Merge pull request #24 from gavofyork/network

IO and networking
This commit is contained in:
Gav Wood 2016-01-09 11:02:04 +01:00
commit 11c244a5e3
24 changed files with 2314 additions and 182 deletions

3
.gitignore vendored
View File

@ -15,3 +15,6 @@ Cargo.lock
# Vim
*.swp
# GDB
*.gdb_history

View File

@ -11,13 +11,13 @@ log = "0.3"
env_logger = "0.3"
rustc-serialize = "0.3"
arrayvec = "0.3"
mio = "0.4.4"
mio = "0.5.0"
rand = "0.3.12"
time = "0.1.34"
tiny-keccak = "1.0"
rocksdb = "0.2"
lazy_static = "0.1.*"
secp256k1 = "0.5.1"
lazy_static = "0.1"
eth-secp256k1 = { git = "https://github.com/arkpar/rust-secp256k1.git" }
rust-crypto = "0.2.34"
elastic-array = "0.4"
heapsize = "0.2"

View File

@ -170,6 +170,14 @@ impl ToBytes for u64 {
fn to_bytes_len(&self) -> usize { 8 - self.leading_zeros() as usize / 8 }
}
impl ToBytes for bool {
fn to_bytes(&self) -> Vec<u8> {
vec![ if *self { 1u8 } else { 0u8 } ]
}
fn to_bytes_len(&self) -> usize { 1 }
}
macro_rules! impl_map_to_bytes {
($from: ident, $to: ty) => {
impl ToBytes for $from {
@ -268,6 +276,17 @@ impl FromBytes for u64 {
}
}
impl FromBytes for bool {
fn from_bytes(bytes: &[u8]) -> FromBytesResult<bool> {
match bytes.len() {
0 => Ok(false),
1 => Ok(bytes[0] != 0),
_ => Err(FromBytesError::DataIsTooLong),
}
}
}
macro_rules! impl_map_from_bytes {
($from: ident, $to: ident) => {
impl FromBytes for $from {

View File

@ -1,6 +1,5 @@
use hash::*;
use secp256k1::Secp256k1;
use secp256k1::key;
use secp256k1::{key, Secp256k1};
use rand::os::OsRng;
pub type Secret = H256;
@ -62,10 +61,10 @@ impl From<::std::io::Error> for CryptoError {
/// fn main() {
/// let pair = KeyPair::create().unwrap();
/// let message = H256::random();
/// let signature = sign(pair.secret(), &message).unwrap();
/// let signature = ec::sign(pair.secret(), &message).unwrap();
///
/// assert!(verify(pair.public(), &signature, &message).unwrap());
/// assert_eq!(recover(&signature, &message).unwrap(), *pair.public());
/// assert!(ec::verify(pair.public(), &signature, &message).unwrap());
/// assert_eq!(ec::recover(&signature, &message).unwrap(), *pair.public());
/// }
/// ```
pub struct KeyPair {
@ -109,9 +108,14 @@ impl KeyPair {
}
/// Sign a message with our secret key.
pub fn sign(&self, message: &H256) -> Result<Signature, CryptoError> { sign(&self.secret, message) }
pub fn sign(&self, message: &H256) -> Result<Signature, CryptoError> { ec::sign(&self.secret, message) }
}
pub mod ec {
use hash::*;
use crypto::*;
use crypto::{self};
/// Recovers Public key from signed message hash.
pub fn recover(signature: &Signature, message: &H256) -> Result<Public, CryptoError> {
use secp256k1::*;
@ -121,10 +125,8 @@ pub fn recover(signature: &Signature, message: &H256) -> Result<Public, CryptoEr
let serialized = publ.serialize_vec(&context, false);
let p: Public = Public::from_slice(&serialized[1..65]);
//TODO: check if it's the zero key and fail if so.
Ok(p)
}
/// Returns siganture of message hash.
pub fn sign(secret: &Secret, message: &H256) -> Result<Signature, CryptoError> {
use secp256k1::*;
@ -132,21 +134,11 @@ pub fn sign(secret: &Secret, message: &H256) -> Result<Signature, CryptoError> {
let sec: &key::SecretKey = unsafe { ::std::mem::transmute(secret) };
let s = try!(context.sign_recoverable(&try!(Message::from_slice(&message)), sec));
let (rec_id, data) = s.serialize_compact(&context);
let mut signature: ::crypto::Signature = unsafe { ::std::mem::uninitialized() };
let mut signature: crypto::Signature = unsafe { ::std::mem::uninitialized() };
signature.clone_from_slice(&data);
signature[64] = rec_id.to_i32() as u8;
Ok(signature)
}
/// Check if each component of the signature is in range.
pub fn is_valid(sig: &Signature) -> bool {
sig[64] <= 1 &&
H256::from_slice(&sig[0..32]) < h256_from_hex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141") &&
H256::from_slice(&sig[32..64]) < h256_from_hex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141") &&
H256::from_slice(&sig[32..64]) >= h256_from_u64(1) &&
H256::from_slice(&sig[0..32]) >= h256_from_u64(1)
}
/// Verify signature.
pub fn verify(public: &Public, signature: &Signature, message: &H256) -> Result<bool, CryptoError> {
use secp256k1::*;
@ -166,6 +158,157 @@ pub fn verify(public: &Public, signature: &Signature, message: &H256) -> Result<
}
}
/// Check if each component of the signature is in range.
pub fn is_valid(sig: &Signature) -> bool {
sig[64] <= 1 &&
H256::from_slice(&sig[0..32]) < h256_from_hex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141") &&
H256::from_slice(&sig[32..64]) < h256_from_hex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141") &&
H256::from_slice(&sig[32..64]) >= h256_from_u64(1) &&
H256::from_slice(&sig[0..32]) >= h256_from_u64(1)
}
}
pub mod ecdh {
use crypto::*;
pub fn agree(secret: &Secret, public: &Public, ) -> Result<Secret, CryptoError> {
use secp256k1::*;
let context = Secp256k1::new();
let mut pdata: [u8; 65] = [4u8; 65];
let ptr = pdata[1..].as_mut_ptr();
let src = public.as_ptr();
unsafe { ::std::ptr::copy_nonoverlapping(src, ptr, 64) };
let publ = try!(key::PublicKey::from_slice(&context, &pdata));
let sec: &key::SecretKey = unsafe { ::std::mem::transmute(secret) };
let shared = ecdh::SharedSecret::new_raw(&context, &publ, &sec);
let s: Secret = unsafe { ::std::mem::transmute(shared) };
Ok(s)
}
}
pub mod ecies {
use hash::*;
use bytes::*;
use crypto::*;
pub fn encrypt(public: &Public, plain: &[u8]) -> Result<Bytes, CryptoError> {
use ::rcrypto::digest::Digest;
use ::rcrypto::sha2::Sha256;
use ::rcrypto::hmac::Hmac;
use ::rcrypto::mac::Mac;
let r = try!(KeyPair::create());
let z = try!(ecdh::agree(r.secret(), public));
let mut key = [0u8; 32];
let mut mkey = [0u8; 32];
kdf(&z, &[0u8; 0], &mut key);
let mut hasher = Sha256::new();
let mkey_material = &key[16..32];
hasher.input(mkey_material);
hasher.result(&mut mkey);
let ekey = &key[0..16];
let mut msg = vec![0u8; (1 + 64 + 16 + plain.len() + 32)];
msg[0] = 0x04u8;
{
let msgd = &mut msg[1..];
r.public().copy_to(&mut msgd[0..64]);
{
let cipher = &mut msgd[(64 + 16)..(64 + 16 + plain.len())];
aes::encrypt(ekey, &H128::new(), plain, cipher);
}
let mut hmac = Hmac::new(Sha256::new(), &mkey);
{
let cipher_iv = &msgd[64..(64 + 16 + plain.len())];
hmac.input(cipher_iv);
}
hmac.raw_result(&mut msgd[(64 + 16 + plain.len())..]);
}
Ok(msg)
}
pub fn decrypt(secret: &Secret, encrypted: &[u8]) -> Result<Bytes, CryptoError> {
use ::rcrypto::digest::Digest;
use ::rcrypto::sha2::Sha256;
use ::rcrypto::hmac::Hmac;
use ::rcrypto::mac::Mac;
let meta_len = 1 + 64 + 16 + 32;
if encrypted.len() < meta_len || encrypted[0] < 2 || encrypted[0] > 4 {
return Err(CryptoError::InvalidMessage); //invalid message: publickey
}
let e = &encrypted[1..];
let p = Public::from_slice(&e[0..64]);
let z = try!(ecdh::agree(secret, &p));
let mut key = [0u8; 32];
kdf(&z, &[0u8; 0], &mut key);
let ekey = &key[0..16];
let mkey_material = &key[16..32];
let mut hasher = Sha256::new();
let mut mkey = [0u8; 32];
hasher.input(mkey_material);
hasher.result(&mut mkey);
let clen = encrypted.len() - meta_len;
let cipher_with_iv = &e[64..(64+16+clen)];
let cipher_iv = &cipher_with_iv[0..16];
let cipher_no_iv = &cipher_with_iv[16..];
let msg_mac = &e[(64+16+clen)..];
// Verify tag
let mut hmac = Hmac::new(Sha256::new(), &mkey);
hmac.input(cipher_with_iv);
let mut mac = H256::new();
hmac.raw_result(&mut mac);
if &mac[..] != msg_mac {
return Err(CryptoError::InvalidMessage);
}
let mut msg = vec![0u8; clen];
aes::decrypt(ekey, cipher_iv, cipher_no_iv, &mut msg[..]);
Ok(msg)
}
fn kdf(secret: &Secret, s1: &[u8], dest: &mut [u8]) {
use ::rcrypto::digest::Digest;
use ::rcrypto::sha2::Sha256;
let mut hasher = Sha256::new();
// SEC/ISO/Shoup specify counter size SHOULD be equivalent
// to size of hash output, however, it also notes that
// the 4 bytes is okay. NIST specifies 4 bytes.
let mut ctr = 1u32;
let mut written = 0usize;
while written < dest.len() {
let ctrs = [(ctr >> 24) as u8, (ctr >> 16) as u8, (ctr >> 8) as u8, ctr as u8];
hasher.input(&ctrs);
hasher.input(secret);
hasher.input(s1);
hasher.result(&mut dest[written..(written + 32)]);
hasher.reset();
written += 32;
ctr += 1;
}
}
}
pub mod aes {
use ::rcrypto::blockmodes::*;
use ::rcrypto::aessafe::*;
use ::rcrypto::symmetriccipher::*;
use ::rcrypto::buffer::*;
pub fn encrypt(k: &[u8], iv: &[u8], plain: &[u8], dest: &mut [u8]) {
let mut encryptor = CtrMode::new(AesSafe128Encryptor::new(k), iv.to_vec());
encryptor.encrypt(&mut RefReadBuffer::new(plain), &mut RefWriteBuffer::new(dest), true).expect("Invalid length or padding");
}
pub fn decrypt(k: &[u8], iv: &[u8], encrypted: &[u8], dest: &mut [u8]) {
let mut encryptor = CtrMode::new(AesSafe128Encryptor::new(k), iv.to_vec());
encryptor.decrypt(&mut RefReadBuffer::new(encrypted), &mut RefWriteBuffer::new(dest), true).expect("Invalid length or padding");
}
}
#[cfg(test)]
mod tests {
use hash::*;
@ -177,10 +320,10 @@ mod tests {
fn test_signature() {
let pair = KeyPair::create().unwrap();
let message = H256::random();
let signature = sign(pair.secret(), &message).unwrap();
let signature = ec::sign(pair.secret(), &message).unwrap();
assert!(verify(pair.public(), &signature, &message).unwrap());
assert_eq!(recover(&signature, &message).unwrap(), *pair.public());
assert!(ec::verify(pair.public(), &signature, &message).unwrap());
assert_eq!(ec::recover(&signature, &message).unwrap(), *pair.public());
}
#[test]

