Memory implemented

This commit is contained in:
Tomusdrw 2016-01-13 22:30:41 +01:00
parent da5f65c0d3
commit 263936145d

View File

@ -66,6 +66,74 @@ impl<S : fmt::Display> Stack<S> for Vec<S> {
self.len() self.len()
} }
} }
trait Memory {
/// Retrieve current size of the memory
fn size(&self) -> usize;
/// Resize (shrink or expand) the memory to specified size (fills 0)
fn resize(&mut self, new_size: usize);
/// Write single byte to memory
fn write_byte(&mut self, offset: U256, value: U256);
/// Write a word from memory
fn write(&mut self, offset: U256, value: U256);
/// Read a word from memory
fn read(&self, offset: U256) -> u32;
/// Write slice of bytes to memory
fn write_slice(&mut self, offset: U256, &[u8]);
/// Retrieve part of the memory between offset and offset + size
fn read_slice(&self, offset: U256, size: U256) -> &[u8];
}
impl Memory for Vec<u8> {
fn size(&self) -> usize {
return self.len()
}
fn read_slice(&self, init_off_u: U256, init_size_u: U256) -> &[u8] {
let init_off = init_off_u.low_u64() as usize;
let init_size = init_size_u.low_u64() as usize;
&self[init_off..init_off + init_size]
}
fn read(&self, offset: U256) -> u32 {
let off = offset.low_u64() as usize;
let mut val : u32 = 0;
for pos in off..off+4 {
val = val << 8;
val = val | (self[pos] as u32);
}
val
}
fn write_slice(&mut self, offset: U256, slice: &[u8]) {
let off = offset.low_u64() as usize;
// TODO [todr] Optimize?
for pos in off..off+slice.len() {
self[pos] = slice[pos - off];
}
}
fn write(&mut self, offset: U256, value: U256) {
let off = offset.low_u64() as usize;
let mut val = value.low_u64() as u32;
self[off] = (val >> 24) as u8;
self[off+1] = (val >> 16) as u8;
self[off+2] = (val >> 8) as u8;
self[off+3] = (val & 0xff) as u8;
}
fn write_byte(&mut self, offset: U256, value: U256) {
let off = offset.low_u64() as usize;
let val = value.low_u64() as u64;
self[off] = (val & 0xff) as u8;
}
fn resize(&mut self, new_size: usize) {
self.resize(new_size, 0);
}
}
/// Abstraction over raw vector of Bytes. Easier state management of PC. /// Abstraction over raw vector of Bytes. Easier state management of PC.
struct CodeReader<'a> { struct CodeReader<'a> {
position: ProgramCounter, position: ProgramCounter,
@ -91,14 +159,6 @@ impl<'a> CodeReader<'a> {
fn len (&self) -> usize { fn len (&self) -> usize {
self.code.len() self.code.len()
} }
// TODO [todr] All get_slice should operate on memory not code!!!
/// Retrieve part of the code described by offset and size
fn get_slice(&self, init_off_u: U256, init_size_u: U256) -> &[u8] {
let init_off = init_off_u.low_u64() as usize;
let init_size = init_size_u.low_u64() as usize;
&self.code[self.position + init_off..self.position + init_off + init_size]
}
} }
enum InstructionCost { enum InstructionCost {
@ -123,6 +183,7 @@ impl evm::Evm for Interpreter {
// TODO reserve stack // TODO reserve stack
let mut current_gas = params.gas.clone(); let mut current_gas = params.gas.clone();
let mut stack = vec![]; let mut stack = vec![];
let mut mem = vec![];
let mut reader = CodeReader { let mut reader = CodeReader {
position: 0, position: 0,
code: &code code: &code
@ -133,14 +194,14 @@ impl evm::Evm for Interpreter {
reader.position += 1; reader.position += 1;
// Calculate gas cost // Calculate gas cost
let gas_cost = try!(self.get_gas_cost(current_gas, params, ext, instruction, &stack)); let gas_cost = try!(self.get_gas_cost(ext, instruction, Memory::size(&mem), &stack));
try!(self.verify_gas(&current_gas, &gas_cost)); try!(self.verify_gas(&current_gas, &gas_cost));
current_gas = current_gas - gas_cost; current_gas = current_gas - gas_cost;
println!("Gas cost: {} (left: {})", gas_cost, current_gas); println!("Gas cost: {} (left: {})", gas_cost, current_gas);
