Implement EIP-2124 (#11456)

* Implement EIP-2124

* Implement ForkFilter

* ForkId deserialization

* Derive RLP for ForkId

* docs

* comments by @dvdplm

* docs

* clippy

* period
This commit is contained in:
Artem Vorotnikov 2020-02-06 16:40:19 +03:00 committed by GitHub
parent 06138ec7d3
commit 090c3322a5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 383 additions and 0 deletions

33
Cargo.lock generated
View File

@ -479,6 +479,12 @@ dependencies = [
"serde",
]
[[package]]
name = "build_const"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "39092a32794787acd8525ee150305ff051b0aa6cc2abaf193924f5ab05425f39"
[[package]]
name = "bumpalo"
version = "3.1.2"
@ -748,6 +754,15 @@ version = "0.6.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e7ca8a5221364ef15ce201e8ed2f609fc312682a8f4e0e3d4aa5879764e0fa3b"
[[package]]
name = "crc"
version = "1.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d663548de7f5cca343f1e0a48d14dcfb0e9eb4e079ec58883b7251539fa10aeb"
dependencies = [
"build_const",
]
[[package]]
name = "criterion"
version = "0.3.0"
@ -988,6 +1003,18 @@ dependencies = [
"rustc-hex 2.0.1",
]
[[package]]
name = "eip-2124"
version = "0.1.0"
dependencies = [
"crc",
"ethereum-types",
"hex-literal",
"maplit",
"rlp",
"rlp_derive",
]
[[package]]
name = "eip-712"
version = "0.1.1"
@ -2826,6 +2853,12 @@ dependencies = [
"synstructure 0.12.3",
]
[[package]]
name = "maplit"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e2e65a1a2e43cfcb47a895c4c8b10d1f4a61097f9f254f183aee60cad9c651d"
[[package]]
name = "matches"
version = "0.1.8"

View File

@ -135,4 +135,5 @@ members = [
"chainspec",
"ethcore/wasm/run",
"evmbin",
"util/EIP-2124"
]

21
util/EIP-2124/Cargo.toml Normal file
View File

@ -0,0 +1,21 @@
[package]
name = "eip-2124"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
repository = "https://github.com/paritytech/parity-ethereum"
documentation = "https://docs.rs/eip-2124"
readme = "README.md"
description = "EIP-2124 Fork ID implementation"
keywords = ["eip-2124", "eip"]
license = "GPL-3.0"
edition = "2018"
[dependencies]
crc = "1"
ethereum-types = "0.8.0"
maplit = "1"
rlp = "0.4"
rlp_derive = { path = "../rlp-derive" }
[dev-dependencies]
hex-literal = "0.2"