View File

@ -4,7 +4,7 @@ use std::str::FromStr;
use std::fmt;
use std::ops;
use std::hash::{Hash, Hasher};
use std::ops::{Index, IndexMut, Deref, DerefMut, BitOr, BitAnd};
use std::ops::{Index, IndexMut, Deref, DerefMut, BitOr, BitAnd, BitXor};
use std::cmp::{PartialOrd, Ordering};
use rustc_serialize::hex::*;
use error::EthcoreError;
@ -24,10 +24,12 @@ pub trait FixedHash: Sized + BytesConvertable + Populatable {
fn size() -> usize;
fn from_slice(src: &[u8]) -> Self;
fn clone_from_slice(&mut self, src: &[u8]) -> usize;
fn copy_to(&self, dest: &mut [u8]);
fn shift_bloom<'a, T>(&'a mut self, b: &T) -> &'a mut Self where T: FixedHash;
fn bloom_part<T>(&self, m: usize) -> T where T: FixedHash;
fn contains_bloom<T>(&self, b: &T) -> bool where T: FixedHash;
fn contains<'a>(&'a self, b: &'a Self) -> bool;
fn is_zero(&self) -> bool;
}
macro_rules! impl_hash {
@ -94,6 +96,13 @@ macro_rules! impl_hash {
r
}
fn copy_to(&self, dest: &mut[u8]) {
unsafe {
let min = ::std::cmp::min($size, dest.len());
::std::ptr::copy(self.0.as_ptr(), dest.as_mut_ptr(), min);
}
}
fn shift_bloom<'a, T>(&'a mut self, b: &T) -> &'a mut Self where T: FixedHash {
let bp: Self = b.bloom_part($size);
let new_self = &bp | self;
@ -152,6 +161,10 @@ macro_rules! impl_hash {
fn contains<'a>(&'a self, b: &'a Self) -> bool {
&(b & self) == b
}
fn is_zero(&self) -> bool {
self.eq(&Self::new())
}
}
impl FromStr for $from {
@ -311,6 +324,30 @@ macro_rules! impl_hash {
}
}
/// BitXor on references
impl <'a> BitXor for &'a $from {
type Output = $from;
fn bitxor(self, rhs: Self) -> Self::Output {
unsafe {
use std::mem;
let mut ret: $from = mem::uninitialized();
for i in 0..$size {
ret.0[i] = self.0[i] ^ rhs.0[i];
}
ret
}
}
}
/// Moving BitXor
impl BitXor for $from {
type Output = $from;
fn bitxor(self, rhs: Self) -> Self::Output {
&self ^ &rhs
}
}
impl $from {
pub fn hex(&self) -> String {
format!("{}", self)

View File

@ -68,4 +68,5 @@ pub mod heapsizeof;
pub mod squeeze;
pub mod semantic_version;
//pub mod network;
pub mod network;

364
src/network/connection.rs Normal file
View File

@ -0,0 +1,364 @@
use std::collections::VecDeque;
use mio::{Token, EventSet, EventLoop, Timeout, PollOpt, TryRead, TryWrite};
use mio::tcp::*;
use hash::*;
use sha3::*;
use bytes::*;
use rlp::*;
use std::io::{self, Cursor, Read};
use network::host::{Host};
use network::Error;
use network::handshake::Handshake;
use crypto;
use rcrypto::blockmodes::*;
use rcrypto::aessafe::*;
use rcrypto::symmetriccipher::*;
use rcrypto::buffer::*;
use tiny_keccak::Keccak;
const ENCRYPTED_HEADER_LEN: usize = 32;
pub struct Connection {
pub token: Token,
pub socket: TcpStream,
rec_buf: Bytes,
rec_size: usize,
send_queue: VecDeque<Cursor<Bytes>>,
interest: EventSet,
}
#[derive(PartialEq, Eq)]
pub enum WriteStatus {
Ongoing,
Complete
}
impl Connection {
pub fn new(token: Token, socket: TcpStream) -> Connection {
Connection {
token: token,
socket: socket,
send_queue: VecDeque::new(),
rec_buf: Bytes::new(),
rec_size: 0,
interest: EventSet::hup(),
}
}
pub fn expect(&mut self, size: usize) {
if self.rec_size != self.rec_buf.len() {
warn!(target:"net", "Unexpected connection read start");
}
unsafe { self.rec_buf.set_len(0) }
self.rec_size = size;
}
//TODO: return a slice
pub fn readable(&mut self) -> io::Result<Option<Bytes>> {
if self.rec_size == 0 || self.rec_buf.len() >= self.rec_size {
warn!(target:"net", "Unexpected connection read");
}
let max = self.rec_size - self.rec_buf.len();
// resolve "multiple applicable items in scope [E0034]" error
let sock_ref = <TcpStream as Read>::by_ref(&mut self.socket);
match sock_ref.take(max as u64).try_read_buf(&mut self.rec_buf) {
Ok(Some(_)) if self.rec_buf.len() == self.rec_size => {
self.rec_size = 0;
Ok(Some(::std::mem::replace(&mut self.rec_buf, Bytes::new())))
},
Ok(_) => Ok(None),
Err(e) => Err(e),
}
}
pub fn send(&mut self, data: Bytes) {
if data.len() != 0 {
self.send_queue.push_back(Cursor::new(data));
}
if !self.interest.is_writable() {
self.interest.insert(EventSet::writable());
}
}
pub fn writable(&mut self) -> io::Result<WriteStatus> {
if self.send_queue.is_empty() {
return Ok(WriteStatus::Complete)
}
{
let buf = self.send_queue.front_mut().unwrap();
let send_size = buf.get_ref().len();
if (buf.position() as usize) >= send_size {
warn!(target:"net", "Unexpected connection data");
return Ok(WriteStatus::Complete)
}
match self.socket.try_write_buf(buf) {
Ok(_) if (buf.position() as usize) < send_size => {
self.interest.insert(EventSet::writable());
Ok(WriteStatus::Ongoing)
},
Ok(_) if (buf.position() as usize) == send_size => {
Ok(WriteStatus::Complete)
},
Ok(_) => { panic!("Wrote past buffer");},
Err(e) => Err(e)
}
}.and_then(|r| {
if r == WriteStatus::Complete {
self.send_queue.pop_front();
}
if self.send_queue.is_empty() {
self.interest.remove(EventSet::writable());
}
else {
self.interest.insert(EventSet::writable());
}
Ok(r)
})
}
pub fn register(&mut self, event_loop: &mut EventLoop<Host>) -> io::Result<()> {
trace!(target: "net", "connection register; token={:?}", self.token);
self.interest.insert(EventSet::readable());
event_loop.register(&self.socket, self.token, self.interest, PollOpt::edge() | PollOpt::oneshot()).or_else(|e| {
error!("Failed to register {:?}, {:?}", self.token, e);
Err(e)
})
}
pub fn reregister(&mut self, event_loop: &mut EventLoop<Host>) -> io::Result<()> {
trace!(target: "net", "connection reregister; token={:?}", self.token);
event_loop.reregister( &self.socket, self.token, self.interest, PollOpt::edge() | PollOpt::oneshot()).or_else(|e| {
error!("Failed to reregister {:?}, {:?}", self.token, e);
Err(e)
})
}
}
pub struct Packet {
pub protocol: u16,
pub data: Bytes,
}
enum EncryptedConnectionState {
Header,
Payload,
}
pub struct EncryptedConnection {
connection: Connection,
encoder: CtrMode<AesSafe256Encryptor>,
decoder: CtrMode<AesSafe256Encryptor>,
mac_encoder: EcbEncryptor<AesSafe256Encryptor, EncPadding<NoPadding>>,
egress_mac: Keccak,
ingress_mac: Keccak,
read_state: EncryptedConnectionState,
idle_timeout: Option<Timeout>,
protocol_id: u16,
payload_len: u32,
}
impl EncryptedConnection {
pub fn new(handshake: Handshake) -> Result<EncryptedConnection, Error> {
let shared = try!(crypto::ecdh::agree(handshake.ecdhe.secret(), &handshake.remote_public));
let mut nonce_material = H512::new();
if handshake.originated {
handshake.remote_nonce.copy_to(&mut nonce_material[0..32]);
handshake.nonce.copy_to(&mut nonce_material[32..64]);
}
else {
handshake.nonce.copy_to(&mut nonce_material[0..32]);
handshake.remote_nonce.copy_to(&mut nonce_material[32..64]);
}
let mut key_material = H512::new();
shared.copy_to(&mut key_material[0..32]);
nonce_material.sha3_into(&mut key_material[32..64]);
key_material.sha3().copy_to(&mut key_material[32..64]);
key_material.sha3().copy_to(&mut key_material[32..64]);
let iv = vec![0u8; 16];
let encoder = CtrMode::new(AesSafe256Encryptor::new(&key_material[32..64]), iv);
let iv = vec![0u8; 16];
let decoder = CtrMode::new(AesSafe256Encryptor::new(&key_material[32..64]), iv);
key_material.sha3().copy_to(&mut key_material[32..64]);
let mac_encoder = EcbEncryptor::new(AesSafe256Encryptor::new(&key_material[32..64]), NoPadding);
let mut egress_mac = Keccak::new_keccak256();
let mut mac_material = &H256::from_slice(&key_material[32..64]) ^ &handshake.remote_nonce;
egress_mac.update(&mac_material);
egress_mac.update(if handshake.originated { &handshake.auth_cipher } else { &handshake.ack_cipher });
let mut ingress_mac = Keccak::new_keccak256();
mac_material = &H256::from_slice(&key_material[32..64]) ^ &handshake.nonce;
ingress_mac.update(&mac_material);
ingress_mac.update(if handshake.originated { &handshake.ack_cipher } else { &handshake.auth_cipher });
Ok(EncryptedConnection {
connection: handshake.connection,
encoder: encoder,
decoder: decoder,
mac_encoder: mac_encoder,
egress_mac: egress_mac,
ingress_mac: ingress_mac,
read_state: EncryptedConnectionState::Header,
idle_timeout: None,
protocol_id: 0,
payload_len: 0
})
}
pub fn send_packet(&mut self, payload: &[u8]) -> Result<(), Error> {
let mut header = RlpStream::new();
let len = payload.len() as usize;
header.append_raw(&[(len >> 16) as u8, (len >> 8) as u8, len as u8], 1);
header.append_raw(&[0xc2u8, 0x80u8, 0x80u8], 1);
//TODO: ger rid of vectors here
let mut header = header.out();
let padding = (16 - (payload.len() % 16)) % 16;
header.resize(16, 0u8);
let mut packet = vec![0u8; (32 + payload.len() + padding + 16)];
self.encoder.encrypt(&mut RefReadBuffer::new(&header), &mut RefWriteBuffer::new(&mut packet), false).expect("Invalid length or padding");
EncryptedConnection::update_mac(&mut self.egress_mac, &mut self.mac_encoder, &packet[0..16]);
self.egress_mac.clone().finalize(&mut packet[16..32]);
self.encoder.encrypt(&mut RefReadBuffer::new(&payload), &mut RefWriteBuffer::new(&mut packet[32..(32 + len)]), padding == 0).expect("Invalid length or padding");
if padding != 0 {
let pad = [08; 16];
self.encoder.encrypt(&mut RefReadBuffer::new(&pad[0..padding]), &mut RefWriteBuffer::new(&mut packet[(32 + len)..(32 + len + padding)]), true).expect("Invalid length or padding");
}
self.egress_mac.update(&packet[32..(32 + len + padding)]);
EncryptedConnection::update_mac(&mut self.egress_mac, &mut self.mac_encoder, &[0u8; 0]);
self.egress_mac.clone().finalize(&mut packet[(32 + len + padding)..]);
self.connection.send(packet);
Ok(())
}
fn read_header(&mut self, header: &[u8]) -> Result<(), Error> {
if header.len() != ENCRYPTED_HEADER_LEN {
return Err(Error::Auth);
}
EncryptedConnection::update_mac(&mut self.ingress_mac, &mut self.mac_encoder, &header[0..16]);
let mac = &header[16..];
let mut expected = H256::new();
self.ingress_mac.clone().finalize(&mut expected);
if mac != &expected[0..16] {
return Err(Error::Auth);
}
let mut hdec = H128::new();
self.decoder.decrypt(&mut RefReadBuffer::new(&header[0..16]), &mut RefWriteBuffer::new(&mut hdec), false).expect("Invalid length or padding");
let length = ((((hdec[0] as u32) << 8) + (hdec[1] as u32)) << 8) + (hdec[2] as u32);
let header_rlp = UntrustedRlp::new(&hdec[3..6]);
let protocol_id = try!(header_rlp.val_at::<u16>(0));
self.payload_len = length;
self.protocol_id = protocol_id;
self.read_state = EncryptedConnectionState::Payload;
let padding = (16 - (length % 16)) % 16;
let full_length = length + padding + 16;
self.connection.expect(full_length as usize);
Ok(())
}
fn read_payload(&mut self, payload: &[u8]) -> Result<Packet, Error> {
let padding = (16 - (self.payload_len % 16)) % 16;
let full_length = (self.payload_len + padding + 16) as usize;
if payload.len() != full_length {
return Err(Error::Auth);
}
self.ingress_mac.update(&payload[0..payload.len() - 16]);
EncryptedConnection::update_mac(&mut self.ingress_mac, &mut self.mac_encoder, &[0u8; 0]);
let mac = &payload[(payload.len() - 16)..];
let mut expected = H128::new();
self.ingress_mac.clone().finalize(&mut expected);
if mac != &expected[..] {
return Err(Error::Auth);
}
let mut packet = vec![0u8; self.payload_len as usize];
self.decoder.decrypt(&mut RefReadBuffer::new(&payload[0..(full_length - 16)]), &mut RefWriteBuffer::new(&mut packet), false).expect("Invalid length or padding");
packet.resize(self.payload_len as usize, 0u8);
Ok(Packet {
protocol: self.protocol_id,
data: packet
})
}
fn update_mac(mac: &mut Keccak, mac_encoder: &mut EcbEncryptor<AesSafe256Encryptor, EncPadding<NoPadding>>, seed: &[u8]) {
let mut prev = H128::new();
mac.clone().finalize(&mut prev);
let mut enc = H128::new();
mac_encoder.encrypt(&mut RefReadBuffer::new(&prev), &mut RefWriteBuffer::new(&mut enc), true).unwrap();
mac_encoder.reset();
enc = enc ^ if seed.is_empty() { prev } else { H128::from_slice(seed) };
mac.update(&enc);
}
pub fn readable(&mut self, event_loop: &mut EventLoop<Host>) -> Result<Option<Packet>, Error> {
self.idle_timeout.map(|t| event_loop.clear_timeout(t));
try!(self.connection.reregister(event_loop));
match self.read_state {
EncryptedConnectionState::Header => {
match try!(self.connection.readable()) {
Some(data) => {
try!(self.read_header(&data));
},
None => {}
};
Ok(None)
},
EncryptedConnectionState::Payload => {
match try!(self.connection.readable()) {
Some(data) => {
self.read_state = EncryptedConnectionState::Header;
self.connection.expect(ENCRYPTED_HEADER_LEN);
Ok(Some(try!(self.read_payload(&data))))
},
None => Ok(None)
}
}
}
}
pub fn writable(&mut self, event_loop: &mut EventLoop<Host>) -> Result<(), Error> {
self.idle_timeout.map(|t| event_loop.clear_timeout(t));
try!(self.connection.writable());
try!(self.connection.reregister(event_loop));
Ok(())
}
pub fn register(&mut self, event_loop: &mut EventLoop<Host>) -> Result<(), Error> {
self.connection.expect(ENCRYPTED_HEADER_LEN);
self.idle_timeout.map(|t| event_loop.clear_timeout(t));
self.idle_timeout = event_loop.timeout_ms(self.connection.token, 1800).ok();
try!(self.connection.reregister(event_loop));
Ok(())
}
}
#[test]
pub fn test_encryption() {
use hash::*;
use std::str::FromStr;
let key = H256::from_str("2212767d793a7a3d66f869ae324dd11bd17044b82c9f463b8a541a4d089efec5").unwrap();
let before = H128::from_str("12532abaec065082a3cf1da7d0136f15").unwrap();
let before2 = H128::from_str("7e99f682356fdfbc6b67a9562787b18a").unwrap();
let after = H128::from_str("89464c6b04e7c99e555c81d3f7266a05").unwrap();
let after2 = H128::from_str("85c070030589ef9c7a2879b3a8489316").unwrap();
let mut got = H128::new();
let mut encoder = EcbEncryptor::new(AesSafe256Encryptor::new(&key), NoPadding);
encoder.encrypt(&mut RefReadBuffer::new(&before), &mut RefWriteBuffer::new(&mut got), true).unwrap();
encoder.reset();
assert_eq!(got, after);
got = H128::new();
encoder.encrypt(&mut RefReadBuffer::new(&before2), &mut RefWriteBuffer::new(&mut got), true).unwrap();
encoder.reset();
assert_eq!(got, after2);
}