println!("Executing: {} ", instructions::get_info(instruction).name); println!("Executing: {} ", instructions::get_info(instruction).name);
// Execute instruction // Execute instruction
let result = try!(self.exec_instruction( let result = try!(self.exec_instruction(
current_gas, params, ext, instruction, &mut reader, &mut stack current_gas, params, ext, instruction, &mut reader, &mut mem, &mut stack
)); ));
// Advance // Advance
@ -169,10 +230,9 @@ impl evm::Evm for Interpreter {
impl Interpreter { impl Interpreter {
fn get_gas_cost(&self, fn get_gas_cost(&self,
gas: Gas,
params: &ActionParams,
ext: &evm::Ext, ext: &evm::Ext,
instruction: Instruction, instruction: Instruction,
current_mem_size: usize,
stack: &Stack<U256> stack: &Stack<U256>
) -> evm::Result { ) -> evm::Result {
@ -276,16 +336,34 @@ impl Interpreter {
Ok(gas) Ok(gas)
}, },
InstructionCost::GasMem(gas, mem) => { InstructionCost::GasMem(gas, mem) => {
// TODO [todr] Take memory into consideration let mem_gas = self.mem_gas_cost(schedule, current_mem_size, &mem);
Ok(gas) Ok(gas + mem_gas)
}, },
InstructionCost::GasMemCopy(gas, mem, copy) => { InstructionCost::GasMemCopy(gas, mem, copy) => {
// TODO [todr] Take memory into consideration let mem_gas = self.mem_gas_cost(schedule, current_mem_size, &mem);
let copy_gas = U256::from(schedule.copy_gas) * (add_u256_usize(&copy, 31) / U256::from(32)); let copy_gas = U256::from(schedule.copy_gas) * (add_u256_usize(&copy, 31) / U256::from(32));
Ok(gas + copy_gas) Ok(gas + copy_gas + mem_gas)
} }
} }
} }
fn mem_gas_cost(&self, schedule: &evm::Schedule, current_mem_size: usize, mem_size: &U256) -> U256 {
let gas_for_mem = |mem_size: usize| {
let s = mem_size / 32;
schedule.memory_gas * s + s * s / schedule.quad_coeff_div
};
let mem_size_rounded = add_u256_usize(mem_size, 31).low_u64() as usize / 32 * 32;
let mem_gas = gas_for_mem(mem_size_rounded);
let current_mem_gas = gas_for_mem(current_mem_size);
U256::from(if mem_gas > current_mem_gas {
mem_gas - current_mem_gas
} else {
0
})
}
fn mem_needed(&self, offset: &U256, size: &U256) -> U256 { fn mem_needed(&self, offset: &U256, size: &U256) -> U256 {
if self.is_zero(size) { if self.is_zero(size) {
@ -301,6 +379,7 @@ impl Interpreter {
ext: &mut evm::Ext, ext: &mut evm::Ext,
instruction: Instruction, instruction: Instruction,
code: &mut CodeReader, code: &mut CodeReader,
mem: &mut Memory,
stack: &mut Stack<U256> stack: &mut Stack<U256>
) -> Result<InstructionResult, evm::Error> { ) -> Result<InstructionResult, evm::Error> {
match instruction { match instruction {
@ -328,7 +407,7 @@ impl Interpreter {
let init_size = stack.pop_back(); let init_size = stack.pop_back();
// TODO [todr] Fix u64 for gas // TODO [todr] Fix u64 for gas
let contract_code = code.get_slice(init_off, init_size); let contract_code = mem.read_slice(init_off, init_size);
// TODO [todr] Fix u64 for gasLeft // TODO [todr] Fix u64 for gasLeft
let (gas_left, maybe_address) = try!( let (gas_left, maybe_address) = try!(
ext.create(gas.low_u64(), &endowment, &contract_code) ext.create(gas.low_u64(), &endowment, &contract_code)
@ -345,7 +424,7 @@ impl Interpreter {
instructions::RETURN => { instructions::RETURN => {
let init_off = stack.pop_back(); let init_off = stack.pop_back();
let init_size = stack.pop_back(); let init_size = stack.pop_back();
let return_code = code.get_slice(init_off, init_size); let return_code = mem.read_slice(init_off, init_size);
// TODO [todr] Fix u64 for gas // TODO [todr] Fix u64 for gas
let gas_left = try!(ext.ret(gas.low_u64(), &return_code)); let gas_left = try!(ext.ret(gas.low_u64(), &return_code));
// TODO [todr] Fix u64 for gasLeft // TODO [todr] Fix u64 for gasLeft
@ -374,31 +453,35 @@ impl Interpreter {
.skip(2) .skip(2)
.map(H256::from) .map(H256::from)