328
util/EIP-2124/src/lib.rs Normal file
View File

@ -0,0 +1,328 @@
// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
//! EIP-2124 implementation based on <https://eips.ethereum.org/EIPS/eip-2124>.
#![deny(missing_docs)]
#![warn(
clippy::all,
clippy::pedantic,
clippy::nursery,
)]
use crc::crc32;
use ethereum_types::H256;
use maplit::btreemap;
use rlp::{DecoderError, Rlp, RlpStream};
use rlp_derive::{RlpDecodable, RlpEncodable};
use std::collections::{BTreeMap, BTreeSet};
/// Block number.
pub type BlockNumber = u64;
/// `CRC32` hash of all previous forks starting from genesis block.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct ForkHash(pub u32);
impl rlp::Encodable for ForkHash {
fn rlp_append(&self, s: &mut RlpStream) {
s.encoder().encode_value(&self.0.to_be_bytes());
}
}
impl rlp::Decodable for ForkHash {
fn decode(rlp: &Rlp) -> Result<Self, DecoderError> {
rlp.decoder().decode_value(|b| {
if b.len() != 4 {
return Err(DecoderError::RlpInvalidLength);
}
let mut blob = [0; 4];
blob.copy_from_slice(&b[..]);
Ok(Self(u32::from_be_bytes(blob)))
})
}
}
impl From<H256> for ForkHash {
fn from(genesis: H256) -> Self {
Self(crc32::checksum_ieee(&genesis[..]))
}
}
impl std::ops::AddAssign<BlockNumber> for ForkHash {
fn add_assign(&mut self, height: BlockNumber) {
let blob = height.to_be_bytes();
self.0 = crc32::update(self.0, &crc32::IEEE_TABLE, &blob)
}
}
impl std::ops::Add<BlockNumber> for ForkHash {
type Output = Self;
fn add(mut self, height: BlockNumber) -> Self {
self += height;
self
}
}
/// A fork identifier as defined by EIP-2124.
/// Serves as the chain compatibility identifier.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, RlpEncodable, RlpDecodable)]
pub struct ForkId {
/// CRC32 checksum of the all fork blocks from genesis.
pub hash: ForkHash,
/// Next upcoming fork block number, 0 if not yet known.
pub next: BlockNumber
}
/// Reason for rejecting provided `ForkId`.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum RejectReason {
/// Remote node is outdated and needs a software update.
RemoteStale,
/// Local node is on an incompatible chain or needs a sofwtare update.
LocalIncompatibleOrStale,
}
/// Filter that describes the state of blockchain and can be used to check incoming `ForkId`s for compatibility.
#[derive(Clone, Debug)]
pub struct ForkFilter {
/// Blockchain head
pub head: BlockNumber,
past_forks: BTreeMap<BlockNumber, ForkHash>,
next_forks: BTreeSet<BlockNumber>,
}
impl ForkFilter {
/// Create the filter from provided head, genesis block hash, past forks and expected future forks.
pub fn new<PF, NF>(head: BlockNumber, genesis: H256, past_forks: PF, next_forks: NF) -> Self
where
PF: IntoIterator<Item = BlockNumber>,
NF: IntoIterator<Item = BlockNumber>,
{
let genesis_fork_hash = ForkHash::from(genesis);
Self {
head,
past_forks: past_forks.into_iter().fold((btreemap! { 0 => genesis_fork_hash }, genesis_fork_hash), |(mut acc, base_hash), block| {
let fork_hash = base_hash + block;
acc.insert(block, fork_hash);
(acc, fork_hash)
}).0,
next_forks: next_forks.into_iter().collect(),
}
}
fn current_fork_hash(&self) -> ForkHash {
*self.past_forks.values().next_back().expect("there is always at least one - genesis - fork hash; qed")
}
fn future_fork_hashes(&self) -> Vec<ForkHash> {
self.next_forks.iter().fold((Vec::new(), self.current_fork_hash()), |(mut acc, hash), fork| {
let next = hash + *fork;
acc.push(next);
(acc, next)
}).0
}
/// Insert a new past fork
pub fn insert_past_fork(&mut self, height: BlockNumber) {
self.past_forks.insert(height, self.current_fork_hash() + height);
}
/// Insert a new upcoming fork
pub fn insert_next_fork(&mut self, height: BlockNumber) {
self.next_forks.insert(height);
}
/// Mark an upcoming fork as already happened and immutable.
/// Returns `false` if no such fork existed and the call was a no-op.
pub fn promote_next_fork(&mut self, height: BlockNumber) -> bool {