206
src/network/discovery.rs Normal file
View File

@ -0,0 +1,206 @@
// This module is a work in progress
#![allow(dead_code)] //TODO: remove this after everything is done
use std::collections::{HashSet, BTreeMap};
use std::cell::{RefCell};
use std::ops::{DerefMut};
use mio::*;
use mio::udp::*;
use hash::*;
use sha3::Hashable;
use crypto::*;
use network::host::*;
const ADDRESS_BYTES_SIZE: u32 = 32; ///< Size of address type in bytes.
const ADDRESS_BITS: u32 = 8 * ADDRESS_BYTES_SIZE; ///< Denoted by n in [Kademlia].
const NODE_BINS: u32 = ADDRESS_BITS - 1; ///< Size of m_state (excludes root, which is us).
const DISCOVERY_MAX_STEPS: u16 = 8; ///< Max iterations of discovery. (discover)
const BUCKET_SIZE: u32 = 16; ///< Denoted by k in [Kademlia]. Number of nodes stored in each bucket.
const ALPHA: usize = 3; ///< Denoted by \alpha in [Kademlia]. Number of concurrent FindNode requests.
struct NodeBucket {
distance: u32,
nodes: Vec<NodeId>
}
impl NodeBucket {
fn new(distance: u32) -> NodeBucket {
NodeBucket {
distance: distance,
nodes: Vec::new()
}
}
}
struct Discovery {
id: NodeId,
discovery_round: u16,
discovery_id: NodeId,
discovery_nodes: HashSet<NodeId>,
node_buckets: Vec<NodeBucket>,
}
struct FindNodePacket;
impl FindNodePacket {
fn new(_endpoint: &NodeEndpoint, _id: &NodeId) -> FindNodePacket {
FindNodePacket
}
fn sign(&mut self, _secret: &Secret) {
}
fn send(& self, _socket: &mut UdpSocket) {
}
}
impl Discovery {
pub fn new(id: &NodeId) -> Discovery {
Discovery {
id: id.clone(),
discovery_round: 0,
discovery_id: NodeId::new(),
discovery_nodes: HashSet::new(),
node_buckets: (0..NODE_BINS).map(|x| NodeBucket::new(x)).collect(),
}
}
pub fn add_node(&mut self, id: &NodeId) {
self.node_buckets[Discovery::distance(&self.id, &id) as usize].nodes.push(id.clone());
}
fn start_node_discovery(&mut self, event_loop: &mut EventLoop<Host>) {
self.discovery_round = 0;
self.discovery_id.randomize();
self.discovery_nodes.clear();
self.discover(event_loop);
}
fn discover(&mut self, event_loop: &mut EventLoop<Host>) {
if self.discovery_round == DISCOVERY_MAX_STEPS
{
debug!("Restarting discovery");
self.start_node_discovery(event_loop);
return;
}
let mut tried_count = 0;
{
let nearest = Discovery::nearest_node_entries(&self.id, &self.discovery_id, &self.node_buckets).into_iter();
let nodes = RefCell::new(&mut self.discovery_nodes);
let nearest = nearest.filter(|x| nodes.borrow().contains(&x)).take(ALPHA);
for r in nearest {
//let mut p = FindNodePacket::new(&r.endpoint, &self.discovery_id);
//p.sign(&self.secret);
//p.send(&mut self.udp_socket);
let mut borrowed = nodes.borrow_mut();
borrowed.deref_mut().insert(r.clone());
tried_count += 1;
}
}
if tried_count == 0
{
debug!("Restarting discovery");
self.start_node_discovery(event_loop);
return;
}
self.discovery_round += 1;
//event_loop.timeout_ms(Token(NODETABLE_DISCOVERY), 1200).unwrap();
}
fn distance(a: &NodeId, b: &NodeId) -> u32 {
let d = a.sha3() ^ b.sha3();
let mut ret:u32 = 0;
for i in 0..32 {
let mut v: u8 = d[i];
while v != 0 {
v >>= 1;
ret += 1;
}
}
ret
}
fn nearest_node_entries<'b>(source: &NodeId, target: &NodeId, buckets: &'b Vec<NodeBucket>) -> Vec<&'b NodeId>
{
// send ALPHA FindNode packets to nodes we know, closest to target
const LAST_BIN: u32 = NODE_BINS - 1;
let mut head = Discovery::distance(source, target);
let mut tail = if head == 0 { LAST_BIN } else { (head - 1) % NODE_BINS };
let mut found: BTreeMap<u32, Vec<&'b NodeId>> = BTreeMap::new();
let mut count = 0;
// if d is 0, then we roll look forward, if last, we reverse, else, spread from d
if head > 1 && tail != LAST_BIN {
while head != tail && head < NODE_BINS && count < BUCKET_SIZE
{
for n in buckets[head as usize].nodes.iter()
{
if count < BUCKET_SIZE {
count += 1;
found.entry(Discovery::distance(target, &n)).or_insert(Vec::new()).push(n);
}
else {
break;
}
}
if count < BUCKET_SIZE && tail != 0 {
for n in buckets[tail as usize].nodes.iter() {
if count < BUCKET_SIZE {
count += 1;
found.entry(Discovery::distance(target, &n)).or_insert(Vec::new()).push(n);
}
else {
break;
}
}
}
head += 1;
if tail > 0 {
tail -= 1;
}
}
}
else if head < 2 {
while head < NODE_BINS && count < BUCKET_SIZE {
for n in buckets[head as usize].nodes.iter() {
if count < BUCKET_SIZE {
count += 1;
found.entry(Discovery::distance(target, &n)).or_insert(Vec::new()).push(n);
}
else {
break;
}
}
head += 1;
}
}
else {
while tail > 0 && count < BUCKET_SIZE {
for n in buckets[tail as usize].nodes.iter() {
if count < BUCKET_SIZE {
count += 1;
found.entry(Discovery::distance(target, &n)).or_insert(Vec::new()).push(n);
}
else {
break;
}
}
tail -= 1;
}
}
let mut ret:Vec<&NodeId> = Vec::new();
for (_, nodes) in found {
for n in nodes {
if ret.len() < BUCKET_SIZE as usize /* && n->endpoint && n->endpoint.isAllowed() */ {
ret.push(n);
}
}
}
ret
}
}