.collect(); .collect();
ext.log(topics, code.get_slice(offset, size)); ext.log(topics, mem.read_slice(offset, size));
}, },
instructions::PUSH1...instructions::PUSH32 => { instructions::PUSH1...instructions::PUSH32 => {
// Load to stack // Load to stack
let bytes = instructions::get_push_bytes(instruction); let bytes = instructions::get_push_bytes(instruction);
// TODO [todr] move positions management outside of CodeReader
let val = code.read(bytes); let val = code.read(bytes);
stack.push(val); stack.push(val);
}, },
instructions::MLOAD => { instructions::MLOAD => {
// TODO [ToDr] load word from mem? let word = mem.read(stack.pop_back());
stack.push(U256::from(word));
}, },
instructions::MSTORE => { instructions::MSTORE => {
// TODO [ToDr] save word to mem? let offset = stack.pop_back();
let word = stack.pop_back();
mem.write(offset, word);
}, },
instructions::MSTORE8 => { instructions::MSTORE8 => {
// TODO [ToDr] save byte to mem? let offset = stack.pop_back();
let byte = stack.pop_back();
mem.write_byte(offset, byte);
}, },
instructions::MSIZE => { instructions::MSIZE => {
// Size of memry to stack stack.push(U256::from(mem.size()));
}, },
instructions::SHA3 => { instructions::SHA3 => {
let offset = stack.pop_back(); let offset = stack.pop_back();
let size = stack.pop_back(); let size = stack.pop_back();
let sha3 = code.get_slice(offset, size).sha3(); let sha3 = mem.read_slice(offset, size).sha3();
stack.push(U256::from(sha3.as_slice())); stack.push(U256::from(sha3.as_slice()));
}, },
instructions::SLOAD => { instructions::SLOAD => {
@ -446,12 +529,17 @@ impl Interpreter {
let len = ext.extcode(&address).len(); let len = ext.extcode(&address).len();
stack.push(U256::from(len)); stack.push(U256::from(len));
}, },
// instructions::CALLDATACOPY => {}, instructions::CALLDATACOPY => {
// instructions::CODECOPY => {}, self.copy_data_to_memory(mem, stack, &params.data);
// instructions::EXTCODECOPY => { },
// let address = u256_to_addres(&stack.pop_back()); instructions::CODECOPY => {
// let code = ext.extcode(address); self.copy_data_to_memory(mem, stack, &params.code);
// }, },
instructions::EXTCODECOPY => {
let address = u256_to_address(&stack.pop_back());
let code = ext.extcode(&address);
self.copy_data_to_memory(mem, stack, &code);
},
instructions::GASPRICE => { instructions::GASPRICE => {
stack.push(params.gas_price.clone()); stack.push(params.gas_price.clone());
}, },
@ -482,6 +570,17 @@ impl Interpreter {
Ok(InstructionResult::AdditionalGasCost(U256::zero())) Ok(InstructionResult::AdditionalGasCost(U256::zero()))
} }
fn copy_data_to_memory(&self,
mem: &mut Memory,
stack: &mut Stack<U256>,
data: &Bytes) {
let offset = stack.pop_back();
let index = stack.pop_back().low_u64() as usize;
let size = stack.pop_back().low_u64() as usize;
mem.write_slice(offset, &data[index..size]);
}
fn verify_instructions_requirements(&self, fn verify_instructions_requirements(&self,
info: &instructions::InstructionInfo, info: &instructions::InstructionInfo,
stack_limit: usize, stack_limit: usize,
@ -672,4 +771,32 @@ mod tests {
// then // then
assert!(valid_jump_destinations.contains(&66)); assert!(valid_jump_destinations.contains(&66));
} }
#[test]
fn test_memory_read_and_write() {
// given
let mem : &mut super::Memory = &mut vec![];
mem.resize(4);
// when
mem.write(U256::from(0x00), U256::from(0xabcdef));
// then
assert_eq!(mem.read(U256::from(0x00)), 0xabcdef);
}
#[test]
fn test_memory_read_and_write_byte() {
// given
let mem : &mut super::Memory = &mut vec![];
mem.resize(4);
// when
mem.write_byte(U256::from(0x01), U256::from(0xab));
mem.write_byte(U256::from(0x02), U256::from(0xcd));
mem.write_byte(U256::from(0x03), U256::from(0xef));
// then
assert_eq!(mem.read(U256::from(0x00)), 0xabcdef);
}
} }