let promoted = self.next_forks.remove(&height);
if promoted {
self.insert_past_fork(height);
}
promoted
}
/// Check whether the provided `ForkId` is compatible based on the validation rules in `EIP-2124`.
///
/// # Errors
/// Returns a `RejectReason` if the `ForkId` is not compatible.
pub fn is_valid(&self, fork_id: ForkId) -> Result<(), RejectReason> {
// 1) If local and remote FORK_HASH matches...
if self.current_fork_hash() == fork_id.hash {
if fork_id.next == 0 {
// 1b) No remotely announced fork, connect.
return Ok(())
}
//... compare local head to FORK_NEXT.
if self.head >= fork_id.next {
// 1a) A remotely announced but remotely not passed block is already passed locally, disconnect,
// since the chains are incompatible.
return Err(RejectReason::LocalIncompatibleOrStale)
} else {
// 1b) Remotely announced fork not yet passed locally, connect.
return Ok(())
}
}
// 2) If the remote FORK_HASH is a subset of the local past forks...
let mut it = self.past_forks.iter();
while let Some((_, hash)) = it.next() {
if *hash == fork_id.hash {
// ...and the remote FORK_NEXT matches with the locally following fork block number, connect.
if let Some((actual_fork_block, _)) = it.next() {
if *actual_fork_block == fork_id.next {
return Ok(())
} else {
return Err(RejectReason::RemoteStale);
}
}
break;
}
}
// 3) If the remote FORK_HASH is a superset of the local past forks and can be completed with locally known future forks, connect.
for future_fork_hash in self.future_fork_hashes() {
if future_fork_hash == fork_id.hash {
return Ok(())
}
}
// 4) Reject in all other cases.
Err(RejectReason::LocalIncompatibleOrStale)
}
}
#[cfg(test)]
mod tests {
use super::*;
use hex_literal::hex;
const GENESIS_HASH: &str = "d4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3";
const BYZANTIUM_FORK_HEIGHT: BlockNumber = 4370000;
const PETERSBURG_FORK_HEIGHT: BlockNumber = 7280000;
// EIP test vectors.
#[test]
fn test_forkhash() {
let mut fork_hash = ForkHash::from(GENESIS_HASH.parse::<H256>().unwrap());
assert_eq!(fork_hash.0, 0xfc64ec04);
fork_hash += 1150000;
assert_eq!(fork_hash.0, 0x97c2c34c);
fork_hash += 1920000;
assert_eq!(fork_hash.0, 0x91d1f948);
}
#[test]
fn test_compatibility_check() {
let spurious_filter = ForkFilter::new(
4369999,
GENESIS_HASH.parse().unwrap(),
vec![1150000, 1920000, 2463000, 2675000],
vec![BYZANTIUM_FORK_HEIGHT]
);
let mut byzantium_filter = spurious_filter.clone();
byzantium_filter.promote_next_fork(BYZANTIUM_FORK_HEIGHT);
byzantium_filter.insert_next_fork(PETERSBURG_FORK_HEIGHT);
byzantium_filter.head = 7279999;
let mut petersburg_filter = byzantium_filter.clone();
petersburg_filter.promote_next_fork(PETERSBURG_FORK_HEIGHT);
petersburg_filter.head = 7987396;
// Local is mainnet Petersburg, remote announces the same. No future fork is announced.
assert_eq!(petersburg_filter.is_valid(ForkId { hash: ForkHash(0x668db0af), next: 0 }), Ok(()));
// Local is mainnet Petersburg, remote announces the same. Remote also announces a next fork
// at block 0xffffffff, but that is uncertain.
assert_eq!(petersburg_filter.is_valid(ForkId { hash: ForkHash(0x668db0af), next: BlockNumber::max_value() }), Ok(()));
// Local is mainnet currently in Byzantium only (so it's aware of Petersburg),remote announces
// also Byzantium, but it's not yet aware of Petersburg (e.g. non updated node before the fork).
// In this case we don't know if Petersburg passed yet or not.
assert_eq!(byzantium_filter.is_valid(ForkId { hash: ForkHash(0xa00bc324), next: 0 }), Ok(()));
// Local is mainnet currently in Byzantium only (so it's aware of Petersburg), remote announces
// also Byzantium, and it's also aware of Petersburg (e.g. updated node before the fork). We
// don't know if Petersburg passed yet (will pass) or not.
assert_eq!(byzantium_filter.is_valid(ForkId { hash: ForkHash(0xa00bc324), next: PETERSBURG_FORK_HEIGHT }), Ok(()));
// Local is mainnet currently in Byzantium only (so it's aware of Petersburg), remote announces