189
src/network/handshake.rs Normal file
View File

@ -0,0 +1,189 @@
use mio::*;
use mio::tcp::*;
use hash::*;
use sha3::Hashable;
use bytes::Bytes;
use crypto::*;
use crypto;
use network::connection::{Connection};
use network::host::{NodeId, Host, HostInfo};
use network::Error;
#[derive(PartialEq, Eq, Debug)]
enum HandshakeState {
New,
ReadingAuth,
ReadingAck,
StartSession,
}
pub struct Handshake {
pub id: NodeId,
pub connection: Connection,
state: HandshakeState,
pub originated: bool,
idle_timeout: Option<Timeout>,
pub ecdhe: KeyPair,
pub nonce: H256,
pub remote_public: Public,
pub remote_nonce: H256,
pub auth_cipher: Bytes,
pub ack_cipher: Bytes
}
const AUTH_PACKET_SIZE: usize = 307;
const ACK_PACKET_SIZE: usize = 210;
impl Handshake {
pub fn new(token: Token, id: &NodeId, socket: TcpStream, nonce: &H256) -> Result<Handshake, Error> {
Ok(Handshake {
id: id.clone(),
connection: Connection::new(token, socket),
originated: false,
state: HandshakeState::New,
idle_timeout: None,
ecdhe: try!(KeyPair::create()),
nonce: nonce.clone(),
remote_public: Public::new(),
remote_nonce: H256::new(),
auth_cipher: Bytes::new(),
ack_cipher: Bytes::new(),
})
}
pub fn start(&mut self, host: &HostInfo, originated: bool) -> Result<(), Error> {
self.originated = originated;
if originated {
try!(self.write_auth(host));
}
else {
self.state = HandshakeState::ReadingAuth;
self.connection.expect(AUTH_PACKET_SIZE);
};
Ok(())
}
pub fn done(&self) -> bool {
self.state == HandshakeState::StartSession
}
pub fn readable(&mut self, event_loop: &mut EventLoop<Host>, host: &HostInfo) -> Result<(), Error> {
self.idle_timeout.map(|t| event_loop.clear_timeout(t));
match self.state {
HandshakeState::ReadingAuth => {
match try!(self.connection.readable()) {
Some(data) => {
try!(self.read_auth(host, &data));
try!(self.write_ack());
},
None => {}
};
},
HandshakeState::ReadingAck => {
match try!(self.connection.readable()) {
Some(data) => {
try!(self.read_ack(host, &data));
self.state = HandshakeState::StartSession;
},
None => {}
};
},
_ => { panic!("Unexpected state"); }
}
if self.state != HandshakeState::StartSession {
try!(self.connection.reregister(event_loop));
}
Ok(())
}
pub fn writable(&mut self, event_loop: &mut EventLoop<Host>, _host: &HostInfo) -> Result<(), Error> {
self.idle_timeout.map(|t| event_loop.clear_timeout(t));
try!(self.connection.writable());
if self.state != HandshakeState::StartSession {
try!(self.connection.reregister(event_loop));
}
Ok(())
}
pub fn register(&mut self, event_loop: &mut EventLoop<Host>) -> Result<(), Error> {
self.idle_timeout.map(|t| event_loop.clear_timeout(t));
self.idle_timeout = event_loop.timeout_ms(self.connection.token, 1800).ok();
try!(self.connection.register(event_loop));
Ok(())
}
fn read_auth(&mut self, host: &HostInfo, data: &[u8]) -> Result<(), Error> {
trace!(target:"net", "Received handshake auth to {:?}", self.connection.socket.peer_addr());
assert!(data.len() == AUTH_PACKET_SIZE);
self.auth_cipher = data.to_vec();
let auth = try!(ecies::decrypt(host.secret(), data));
let (sig, rest) = auth.split_at(65);
let (hepubk, rest) = rest.split_at(32);
let (pubk, rest) = rest.split_at(64);
let (nonce, _) = rest.split_at(32);
self.remote_public.clone_from_slice(pubk);
self.remote_nonce.clone_from_slice(nonce);
let shared = try!(ecdh::agree(host.secret(), &self.remote_public));
let signature = Signature::from_slice(sig);
let spub = try!(ec::recover(&signature, &(&shared ^ &self.remote_nonce)));
if &spub.sha3()[..] != hepubk {
trace!(target:"net", "Handshake hash mismath with {:?}", self.connection.socket.peer_addr());
return Err(Error::Auth);
};
self.write_ack()
}
fn read_ack(&mut self, host: &HostInfo, data: &[u8]) -> Result<(), Error> {
trace!(target:"net", "Received handshake auth to {:?}", self.connection.socket.peer_addr());
assert!(data.len() == ACK_PACKET_SIZE);
self.ack_cipher = data.to_vec();
let ack = try!(ecies::decrypt(host.secret(), data));
self.remote_public.clone_from_slice(&ack[0..64]);
self.remote_nonce.clone_from_slice(&ack[64..(64+32)]);
Ok(())
}
fn write_auth(&mut self, host: &HostInfo) -> Result<(), Error> {
trace!(target:"net", "Sending handshake auth to {:?}", self.connection.socket.peer_addr());
let mut data = [0u8; /*Signature::SIZE*/ 65 + /*H256::SIZE*/ 32 + /*Public::SIZE*/ 64 + /*H256::SIZE*/ 32 + 1]; //TODO: use associated constants
let len = data.len();
{
data[len - 1] = 0x0;
let (sig, rest) = data.split_at_mut(65);
let (hepubk, rest) = rest.split_at_mut(32);
let (pubk, rest) = rest.split_at_mut(64);
let (nonce, _) = rest.split_at_mut(32);
// E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
let shared = try!(crypto::ecdh::agree(host.secret(), &self.id));
try!(crypto::ec::sign(self.ecdhe.secret(), &(&shared ^ &self.nonce))).copy_to(sig);
self.ecdhe.public().sha3_into(hepubk);
host.id().copy_to(pubk);
self.nonce.copy_to(nonce);
}
let message = try!(crypto::ecies::encrypt(&self.id, &data));
self.auth_cipher = message.clone();
self.connection.send(message);
self.connection.expect(ACK_PACKET_SIZE);
self.state = HandshakeState::ReadingAck;
Ok(())
}
fn write_ack(&mut self) -> Result<(), Error> {
trace!(target:"net", "Sending handshake ack to {:?}", self.connection.socket.peer_addr());
let mut data = [0u8; 1 + /*Public::SIZE*/ 64 + /*H256::SIZE*/ 32]; //TODO: use associated constants
let len = data.len();
{
data[len - 1] = 0x0;
let (epubk, rest) = data.split_at_mut(64);
let (nonce, _) = rest.split_at_mut(32);
self.ecdhe.public().copy_to(epubk);
self.nonce.copy_to(nonce);
}
let message = try!(crypto::ecies::encrypt(&self.id, &data));
self.ack_cipher = message.clone();
self.connection.send(message);
self.state = HandshakeState::StartSession;
Ok(())
}
}

