sload_gas))
},
instructions::MSTORE | instructions::MLOAD => {
InstructionCost::GasMem(default_gas, try!(self.mem_needed_const(stack.peek(0), 32)))
},
instructions::MSTORE8 => {
InstructionCost::GasMem(default_gas, try!(self.mem_needed_const(stack.peek(0), 1)))
},
instructions::RETURN => {
InstructionCost::GasMem(default_gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::SHA3 => {
let w = overflowing!(add_gas_usize(try!(Gas::from_u256(*stack.peek(1))), 31));
let words = w >> 5;
let gas = Gas::from(schedule.sha3_gas) + (Gas::from(schedule.sha3_word_gas) * words);
InstructionCost::GasMem(gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::CALLDATACOPY | instructions::CODECOPY => {
InstructionCost::GasMemCopy(default_gas, try!(self.mem_needed(stack.peek(0), stack.peek(2))), try!(Gas::from_u256(*stack.peek(2))))
},
instructions::EXTCODECOPY => {
InstructionCost::GasMemCopy(default_gas, try!(self.mem_needed(stack.peek(1), stack.peek(3))), try!(Gas::from_u256(*stack.peek(3))))
},
instructions::JUMPDEST => {
InstructionCost::Gas(Gas::from(1))
},
instructions::LOG0...instructions::LOG4 => {
let no_of_topics = instructions::get_log_topics(instruction);
let log_gas = schedule.log_gas + schedule.log_topic_gas * no_of_topics;
let data_gas = overflowing!(try!(Gas::from_u256(*stack.peek(1))).overflow_mul(Gas::from(schedule.log_data_gas)));
let gas = overflowing!(data_gas.overflow_add(Gas::from(log_gas)));
InstructionCost::GasMem(gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::CALL | instructions::CALLCODE => {
let mut gas = overflowing!(add_gas_usize(try!(Gas::from_u256(*stack.peek(0))), schedule.call_gas));
let mem = cmp::max(
try!(self.mem_needed(stack.peek(5), stack.peek(6))),
try!(self.mem_needed(stack.peek(3), stack.peek(4)))
);
let address = u256_to_address(stack.peek(1));
if instruction == instructions::CALL && !ext.exists(&address) {
gas = overflowing!(gas.overflow_add(Gas::from(schedule.call_new_account_gas)));
};
if stack.peek(2) > &U256::zero() {
gas = overflowing!(gas.overflow_add(Gas::from(schedule.call_value_transfer_gas)));
};
InstructionCost::GasMem(gas,mem)
},
instructions::DELEGATECALL => {
let gas = overflowing!(add_gas_usize(try!(Gas::from_u256(*stack.peek(0))), schedule.call_gas));
let mem = cmp::max(
try!(self.mem_needed(stack.peek(4), stack.peek(5))),
try!(self.mem_needed(stack.peek(2), stack.peek(3)))
);
InstructionCost::GasMem(gas, mem)
},
instructions::CREATE => {
let gas = Gas::from(schedule.create_gas);
let mem = try!(self.mem_needed(stack.peek(1), stack.peek(2)));
InstructionCost::GasMem(gas, mem)
},
instructions::EXP => {
let expon = stack.peek(1);
let bytes = ((expon.bits() + 7) / 8) as usize;
let gas = Gas::from(schedule.exp_gas + schedule.exp_byte_gas * bytes);
InstructionCost::Gas(gas)
},
_ => InstructionCost::Gas(default_gas)
};
match cost {
InstructionCost::Gas(gas) => {
Ok((gas, 0))
},
InstructionCost::GasMem(gas, mem_size) => {
let (mem_gas, new_mem_size) = try!(self.mem_gas_cost(schedule, current_mem_size, &mem_size));
let gas = overflowing!(gas.overflow_add(mem_gas));
Ok((gas, new_mem_size))
},
InstructionCost::GasMemCopy(gas, mem_size, copy) => {
let (mem_gas, new_mem_size) = try!(self.mem_gas_cost(schedule, current_mem_size, &mem_size));
let copy = overflowing!(add_gas_usize(copy, 31));
let copy_gas = Gas::from(schedule.copy_gas) * (copy / Gas::from(32 as usize));
let gas = overflowing!(gas.overflow_add(copy_gas));
let gas = overflowing!(gas.overflow_add(mem_gas));
Ok((gas, new_mem_size))
}
}
}
fn is_zero(&self, val: &Gas) -> bool {
&Gas::from(0) == val
}
fn mem_needed_const(&self, mem: &U256, add: usize) -> evm::Result<Gas> {
Gas::from_u256(overflowing!(mem.overflowing_add(U256::from(add))))
}
fn mem_needed(&self, offset: &U256, size: &U256) -> evm::Result<Gas> {
if self.is_zero(&try!(Gas::from_u256(*size))) {
return Ok(Gas::from(0));
}
Gas::from_u256(overflowing!(offset.overflowing_add(*size)))
}
fn mem_gas_cost(&self, schedule: &evm::Schedule, current_mem_size: usize, mem_size: &Gas) -> evm::Result<(Gas, usize)> {
let gas_for_mem = |mem_size: Gas| {
let s = mem_size >> 5;
// s * memory_gas + s * s / quad_coeff_div
let a = overflowing!(s.overflow_mul(Gas::from(schedule.memory_gas)));
// We need to go to U512 to calculate s*s/quad_coeff_div
let b = U512::from(s.as_u256()) * U512::from(s.as_u256()) / U512::from(schedule.quad_coeff_div);
if b > U512::from(!U256::zero()) {
Err(evm::Error::OutOfGas)
} else {
Ok(overflowing!(a.overflow_add(try!(Gas::from_u256(U256::from(b))))))
}
};
let current_mem_size = Gas::from(current_mem_size);
let req_mem_size_rounded = (overflowing!(mem_size.overflow_add(Gas::from(31 as usize))) >> 5) << 5;
let mem_gas_cost = if req_mem_size_rounded > current_mem_size {
let new_mem_gas = try!(gas_for_mem(req_mem_size_rounded));
let current_mem_gas = try!(gas_for_mem(current_mem_size));
new_mem_gas - current_mem_gas
} else {
Gas::from(0)
};
Ok((mem_gas_cost, req_mem_size_rounded.as_usize()))
}
}
#[inline]
fn add_gas_usize<Gas: CostType>(value: Gas, num: usize) -> (Gas, bool) {
value.overflow_add(Gas::from(num))
}
#[test]
fn test_mem_gas_cost() {
// given
let gasometer = Gasometer::<U256>::new(U256::zero());
let schedule = evm::Schedule::default();
let current_mem_size = 5;
let mem_size = !U256::zero();
// when
let result = gasometer.mem_gas_cost(&schedule, current_mem_size, &mem_size);
// then
if let Ok(_) = result {
assert!(false, "Should fail with OutOfGas");
}
}
#[test]
fn test_calculate_mem_cost() {
// given
let gasometer = Gasometer::<usize>::new(0);
let schedule = evm::Schedule::default();
let current_mem_size = 0;
let mem_size = 5;
// when
let (mem_cost, mem_size) = gasometer.mem_gas_cost(&schedule, current_mem_size, &mem_size).unwrap();
// then
assert_eq!(mem_cost, 3);
assert_eq!(mem_size, 32);
}