// also Byzantium, and it's also aware of some random fork (e.g. misconfigured Petersburg). As
// neither forks passed at neither nodes, they may mismatch, but we still connect for now.
assert_eq!(byzantium_filter.is_valid(ForkId { hash: ForkHash(0xa00bc324), next: BlockNumber::max_value() }), Ok(()));
// Local is mainnet Petersburg, remote announces Byzantium + knowledge about Petersburg. Remote is simply out of sync, accept.
assert_eq!(petersburg_filter.is_valid(ForkId { hash: ForkHash(0xa00bc324), next: PETERSBURG_FORK_HEIGHT }), Ok(()));
// Local is mainnet Petersburg, remote announces Spurious + knowledge about Byzantium. Remote
// is definitely out of sync. It may or may not need the Petersburg update, we don't know yet.
assert_eq!(petersburg_filter.is_valid(ForkId { hash: ForkHash(0x3edd5b10), next: 4370000 }), Ok(()));
// Local is mainnet Byzantium, remote announces Petersburg. Local is out of sync, accept.
assert_eq!(byzantium_filter.is_valid(ForkId { hash: ForkHash(0x668db0af), next: 0 }), Ok(()));
// Local is mainnet Spurious, remote announces Byzantium, but is not aware of Petersburg. Local
// out of sync. Local also knows about a future fork, but that is uncertain yet.
assert_eq!(spurious_filter.is_valid(ForkId { hash: ForkHash(0xa00bc324), next: 0 }), Ok(()));
// Local is mainnet Petersburg. remote announces Byzantium but is not aware of further forks.
// Remote needs software update.
assert_eq!(petersburg_filter.is_valid(ForkId { hash: ForkHash(0xa00bc324), next: 0 }), Err(RejectReason::RemoteStale));
// Local is mainnet Petersburg, and isn't aware of more forks. Remote announces Petersburg +
// 0xffffffff. Local needs software update, reject.
assert_eq!(petersburg_filter.is_valid(ForkId { hash: ForkHash(0x5cddc0e1), next: 0 }), Err(RejectReason::LocalIncompatibleOrStale));
// Local is mainnet Byzantium, and is aware of Petersburg. Remote announces Petersburg +
// 0xffffffff. Local needs software update, reject.
assert_eq!(byzantium_filter.is_valid(ForkId { hash: ForkHash(0x5cddc0e1), next: 0 }), Err(RejectReason::LocalIncompatibleOrStale));
// Local is mainnet Petersburg, remote is Rinkeby Petersburg.
assert_eq!(petersburg_filter.is_valid(ForkId { hash: ForkHash(0xafec6b27), next: 0 }), Err(RejectReason::LocalIncompatibleOrStale));
// Local is mainnet Petersburg, far in the future. Remote announces Gopherium (non existing fork)
// at some future block 88888888, for itself, but past block for local. Local is incompatible.
//
// This case detects non-upgraded nodes with majority hash power (typical Ropsten mess).
let mut far_away_petersburg = petersburg_filter.clone();
far_away_petersburg.head = 88888888;
assert_eq!(far_away_petersburg.is_valid(ForkId { hash: ForkHash(0x668db0af), next: 88888888 }), Err(RejectReason::LocalIncompatibleOrStale));
// Local is mainnet Byzantium. Remote is also in Byzantium, but announces Gopherium (non existing
// fork) at block 7279999, before Petersburg. Local is incompatible.
assert_eq!(byzantium_filter.is_valid(ForkId { hash: ForkHash(0xa00bc324), next: 7279999 }), Err(RejectReason::LocalIncompatibleOrStale));
}
#[test]
fn test_forkid_serialization() {
assert_eq!(rlp::encode(&ForkId { hash: ForkHash(0), next: 0 }), hex!("c6840000000080"));
assert_eq!(rlp::encode(&ForkId { hash: ForkHash(0xdeadbeef), next: 0xBADDCAFE }), hex!("ca84deadbeef84baddcafe"));
assert_eq!(rlp::encode(&ForkId { hash: ForkHash(u32::max_value()), next: u64::max_value() }), hex!("ce84ffffffff88ffffffffffffffff"));
assert_eq!(rlp::decode::<ForkId>(&hex!("c6840000000080")).unwrap(), ForkId { hash: ForkHash(0), next: 0 });
assert_eq!(rlp::decode::<ForkId>(&hex!("ca84deadbeef84baddcafe")).unwrap(), ForkId { hash: ForkHash(0xdeadbeef), next: 0xBADDCAFE });
assert_eq!(rlp::decode::<ForkId>(&hex!("ce84ffffffff88ffffffffffffffff")).unwrap(), ForkId { hash: ForkHash(u32::max_value()), next: u64::max_value() });
}
}