662
src/network/host.rs Normal file
View File

@ -0,0 +1,662 @@
use std::net::{SocketAddr, ToSocketAddrs};
use std::collections::{HashMap};
use std::hash::{Hash, Hasher};
use std::str::{FromStr};
use mio::*;
use mio::util::{Slab};
use mio::tcp::*;
use mio::udp::*;
use hash::*;
use crypto::*;
use sha3::Hashable;
use rlp::*;
use time::Tm;
use network::handshake::Handshake;
use network::session::{Session, SessionData};
use network::{Error, ProtocolHandler};
const _DEFAULT_PORT: u16 = 30304;
const MAX_CONNECTIONS: usize = 1024;
const MAX_USER_TIMERS: usize = 32;
const IDEAL_PEERS: u32 = 10;
pub type NodeId = H512;
pub type TimerToken = usize;
#[derive(Debug)]
struct NetworkConfiguration {
listen_address: SocketAddr,
public_address: SocketAddr,
nat_enabled: bool,
discovery_enabled: bool,
pin: bool,
}
impl NetworkConfiguration {
fn new() -> NetworkConfiguration {
NetworkConfiguration {
listen_address: SocketAddr::from_str("0.0.0.0:30304").unwrap(),
public_address: SocketAddr::from_str("0.0.0.0:30304").unwrap(),
nat_enabled: true,
discovery_enabled: true,
pin: false,
}
}
}
#[derive(Debug)]
pub struct NodeEndpoint {
address: SocketAddr,
address_str: String,
udp_port: u16
}
impl NodeEndpoint {
fn from_str(s: &str) -> Result<NodeEndpoint, Error> {
let address = s.to_socket_addrs().map(|mut i| i.next());
match address {
Ok(Some(a)) => Ok(NodeEndpoint {
address: a,
address_str: s.to_string(),
udp_port: a.port()
}),
Ok(_) => Err(Error::AddressResolve(None)),
Err(e) => Err(Error::AddressResolve(Some(e)))
}
}
}
#[derive(PartialEq, Eq, Copy, Clone)]
enum PeerType {
Required,
Optional
}
struct Node {
id: NodeId,
endpoint: NodeEndpoint,
peer_type: PeerType,
last_attempted: Option<Tm>,
}
impl FromStr for Node {
type Err = Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let (id, endpoint) = if &s[0..8] == "enode://" && s.len() > 136 && &s[136..137] == "@" {
(try!(NodeId::from_str(&s[8..136])), try!(NodeEndpoint::from_str(&s[137..])))
}
else {
(NodeId::new(), try!(NodeEndpoint::from_str(s)))
};
Ok(Node {
id: id,
endpoint: endpoint,
peer_type: PeerType::Optional,
last_attempted: None,
})
}
}
impl PartialEq for Node {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for Node { }
impl Hash for Node {
fn hash<H>(&self, state: &mut H) where H: Hasher {
self.id.hash(state)
}
}
// Tokens
const TCP_ACCEPT: usize = 1;
const IDLE: usize = 3;
const NODETABLE_RECEIVE: usize = 4;
const NODETABLE_MAINTAIN: usize = 5;
const NODETABLE_DISCOVERY: usize = 6;
const FIRST_CONNECTION: usize = 7;
const LAST_CONNECTION: usize = FIRST_CONNECTION + MAX_CONNECTIONS - 1;
const USER_TIMER: usize = LAST_CONNECTION;
const LAST_USER_TIMER: usize = USER_TIMER + MAX_USER_TIMERS - 1;
pub type PacketId = u8;
pub type ProtocolId = &'static str;
pub enum HostMessage {
Shutdown,
AddHandler {
handler: Box<ProtocolHandler+Send>,
protocol: ProtocolId,
versions: Vec<u8>,
},
Send {
peer: PeerId,
packet_id: PacketId,
protocol: ProtocolId,
data: Vec<u8>,
},
UserMessage(UserMessage),
}
pub type UserMessageId = u32;
pub struct UserMessage {
pub protocol: ProtocolId,
pub id: UserMessageId,
pub data: Option<Vec<u8>>,
}
pub type PeerId = usize;
#[derive(Debug, PartialEq, Eq)]
pub struct CapabilityInfo {
pub protocol: ProtocolId,
pub version: u8,
pub packet_count: u8,
}
impl Encodable for CapabilityInfo {
fn encode<E>(&self, encoder: &mut E) -> () where E: Encoder {
encoder.emit_list(|e| {
self.protocol.encode(e);
(self.version as u32).encode(e);
});
}
}
/// IO access point
pub struct HostIo<'s> {
protocol: ProtocolId,
connections: &'s mut Slab<ConnectionEntry>,
timers: &'s mut Slab<UserTimer>,
session: Option<Token>,
event_loop: &'s mut EventLoop<Host>,
}
impl<'s> HostIo<'s> {
fn new(protocol: ProtocolId, session: Option<Token>, event_loop: &'s mut EventLoop<Host>, connections: &'s mut Slab<ConnectionEntry>, timers: &'s mut Slab<UserTimer>) -> HostIo<'s> {
HostIo {
protocol: protocol,
session: session,
event_loop: event_loop,
connections: connections,
timers: timers,
}
}
/// Send a packet over the network to another peer.
pub fn send(&mut self, peer: PeerId, packet_id: PacketId, data: Vec<u8>) -> Result<(), Error> {
match self.connections.get_mut(Token(peer)) {
Some(&mut ConnectionEntry::Session(ref mut s)) => {
s.send_packet(self.protocol, packet_id as u8, &data).unwrap_or_else(|e| {
warn!(target: "net", "Send error: {:?}", e);
}); //TODO: don't copy vector data
},
_ => {
warn!(target: "net", "Send: Peer does not exist");
}
}
Ok(())
}
/// Respond to a current network message. Panics if no there is no packet in the context.
pub fn respond(&mut self, packet_id: PacketId, data: Vec<u8>) -> Result<(), Error> {
match self.session {
Some(session) => self.send(session.as_usize(), packet_id, data),
None => {
panic!("Respond: Session does not exist")
}
}
}
/// Register a new IO timer. Returns a new timer toke. 'ProtocolHandler::timeout' will be called with the token.
pub fn register_timer(&mut self, ms: u64) -> Result<TimerToken, Error>{
match self.timers.insert(UserTimer {
delay: ms,
protocol: self.protocol,
}) {
Ok(token) => {
self.event_loop.timeout_ms(token, ms).expect("Error registering user timer");
Ok(token.as_usize())
},
_ => { panic!("Max timers reached") }
}
}
/// Broadcast a message to other IO clients
pub fn message(&mut self, id: UserMessageId, data: Option<Vec<u8>>) {
match self.event_loop.channel().send(HostMessage::UserMessage(UserMessage {
protocol: self.protocol,
id: id,
data: data
})) {
Ok(_) => {}
Err(e) => { panic!("Error sending io message {:?}", e); }
}
}
/// Disable current protocol capability for given peer. If no capabilities left peer gets disconnected.
pub fn disable_peer(&mut self, _peer: PeerId) {
//TODO: remove capability, disconnect if no capabilities left
}
}
struct UserTimer {
protocol: ProtocolId,
delay: u64,
}
pub struct HostInfo {
keys: KeyPair,
config: NetworkConfiguration,
nonce: H256,
pub protocol_version: u32,
pub client_version: String,
pub listen_port: u16,
pub capabilities: Vec<CapabilityInfo>
}
impl HostInfo {
pub fn id(&self) -> &NodeId {
self.keys.public()
}
pub fn secret(&self) -> &Secret {
self.keys.secret()
}
pub fn next_nonce(&mut self) -> H256 {
self.nonce = self.nonce.sha3();
return self.nonce.clone();
}
}
enum ConnectionEntry {
Handshake(Handshake),
Session(Session)
}
pub struct Host {
info: HostInfo,
_udp_socket: UdpSocket,
_listener: TcpListener,
connections: Slab<ConnectionEntry>,
timers: Slab<UserTimer>,
nodes: HashMap<NodeId, Node>,
handlers: HashMap<ProtocolId, Box<ProtocolHandler>>,
_idle_timeout: Timeout,
}
impl Host {
pub fn start(event_loop: &mut EventLoop<Host>) -> Result<(), Error> {
let config = NetworkConfiguration::new();
/*
match ::ifaces::Interface::get_all().unwrap().into_iter().filter(|x| x.kind == ::ifaces::Kind::Packet && x.addr.is_some()).next() {
Some(iface) => config.public_address = iface.addr.unwrap(),
None => warn!("No public network interface"),
}
*/
let addr = config.listen_address;
// Setup the server socket
let listener = TcpListener::bind(&addr).unwrap();
// Start listening for incoming connections
event_loop.register(&listener, Token(TCP_ACCEPT), EventSet::readable(), PollOpt::edge()).unwrap();
let idle_timeout = event_loop.timeout_ms(Token(IDLE), 1000).unwrap(); //TODO: check delay
// open the udp socket
let udp_socket = UdpSocket::bound(&addr).unwrap();
event_loop.register(&udp_socket, Token(NODETABLE_RECEIVE), EventSet::readable(), PollOpt::edge()).unwrap();
event_loop.timeout_ms(Token(NODETABLE_MAINTAIN), 7200).unwrap();
let port = config.listen_address.port();
let mut host = Host {
info: HostInfo {
keys: KeyPair::create().unwrap(),
config: config,
nonce: H256::random(),
protocol_version: 4,
client_version: "parity".to_string(),
listen_port: port,
capabilities: Vec::new(),
},
_udp_socket: udp_socket,
_listener: listener,
connections: Slab::new_starting_at(Token(FIRST_CONNECTION), MAX_CONNECTIONS),
timers: Slab::new_starting_at(Token(USER_TIMER), MAX_USER_TIMERS),
nodes: HashMap::new(),
handlers: HashMap::new(),
_idle_timeout: idle_timeout,
};
host.add_node("enode://c022e7a27affdd1632f2e67dffeb87f02bf506344bb142e08d12b28e7e5c6e5dbb8183a46a77bff3631b51c12e8cf15199f797feafdc8834aaf078ad1a2bcfa0@127.0.0.1:30303");
host.add_node("enode://5374c1bff8df923d3706357eeb4983cd29a63be40a269aaa2296ee5f3b2119a8978c0ed68b8f6fc84aad0df18790417daadf91a4bfbb786a16c9b0a199fa254a@gav.ethdev.com:30300");
host.add_node("enode://e58d5e26b3b630496ec640f2530f3e7fa8a8c7dfe79d9e9c4aac80e3730132b869c852d3125204ab35bb1b1951f6f2d40996c1034fd8c5a69b383ee337f02ddc@gav.ethdev.com:30303");
host.add_node("enode://a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968de0e3bec910127f134779fbcb0cb6d3331163c@52.16.188.185:30303");
host.add_node("enode://7f25d3eab333a6b98a8b5ed68d962bb22c876ffcd5561fca54e3c2ef27f754df6f7fd7c9b74cc919067abac154fb8e1f8385505954f161ae440abc355855e034@54.207.93.166:30303");
host.add_node("enode://5374c1bff8df923d3706357eeb4983cd29a63be40a269aaa2296ee5f3b2119a8978c0ed68b8f6fc84aad0df18790417daadf91a4bfbb786a16c9b0a199fa254a@92.51.165.126:30303");
try!(event_loop.run(&mut host));
Ok(())
}
fn add_node(&mut self, id: &str) {
match Node::from_str(id) {
Err(e) => { warn!("Could not add node: {:?}", e); },
Ok(n) => {
self.nodes.insert(n.id.clone(), n);
}
}
}
fn maintain_network(&mut self, event_loop: &mut EventLoop<Host>) {
self.connect_peers(event_loop);
}
fn have_session(&self, id: &NodeId) -> bool {
self.connections.iter().any(|e| match e { &ConnectionEntry::Session(ref s) => s.info.id.eq(&id), _ => false })
}
fn connecting_to(&self, id: &NodeId) -> bool {
self.connections.iter().any(|e| match e { &ConnectionEntry::Handshake(ref h) => h.id.eq(&id), _ => false })
}
fn connect_peers(&mut self, event_loop: &mut EventLoop<Host>) {
struct NodeInfo {
id: NodeId,
peer_type: PeerType
}
let mut to_connect: Vec<NodeInfo> = Vec::new();
let mut req_conn = 0;
//TODO: use nodes from discovery here
//for n in self.node_buckets.iter().flat_map(|n| &n.nodes).map(|id| NodeInfo { id: id.clone(), peer_type: self.nodes.get(id).unwrap().peer_type}) {
for n in self.nodes.values().map(|n| NodeInfo { id: n.id.clone(), peer_type: n.peer_type }) {
let connected = self.have_session(&n.id) || self.connecting_to(&n.id);
let required = n.peer_type == PeerType::Required;
if connected && required {
req_conn += 1;
}
else if !connected && (!self.info.config.pin || required) {
to_connect.push(n);
}
}
for n in to_connect.iter() {
if n.peer_type == PeerType::Required {
if req_conn < IDEAL_PEERS {
self.connect_peer(&n.id, event_loop);
}
req_conn += 1;
}
}
if !self.info.config.pin
{
let pending_count = 0; //TODO:
let peer_count = 0;
let mut open_slots = IDEAL_PEERS - peer_count - pending_count + req_conn;
if open_slots > 0 {
for n in to_connect.iter() {
if n.peer_type == PeerType::Optional && open_slots > 0 {
open_slots -= 1;
self.connect_peer(&n.id, event_loop);
}
}
}
}
}
fn connect_peer(&mut self, id: &NodeId, event_loop: &mut EventLoop<Host>) {
if self.have_session(id)
{
warn!("Aborted connect. Node already connected.");
return;
}
if self.connecting_to(id)
{
warn!("Aborted connect. Node already connecting.");
return;
}
let socket = {
let node = self.nodes.get_mut(id).unwrap();
node.last_attempted = Some(::time::now());
match TcpStream::connect(&node.endpoint.address) {
Ok(socket) => socket,
Err(_) => {
warn!("Cannot connect to node");
return;
}
}
};
let nonce = self.info.next_nonce();
match self.connections.insert_with(|token| ConnectionEntry::Handshake(Handshake::new(token, id, socket, &nonce).expect("Can't create handshake"))) {
Some(token) => {
match self.connections.get_mut(token) {
Some(&mut ConnectionEntry::Handshake(ref mut h)) => {
h.start(&self.info, true)
.and_then(|_| h.register(event_loop))
.unwrap_or_else (|e| {
debug!(target: "net", "Handshake create error: {:?}", e);
});
},
_ => {}
}
},
None => { warn!("Max connections reached") }
}
}
fn accept(&mut self, _event_loop: &mut EventLoop<Host>) {
warn!(target: "net", "accept");
}
fn connection_writable(&mut self, token: Token, event_loop: &mut EventLoop<Host>) {
let mut kill = false;
let mut create_session = false;
match self.connections.get_mut(token) {
Some(&mut ConnectionEntry::Handshake(ref mut h)) => {
h.writable(event_loop, &self.info).unwrap_or_else(|e| {
debug!(target: "net", "Handshake write error: {:?}", e);
kill = true;
});
create_session = h.done();
},
Some(&mut ConnectionEntry::Session(ref mut s)) => {
s.writable(event_loop, &self.info).unwrap_or_else(|e| {
debug!(target: "net", "Session write error: {:?}", e);
kill = true;
});
}
_ => {
warn!(target: "net", "Received event for unknown connection");
}
}
if kill {
self.kill_connection(token, event_loop);
}
if create_session {
self.start_session(token, event_loop);
}
}
fn connection_readable(&mut self, token: Token, event_loop: &mut EventLoop<Host>) {
let mut kill = false;
let mut create_session = false;
let mut ready_data: Vec<ProtocolId> = Vec::new();
let mut packet_data: Option<(ProtocolId, PacketId, Vec<u8>)> = None;
match self.connections.get_mut(token) {
Some(&mut ConnectionEntry::Handshake(ref mut h)) => {
h.readable(event_loop, &self.info).unwrap_or_else(|e| {
debug!(target: "net", "Handshake read error: {:?}", e);
kill = true;
});
create_session = h.done();
},
Some(&mut ConnectionEntry::Session(ref mut s)) => {
let sd = { s.readable(event_loop, &self.info).unwrap_or_else(|e| {
debug!(target: "net", "Session read error: {:?}", e);
kill = true;
SessionData::None
}) };
match sd {
SessionData::Ready => {
for (p, _) in self.handlers.iter_mut() {
if s.have_capability(p) {
ready_data.push(p);
}
}
},
SessionData::Packet {
data,
protocol,
packet_id,
} => {
match self.handlers.get_mut(protocol) {
None => { warn!(target: "net", "No handler found for protocol: {:?}", protocol) },
Some(_) => packet_data = Some((protocol, packet_id, data)),
}
},
SessionData::None => {},
}
}
_ => {
warn!(target: "net", "Received event for unknown connection");
}
}
if kill {
self.kill_connection(token, event_loop);
}
if create_session {
self.start_session(token, event_loop);
}
for p in ready_data {
let mut h = self.handlers.get_mut(p).unwrap();
h.connected(&mut HostIo::new(p, Some(token), event_loop, &mut self.connections, &mut self.timers), &token.as_usize());
}
if let Some((p, packet_id, data)) = packet_data {
let mut h = self.handlers.get_mut(p).unwrap();
h.read(&mut HostIo::new(p, Some(token), event_loop, &mut self.connections, &mut self.timers), &token.as_usize(), packet_id, &data[1..]);
}
}
fn start_session(&mut self, token: Token, event_loop: &mut EventLoop<Host>) {
let info = &self.info;
self.connections.replace_with(token, |c| {
match c {
ConnectionEntry::Handshake(h) => Session::new(h, event_loop, info)
.map(|s| Some(ConnectionEntry::Session(s)))
.unwrap_or_else(|e| {
debug!(target: "net", "Session construction error: {:?}", e);
None
}),
_ => { panic!("No handshake to create a session from"); }
}
}).expect("Error updating slab with session");
}
fn connection_timeout(&mut self, token: Token, event_loop: &mut EventLoop<Host>) {
self.kill_connection(token, event_loop)
}
fn kill_connection(&mut self, token: Token, _event_loop: &mut EventLoop<Host>) {
self.connections.remove(token);
}
}
impl Handler for Host {
type Timeout = Token;
type Message = HostMessage;
fn ready(&mut self, event_loop: &mut EventLoop<Host>, token: Token, events: EventSet) {
if events.is_readable() {
match token.as_usize() {
TCP_ACCEPT => self.accept(event_loop),
IDLE => self.maintain_network(event_loop),
FIRST_CONNECTION ... LAST_CONNECTION => self.connection_readable(token, event_loop),
NODETABLE_RECEIVE => {},
_ => panic!("Received unknown readable token"),
}
}
else if events.is_writable() {
match token.as_usize() {
FIRST_CONNECTION ... LAST_CONNECTION => self.connection_writable(token, event_loop),
_ => panic!("Received unknown writable token"),
}
}
}
fn timeout(&mut self, event_loop: &mut EventLoop<Host>, token: Token) {
match token.as_usize() {
IDLE => self.maintain_network(event_loop),
FIRST_CONNECTION ... LAST_CONNECTION => self.connection_timeout(token, event_loop),
NODETABLE_DISCOVERY => {},
NODETABLE_MAINTAIN => {},
USER_TIMER ... LAST_USER_TIMER => {
let (protocol, delay) = {
let timer = self.timers.get_mut(token).expect("Unknown user timer token");
(timer.protocol, timer.delay)
};
match self.handlers.get_mut(protocol) {
None => { warn!(target: "net", "No handler found for protocol: {:?}", protocol) },
Some(h) => {
h.timeout(&mut HostIo::new(protocol, None, event_loop, &mut self.connections, &mut self.timers), token.as_usize());
event_loop.timeout_ms(token, delay).expect("Error re-registering user timer");
}
}
}
_ => panic!("Unknown timer token"),
}
}
fn notify(&mut self, event_loop: &mut EventLoop<Self>, msg: Self::Message) {
match msg {
HostMessage::Shutdown => event_loop.shutdown(),
HostMessage::AddHandler {
handler,
protocol,
versions
} => {
self.handlers.insert(protocol, handler);
for v in versions {
self.info.capabilities.push(CapabilityInfo { protocol: protocol, version: v, packet_count:0 });
}
},
HostMessage::Send {
peer,
packet_id,
protocol,
data,
} => {
match self.connections.get_mut(Token(peer as usize)) {
Some(&mut ConnectionEntry::Session(ref mut s)) => {
s.send_packet(protocol, packet_id as u8, &data).unwrap_or_else(|e| {
warn!(target: "net", "Send error: {:?}", e);
}); //TODO: don't copy vector data
},
_ => {
warn!(target: "net", "Send: Peer does not exist");
}
}
},
HostMessage::UserMessage(message) => {
for (p, h) in self.handlers.iter_mut() {
if p != &message.protocol {
h.message(&mut HostIo::new(message.protocol, None, event_loop, &mut self.connections, &mut self.timers), &message);
}
}
}
}
}
}

144
src/network/mod.rs Normal file
View File

@ -0,0 +1,144 @@
/// Network and general IO module.
///
/// Example usage for craeting a network service and adding an IO handler:
///
/// ```rust
/// extern crate ethcore_util as util;
/// use util::network::*;
///
/// struct MyHandler;
///
/// impl ProtocolHandler for MyHandler {
/// fn initialize(&mut self, io: &mut HandlerIo) {
/// io.register_timer(1000);
/// }
///
/// fn read(&mut self, io: &mut HandlerIo, peer: &PeerId, packet_id: u8, data: &[u8]) {
/// println!("Received {} ({} bytes) from {}", packet_id, data.len(), peer);
/// }
///
/// fn connected(&mut self, io: &mut HandlerIo, peer: &PeerId) {
/// println!("Connected {}", peer);
/// }
///
/// fn disconnected(&mut self, io: &mut HandlerIo, peer: &PeerId) {
/// println!("Disconnected {}", peer);
/// }
///
/// fn timeout(&mut self, io: &mut HandlerIo, timer: TimerToken) {
/// println!("Timeout {}", timer);
/// }
///
/// fn message(&mut self, io: &mut HandlerIo, message: &Message) {
/// println!("Message {}:{}", message.protocol, message.id);
/// }
/// }
///
/// fn main () {
/// let mut service = NetworkService::start().expect("Error creating network service");
/// service.register_protocol(Box::new(MyHandler), "myproto", &[1u8]);
///
/// // Wait for quit condition
/// // ...
/// // Drop the service
/// }
/// ```
extern crate mio;
mod host;
mod connection;
mod handshake;
mod session;
mod discovery;
mod service;
#[derive(Debug, Copy, Clone)]
pub enum DisconnectReason
{
DisconnectRequested,
TCPError,
BadProtocol,
UselessPeer,
TooManyPeers,
DuplicatePeer,
IncompatibleProtocol,
NullIdentity,
ClientQuit,
UnexpectedIdentity,
LocalIdentity,
PingTimeout,
}
#[derive(Debug)]
pub enum Error {
Crypto(::crypto::CryptoError),
Io(::std::io::Error),
Auth,
BadProtocol,
AddressParse(::std::net::AddrParseError),
AddressResolve(Option<::std::io::Error>),
NodeIdParse(::error::EthcoreError),
PeerNotFound,
Disconnect(DisconnectReason)
}
impl From<::std::io::Error> for Error {
fn from(err: ::std::io::Error) -> Error {
Error::Io(err)
}
}
impl From<::crypto::CryptoError> for Error {
fn from(err: ::crypto::CryptoError) -> Error {
Error::Crypto(err)
}
}
impl From<::std::net::AddrParseError> for Error {
fn from(err: ::std::net::AddrParseError) -> Error {
Error::AddressParse(err)
}
}
impl From<::error::EthcoreError> for Error {
fn from(err: ::error::EthcoreError) -> Error {
Error::NodeIdParse(err)
}
}
impl From<::rlp::DecoderError> for Error {
fn from(_err: ::rlp::DecoderError) -> Error {
Error::Auth
}
}
impl From<::mio::NotifyError<host::HostMessage>> for Error {
fn from(_err: ::mio::NotifyError<host::HostMessage>) -> Error {
Error::Io(::std::io::Error::new(::std::io::ErrorKind::ConnectionAborted, "Network IO notification error"))
}
}
pub type PeerId = host::PeerId;
pub type PacketId = host::PacketId;
pub type TimerToken = host::TimerToken;
pub type HandlerIo<'s> = host::HostIo<'s>;
pub type Message = host::UserMessage;
pub type MessageId = host::UserMessageId;
/// Network IO protocol handler. This needs to be implemented for each new subprotocol.
/// TODO: Separate p2p networking IO from IPC IO. `timeout` and `message` should go to a more genera IO provider.
/// All the handler function are called from within IO event loop.
pub trait ProtocolHandler: Send {
/// Initialize the hadler
fn initialize(&mut self, io: &mut HandlerIo);
/// Called when new network packet received.
fn read(&mut self, io: &mut HandlerIo, peer: &PeerId, packet_id: u8, data: &[u8]);
/// Called when new peer is connected. Only called when peer supports the same protocol.
fn connected(&mut self, io: &mut HandlerIo, peer: &PeerId);
/// Called when a previously connected peer disconnects.
fn disconnected(&mut self, io: &mut HandlerIo, peer: &PeerId);
/// Timer function called after a timeout created with `HandlerIo::timeout`.
fn timeout(&mut self, io: &mut HandlerIo, timer: TimerToken);
/// Called when a broadcasted message is received. The message can only be sent from a different protocol handler.
fn message(&mut self, io: &mut HandlerIo, message: &Message);
}
pub type NetworkService = service::NetworkService;

54
src/network/service.rs Normal file
View File

@ -0,0 +1,54 @@
use std::thread::{self, JoinHandle};
use mio::*;
use network::{Error, ProtocolHandler};
use network::host::{Host, HostMessage, PeerId, PacketId, ProtocolId};
/// IO Service with networking
pub struct NetworkService {
thread: Option<JoinHandle<()>>,
host_channel: Sender<HostMessage>
}
impl NetworkService {
/// Starts IO event loop
pub fn start() -> Result<NetworkService, Error> {
let mut event_loop = EventLoop::new().unwrap();
let channel = event_loop.channel();
let thread = thread::spawn(move || {
Host::start(&mut event_loop).unwrap(); //TODO:
});
Ok(NetworkService {
thread: Some(thread),
host_channel: channel
})
}
/// Send a message over the network. Normaly `HostIo::send` should be used. This can be used from non-io threads.
pub fn send(&mut self, peer: &PeerId, packet_id: PacketId, protocol: ProtocolId, data: &[u8]) -> Result<(), Error> {
try!(self.host_channel.send(HostMessage::Send {
peer: *peer,
packet_id: packet_id,
protocol: protocol,
data: data.to_vec()
}));
Ok(())
}
/// Regiter a new protocol handler with the event loop.
pub fn register_protocol(&mut self, handler: Box<ProtocolHandler+Send>, protocol: ProtocolId, versions: &[u8]) -> Result<(), Error> {
try!(self.host_channel.send(HostMessage::AddHandler {
handler: handler,
protocol: protocol,
versions: versions.to_vec(),
}));
Ok(())
}
}
impl Drop for NetworkService {
fn drop(&mut self) {
self.host_channel.send(HostMessage::Shutdown).unwrap();
self.thread.take().unwrap().join().unwrap();
}
}

247
src/network/session.rs Normal file
View File

@ -0,0 +1,247 @@
use mio::*;
use hash::*;
use rlp::*;
use network::connection::{EncryptedConnection, Packet};
use network::handshake::Handshake;
use network::{Error, DisconnectReason};
use network::host::*;
pub struct Session {
pub info: SessionInfo,
connection: EncryptedConnection,
had_hello: bool,
}
pub enum SessionData {
None,
Ready,
Packet {
data: Vec<u8>,
protocol: &'static str,
packet_id: u8,
},
}
pub struct SessionInfo {
pub id: NodeId,
pub client_version: String,
pub protocol_version: u32,
pub capabilities: Vec<SessionCapabilityInfo>,
}
#[derive(Debug, PartialEq, Eq)]
pub struct PeerCapabilityInfo {
pub protocol: String,
pub version: u8,
}
impl Decodable for PeerCapabilityInfo {
fn decode<D>(decoder: &D) -> Result<Self, DecoderError> where D: Decoder {
let c = try!(decoder.as_list());
let v: u32 = try!(Decodable::decode(&c[1]));
Ok(PeerCapabilityInfo {
protocol: try!(Decodable::decode(&c[0])),
version: v as u8,
})
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct SessionCapabilityInfo {
pub protocol: &'static str,
pub version: u8,
pub packet_count: u8,
pub id_offset: u8,
}
const PACKET_HELLO: u8 = 0x80;
const PACKET_DISCONNECT: u8 = 0x01;
const PACKET_PING: u8 = 0x02;
const PACKET_PONG: u8 = 0x03;
const PACKET_GET_PEERS: u8 = 0x04;
const PACKET_PEERS: u8 = 0x05;
const PACKET_USER: u8 = 0x10;
const PACKET_LAST: u8 = 0x7f;
impl Session {
pub fn new(h: Handshake, event_loop: &mut EventLoop<Host>, host: &HostInfo) -> Result<Session, Error> {
let id = h.id.clone();
let connection = try!(EncryptedConnection::new(h));
let mut session = Session {
connection: connection,
had_hello: false,
info: SessionInfo {
id: id,
client_version: String::new(),
protocol_version: 0,
capabilities: Vec::new(),
},
};
try!(session.write_hello(host));
try!(session.write_ping());
try!(session.connection.register(event_loop));
Ok(session)
}
pub fn readable(&mut self, event_loop: &mut EventLoop<Host>, host: &HostInfo) -> Result<SessionData, Error> {
match try!(self.connection.readable(event_loop)) {
Some(data) => self.read_packet(data, host),
None => Ok(SessionData::None)
}
}
pub fn writable(&mut self, event_loop: &mut EventLoop<Host>, _host: &HostInfo) -> Result<(), Error> {
self.connection.writable(event_loop)
}
pub fn have_capability(&self, protocol: &str) -> bool {
self.info.capabilities.iter().any(|c| c.protocol == protocol)
}
pub fn send_packet(&mut self, protocol: &str, packet_id: u8, data: &[u8]) -> Result<(), Error> {
let mut i = 0usize;
while protocol != self.info.capabilities[i].protocol {
i += 1;
if i == self.info.capabilities.len() {
debug!(target: "net", "Unkown protocol: {:?}", protocol);
return Ok(())
}
}
let pid = self.info.capabilities[i].id_offset + packet_id;
let mut rlp = RlpStream::new();
rlp.append(&(pid as u32));
rlp.append_raw(data, 1);
self.connection.send_packet(&rlp.out())
}
fn read_packet(&mut self, packet: Packet, host: &HostInfo) -> Result<SessionData, Error> {
if packet.data.len() < 2 {
return Err(Error::BadProtocol);
}
let packet_id = packet.data[0];
if packet_id != PACKET_HELLO && packet_id != PACKET_DISCONNECT && !self.had_hello {
return Err(Error::BadProtocol);
}
match packet_id {
PACKET_HELLO => {
let rlp = UntrustedRlp::new(&packet.data[1..]); //TODO: validate rlp expected size
try!(self.read_hello(&rlp, host));
Ok(SessionData::Ready)
},
PACKET_DISCONNECT => Err(Error::Disconnect(DisconnectReason::DisconnectRequested)),
PACKET_PING => {
try!(self.write_pong());
Ok(SessionData::None)
},
PACKET_GET_PEERS => Ok(SessionData::None), //TODO;
PACKET_PEERS => Ok(SessionData::None),
PACKET_USER ... PACKET_LAST => {
let mut i = 0usize;
while packet_id < self.info.capabilities[i].id_offset {
i += 1;
if i == self.info.capabilities.len() {
debug!(target: "net", "Unkown packet: {:?}", packet_id);
return Ok(SessionData::None)
}
}
// map to protocol
let protocol = self.info.capabilities[i].protocol;
let pid = packet_id - self.info.capabilities[i].id_offset;
return Ok(SessionData::Packet { data: packet.data, protocol: protocol, packet_id: pid } )
},
_ => {
debug!(target: "net", "Unkown packet: {:?}", packet_id);
Ok(SessionData::None)
}
}
}
fn write_hello(&mut self, host: &HostInfo) -> Result<(), Error> {
let mut rlp = RlpStream::new();
rlp.append(&(PACKET_HELLO as u32));
rlp.append_list(5)
.append(&host.protocol_version)
.append(&host.client_version)
.append(&host.capabilities)
.append(&host.listen_port)
.append(host.id());
self.connection.send_packet(&rlp.out())
}
fn read_hello(&mut self, rlp: &UntrustedRlp, host: &HostInfo) -> Result<(), Error> {
let protocol = try!(rlp.val_at::<u32>(0));
let client_version = try!(rlp.val_at::<String>(1));
let peer_caps = try!(rlp.val_at::<Vec<PeerCapabilityInfo>>(2));
let id = try!(rlp.val_at::<NodeId>(4));
// Intersect with host capabilities
// Leave only highset mutually supported capability version
let mut caps: Vec<SessionCapabilityInfo> = Vec::new();
for hc in host.capabilities.iter() {
if peer_caps.iter().any(|c| c.protocol == hc.protocol && c.version == hc.version) {
caps.push(SessionCapabilityInfo {
protocol: hc.protocol,
version: hc.version,
id_offset: 0,
packet_count: hc.packet_count,
});
}
}
caps.retain(|c| host.capabilities.iter().any(|hc| hc.protocol == c.protocol && hc.version == c.version));
let mut i = 0;
while i < caps.len() {
if caps.iter().any(|c| c.protocol == caps[i].protocol && c.version > caps[i].version) {
caps.remove(i);
}
else {
i += 1;
}
}
i = 0;
let mut offset: u8 = PACKET_USER;
while i < caps.len() {
caps[i].id_offset = offset;
offset += caps[i].packet_count;
i += 1;
}
trace!(target: "net", "Hello: {} v{} {} {:?}", client_version, protocol, id, caps);
self.info.capabilities = caps;
if protocol != host.protocol_version {
return Err(self.disconnect(DisconnectReason::UselessPeer));
}
self.had_hello = true;
Ok(())
}
fn write_ping(&mut self) -> Result<(), Error> {
self.send(try!(Session::prepare(PACKET_PING, 0)))
}
fn write_pong(&mut self) -> Result<(), Error> {
self.send(try!(Session::prepare(PACKET_PONG, 0)))
}
fn disconnect(&mut self, reason: DisconnectReason) -> Error {
let mut rlp = RlpStream::new();
rlp.append(&(PACKET_DISCONNECT as u32));
rlp.append_list(1);
rlp.append(&(reason.clone() as u32));
self.connection.send_packet(&rlp.out()).ok();
Error::Disconnect(reason)
}
fn prepare(packet_id: u8, items: usize) -> Result<RlpStream, Error> {
let mut rlp = RlpStream::new_list(1);
rlp.append(&(packet_id as u32));
rlp.append_list(items);
Ok(rlp)
}
fn send(&mut self, rlp: RlpStream) -> Result<(), Error> {
self.connection.send_packet(&rlp.out())
}
}

View File

@ -47,7 +47,9 @@ pub use self::rlpstream::{RlpStream};
use super::hash::H256;
pub const NULL_RLP: [u8; 1] = [0x80; 1];
pub const EMPTY_LIST_RLP: [u8; 1] = [0xC0; 1];
pub const SHA3_NULL_RLP: H256 = H256( [0x56, 0xe8, 0x1f, 0x17, 0x1b, 0xcc, 0x55, 0xa6, 0xff, 0x83, 0x45, 0xe6, 0x92, 0xc0, 0xf8, 0x6e, 0x5b, 0x48, 0xe0, 0x1b, 0x99, 0x6c, 0xad, 0xc0, 0x01, 0x62, 0x2f, 0xb5, 0xe3, 0x63, 0xb4, 0x21] );
pub const SHA3_EMPTY_LIST_RLP: H256 = H256( [0x1d, 0xcc, 0x4d, 0xe8, 0xde, 0xc7, 0x5d, 0x7a, 0xab, 0x85, 0xb5, 0x67, 0xb6, 0xcc, 0xd4, 0x1a, 0xd3, 0x12, 0x45, 0x1b, 0x94, 0x8a, 0x74, 0x13, 0xf0, 0xa1, 0x42, 0xfd, 0x40, 0xd4, 0x93, 0x47] );
/// Shortcut function to decode trusted rlp
///

View File

@ -29,8 +29,8 @@ impl<'a, 'view> View<'a, 'view> for Rlp<'a> where 'a: 'view {
}
}
fn raw(&'view self) -> &'a [u8] {
self.rlp.raw()
fn as_raw(&'view self) -> &'a [u8] {
self.rlp.as_raw()
}
fn prototype(&self) -> Self::Prototype {

View File

@ -101,7 +101,7 @@ impl Stream for RlpStream {
self.unfinished_lists.len() == 0
}
fn raw(&self) -> &[u8] {
fn as_raw(&self) -> &[u8] {
&self.encoder.bytes
}

View File

@ -1,11 +1,11 @@
use rlp::DecoderError;
use rlp::{DecoderError, UntrustedRlp};
pub trait Decoder: Sized {
fn read_value<T, F>(&self, f: F) -> Result<T, DecoderError>
where F: FnOnce(&[u8]) -> Result<T, DecoderError>;
fn as_list(&self) -> Result<Vec<Self>, DecoderError>;
fn as_rlp<'a>(&'a self) -> &'a UntrustedRlp<'a>;
fn as_raw(&self) -> &[u8];
}
@ -32,11 +32,11 @@ pub trait View<'a, 'view>: Sized {
/// fn main () {
/// let data = vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o', b'g'];
/// let rlp = Rlp::new(&data);
/// let dog = rlp.at(1).raw();
/// let dog = rlp.at(1).as_raw();
/// assert_eq!(dog, &[0x83, b'd', b'o', b'g']);
/// }
/// ```
fn raw(&'view self) -> &'a [u8];
fn as_raw(&'view self) -> &'a [u8];
/// Get the prototype of the RLP.
fn prototype(&self) -> Self::Prototype;
@ -284,7 +284,7 @@ pub trait Stream: Sized {
/// }
fn is_finished(&self) -> bool;
fn raw(&self) -> &[u8];
fn as_raw(&self) -> &[u8];
/// Streams out encoded bytes.
///

View File

@ -19,19 +19,19 @@ fn rlp_at() {
let cat = rlp.at(0).unwrap();
assert!(cat.is_data());
assert_eq!(cat.raw(), &[0x83, b'c', b'a', b't']);
assert_eq!(cat.as_raw(), &[0x83, b'c', b'a', b't']);
//assert_eq!(String::decode_untrusted(&cat).unwrap(), "cat".to_string());
assert_eq!(cat.as_val::<String>().unwrap(), "cat".to_string());
let dog = rlp.at(1).unwrap();
assert!(dog.is_data());
assert_eq!(dog.raw(), &[0x83, b'd', b'o', b'g']);
assert_eq!(dog.as_raw(), &[0x83, b'd', b'o', b'g']);
//assert_eq!(String::decode_untrusted(&dog).unwrap(), "dog".to_string());
assert_eq!(dog.as_val::<String>().unwrap(), "dog".to_string());
let cat_again = rlp.at(0).unwrap();
assert!(cat_again.is_data());
assert_eq!(cat_again.raw(), &[0x83, b'c', b'a', b't']);
assert_eq!(cat_again.as_raw(), &[0x83, b'c', b'a', b't']);
//assert_eq!(String::decode_untrusted(&cat_again).unwrap(), "cat".to_string());
assert_eq!(cat_again.as_val::<String>().unwrap(), "cat".to_string());
}
@ -61,18 +61,18 @@ fn rlp_iter() {
let cat = iter.next().unwrap();
assert!(cat.is_data());
assert_eq!(cat.raw(), &[0x83, b'c', b'a', b't']);
assert_eq!(cat.as_raw(), &[0x83, b'c', b'a', b't']);
let dog = iter.next().unwrap();
assert!(dog.is_data());
assert_eq!(dog.raw(), &[0x83, b'd', b'o', b'g']);
assert_eq!(dog.as_raw(), &[0x83, b'd', b'o', b'g']);
let none = iter.next();
assert!(none.is_none());
let cat_again = rlp.at(0).unwrap();
assert!(cat_again.is_data());
assert_eq!(cat_again.raw(), &[0x83, b'c', b'a', b't']);
assert_eq!(cat_again.as_raw(), &[0x83, b'c', b'a', b't']);
}
}

View File

@ -49,14 +49,16 @@ impl PayloadInfo {
#[derive(Debug)]
pub struct UntrustedRlp<'a> {
bytes: &'a [u8],
cache: Cell<OffsetCache>,
offset_cache: Cell<OffsetCache>,
count_cache: Cell<Option<usize>>,
}
impl<'a> Clone for UntrustedRlp<'a> {
fn clone(&self) -> UntrustedRlp<'a> {
UntrustedRlp {
bytes: self.bytes,
cache: Cell::new(OffsetCache::new(usize::max_value(), 0))
offset_cache: self.offset_cache.clone(),
count_cache: self.count_cache.clone(),
}
}
}
@ -72,11 +74,12 @@ impl<'a, 'view> View<'a, 'view> for UntrustedRlp<'a> where 'a: 'view {
fn new(bytes: &'a [u8]) -> UntrustedRlp<'a> {
UntrustedRlp {
bytes: bytes,
cache: Cell::new(OffsetCache::new(usize::max_value(), 0)),
offset_cache: Cell::new(OffsetCache::new(usize::max_value(), 0)),
count_cache: Cell::new(None)
}
}
fn raw(&'view self) -> &'a [u8] {
fn as_raw(&'view self) -> &'a [u8] {
self.bytes
}
@ -102,7 +105,14 @@ impl<'a, 'view> View<'a, 'view> for UntrustedRlp<'a> where 'a: 'view {
fn item_count(&self) -> usize {
match self.is_list() {
true => self.iter().count(),
true => match self.count_cache.get() {
Some(c) => c,
None => {
let c = self.iter().count();
self.count_cache.set(Some(c));
c
}
},
false => 0
}
}
@ -122,7 +132,7 @@ impl<'a, 'view> View<'a, 'view> for UntrustedRlp<'a> where 'a: 'view {
// move to cached position if it's index is less or equal to
// current search index, otherwise move to beginning of list
let c = self.cache.get();
let c = self.offset_cache.get();
let (mut bytes, to_skip) = match c.index <= index {
true => (try!(UntrustedRlp::consume(self.bytes, c.offset)), index - c.index),
false => (try!(self.consume_list_prefix()), index),
@ -132,7 +142,7 @@ impl<'a, 'view> View<'a, 'view> for UntrustedRlp<'a> where 'a: 'view {
bytes = try!(UntrustedRlp::consume_items(bytes, to_skip));
// update the cache
self.cache.set(OffsetCache::new(index, self.bytes.len() - bytes.len()));
self.offset_cache.set(OffsetCache::new(index, self.bytes.len() - bytes.len()));
// construct new rlp
let found = try!(BasicDecoder::payload_info(bytes));
@ -284,7 +294,7 @@ impl<'a> Decoder for BasicDecoder<'a> {
fn read_value<T, F>(&self, f: F) -> Result<T, DecoderError>
where F: FnOnce(&[u8]) -> Result<T, DecoderError> {
let bytes = self.rlp.raw();
let bytes = self.rlp.as_raw();
match bytes.first().map(|&x| x) {
// rlp is too short
@ -306,7 +316,7 @@ impl<'a> Decoder for BasicDecoder<'a> {
}
fn as_raw(&self) -> &[u8] {
self.rlp.raw()
self.rlp.as_raw()
}
fn as_list(&self) -> Result<Vec<Self>, DecoderError> {
@ -315,6 +325,10 @@ impl<'a> Decoder for BasicDecoder<'a> {
.collect();
Ok(v)
}
fn as_rlp<'s>(&'s self) -> &'s UntrustedRlp<'s> {
&self.rlp
}
}
impl<T> Decodable for T where T: FromBytes {

View File

@ -3,7 +3,7 @@
use std::mem::uninitialized;
use tiny_keccak::Keccak;
use bytes::{BytesConvertable,Populatable};
use hash::H256;
use hash::{H256, FixedHash};
/// Types implementing this trait are sha3able.
///
@ -19,6 +19,9 @@ use hash::H256;
/// ```
pub trait Hashable {
fn sha3(&self) -> H256;
fn sha3_into(&self, dest: &mut [u8]) {
self.sha3().copy_to(dest);
}
}
impl<T> Hashable for T where T: BytesConvertable {
@ -31,6 +34,11 @@ impl<T> Hashable for T where T: BytesConvertable {
ret
}
}
fn sha3_into(&self, dest: &mut [u8]) {
let mut keccak = Keccak::new_keccak256();
keccak.update(self.bytes());
keccak.finalize(dest);
}
}
#[test]

View File

@ -25,13 +25,13 @@ impl<'a> Node<'a> {
// fed back into this function or inline RLP which can be fed back into this function).
Prototype::List(2) => match NibbleSlice::from_encoded(r.at(0).data()) {
(slice, true) => Node::Leaf(slice, r.at(1).data()),
(slice, false) => Node::Extension(slice, r.at(1).raw()),
(slice, false) => Node::Extension(slice, r.at(1).as_raw()),
},
// branch - first 16 are nodes, 17th is a value (or empty).
Prototype::List(17) => {
let mut nodes: [&'a [u8]; 16] = unsafe { ::std::mem::uninitialized() };
for i in 0..16 {
nodes[i] = r.at(i).raw();
nodes[i] = r.at(i).as_raw();
}
Node::Branch(nodes, if r.at(16).is_empty() { None } else { Some(r.at(16).data()) })
},

View File

@ -309,22 +309,22 @@ impl<'db> TrieDBMut<'db> {
/// removal instructions from the backing database.
fn take_node<'a, 'rlp_view>(&'a self, rlp: &'rlp_view Rlp<'a>, journal: &mut Journal) -> &'a [u8] where 'a: 'rlp_view {
if rlp.is_list() {
trace!("take_node {:?} (inline)", rlp.raw().pretty());
rlp.raw()
trace!("take_node {:?} (inline)", rlp.as_raw().pretty());
rlp.as_raw()
}
else if rlp.is_data() && rlp.size() == 32 {
let h = rlp.as_val();
let r = self.db.lookup(&h).unwrap_or_else(||{
println!("Node not found! rlp={:?}, node_hash={:?}", rlp.raw().pretty(), h);
println!("Node not found! rlp={:?}, node_hash={:?}", rlp.as_raw().pretty(), h);
println!("Journal: {:?}", journal);
panic!();
});
trace!("take_node {:?} (indirect for {:?})", rlp.raw().pretty(), r);
trace!("take_node {:?} (indirect for {:?})", rlp.as_raw().pretty(), r);
journal.delete_node_sha3(h);
r
}
else {
trace!("take_node {:?} (???)", rlp.raw().pretty());
trace!("take_node {:?} (???)", rlp.as_raw().pretty());
panic!("Empty or invalid node given?");
}
}
@ -350,7 +350,7 @@ impl<'db> TrieDBMut<'db> {
for i in 0..17 {
match index == i {
// not us - leave alone.
false => { s.append_raw(old_rlp.at(i).raw(), 1); },
false => { s.append_raw(old_rlp.at(i).as_raw(), 1); },
// branch-leaf entry - just replace.
true if i == 16 => { s.append(&value); },
// original had empty slot - place a leaf there.
@ -384,13 +384,13 @@ impl<'db> TrieDBMut<'db> {
// not us - empty.
_ if index != i => { s.append_empty_data(); },
// branch-value: just replace.
true if i == 16 => { s.append_raw(old_rlp.at(1).raw(), 1); },
true if i == 16 => { s.append_raw(old_rlp.at(1).as_raw(), 1); },
// direct extension: just replace.
false if existing_key.len() == 1 => { s.append_raw(old_rlp.at(1).raw(), 1); },
false if existing_key.len() == 1 => { s.append_raw(old_rlp.at(1).as_raw(), 1); },
// original has empty slot.
true => journal.new_node(Self::compose_leaf(&existing_key.mid(1), old_rlp.at(1).data()), &mut s),
// additional work required after branching.
false => journal.new_node(Self::compose_extension(&existing_key.mid(1), old_rlp.at(1).raw()), &mut s),
false => journal.new_node(Self::compose_extension(&existing_key.mid(1), old_rlp.at(1).as_raw()), &mut s),
}
};
self.augmented(&s.out(), partial, value, journal)
@ -422,7 +422,7 @@ impl<'db> TrieDBMut<'db> {
trace!("partially-shared-prefix (exist={:?}; new={:?}; cp={:?}): AUGMENT-AT-END", existing_key.len(), partial.len(), cp);
// low (farther from root)
let low = Self::compose_raw(&existing_key.mid(cp), old_rlp.at(1).raw(), is_leaf);
let low = Self::compose_raw(&existing_key.mid(cp), old_rlp.at(1).as_raw(), is_leaf);
let augmented_low = self.augmented(&low, &partial.mid(cp), value, journal);
// high (closer to root)

View File

@ -338,4 +338,3 @@ mod tests {
});
}
}

View File

@ -52,11 +52,39 @@ macro_rules! construct_uint {
impl $name {
/// Conversion to u32
#[inline]
fn low_u32(&self) -> u32 {
pub fn low_u32(&self) -> u32 {
let &$name(ref arr) = self;
arr[0] as u32
}
/// Conversion to u64
#[inline]
pub fn low_u64(&self) -> u64 {
let &$name(ref arr) = self;
arr[0]
}
/// Conversion to u32 with overflow checking
#[inline]
pub fn as_u32(&self) -> u32 {
let &$name(ref arr) = self;
if (arr[0] & (0xffffffffu64 << 32)) != 0 {
panic!("Intger overflow when casting U256")
}
self.as_u64() as u32
}
/// Conversion to u64 with overflow checking
#[inline]
pub fn as_u64(&self) -> u64 {
let &$name(ref arr) = self;
for i in 1..$n_words {
if arr[i] != 0 {
panic!("Intger overflow when casting U256")
}
}
arr[0]
}
/// Return the least number of bits needed to represent the number
#[inline]
pub fn bits(&self) -> usize {
@ -434,6 +462,18 @@ impl From<U128> for U256 {
}
}
impl From<U256> for u64 {
fn from(value: U256) -> u64 {
value.as_u64()
}
}
impl From<U256> for u32 {
fn from(value: U256) -> u32 {
value.as_u32()
}
}
pub const ZERO_U256: U256 = U256([0x00u64; 4]);
pub const ONE_U256: U256 = U256([0x01u64, 0x00u64, 0x00u64, 0x00u64]);
pub const BAD_U256: U256 = U256([0xffffffffffffffffu64; 4]);