Switch from the internal runtime lib to external one from crates.io (#11480)

* Parity runtime switched to the version from crates

* Tests fixed
This commit is contained in:
Anton Gavrilov 2020-02-11 22:02:25 +01:00 committed by GitHub
parent 6b61ef8aa7
commit 3357cfb3e5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 13 additions and 294 deletions

4
Cargo.lock generated
View File

@ -3513,7 +3513,9 @@ dependencies = [
[[package]]
name = "parity-runtime"
version = "0.1.0"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "710e8d8e9769827952aa83a44d33bc993658cccd97e15e3b5eb070d1a70d1a3a"
dependencies = [
"futures",
"tokio",

View File

@ -57,7 +57,7 @@ parity-ipfs-api = { path = "ipfs" }
parity-local-store = { path = "miner/local-store" }
parity-path = "0.1"
parity-rpc = { path = "rpc" }
parity-runtime = { path = "util/runtime" }
parity-runtime = "0.1.1"
parity-updater = { path = "updater" }
parity-util-mem = { version = "0.5.1", features = ["jemalloc-global"] }
parity-version = { path = "util/version" }

View File

@ -83,7 +83,7 @@ kvdb-rocksdb = "0.5.0"
lazy_static = "1.3"
machine = { path = "./machine", features = ["test-helpers"] }
macros = { path = "../util/macros" }
parity-runtime = { path = "../util/runtime" }
parity-runtime = "0.1.1"
serde_json = "1.0"
stats = { path = "../util/stats" }
pod = { path = "pod" }

View File

@ -25,7 +25,7 @@ light = { package = "ethcore-light", path = "../light" }
log = "0.4"
macros = { path = "../../util/macros" }
network = { package = "ethcore-network", path = "../../util/network" }
parity-runtime = { path = "../../util/runtime" }
parity-runtime = "0.1.1"
parity-crypto = { version = "0.5.0", features = ["publickey"] }
parity-util-mem = "0.5.1"
rand = "0.7"

View File

@ -26,7 +26,7 @@ parity-util-mem = "0.5.1"
keccak-hash = "0.4.0"
linked-hash-map = "0.5"
log = "0.4"
parity-runtime = { path = "../util/runtime" }
parity-runtime = "0.1.1"
parking_lot = "0.10.0"
price-info = { path = "./price-info", optional = true }
registrar = { path = "../util/registrar" }

View File

@ -11,8 +11,9 @@ edition = "2018"
fetch = { path = "../../util/fetch" }
futures = "0.1"
log = "0.4"
parity-runtime = { path = "../../util/runtime" }
parity-runtime = "0.1.1"
serde_json = "1.0"
[dev-dependencies]
fake-fetch = { path = "../../util/fake-fetch" }
parity-runtime = { version = "0.1.1", features = ["test-helpers"] }

View File

@ -59,7 +59,7 @@ ethkey = { path = "../accounts/ethkey" }
ethstore = { path = "../accounts/ethstore" }
fetch = { path = "../util/fetch" }
keccak-hash = "0.4.0"
parity-runtime = { path = "../util/runtime" }
parity-runtime = { version = "0.1.1", features = ["test-helpers"] }
parity-updater = { path = "../updater" }
parity-version = { path = "../util/version" }
rlp = "0.4.0"

View File

@ -22,7 +22,7 @@ libsecp256k1 = { version = "0.3.5", default-features = false }
log = "0.4"
parity-bytes = "0.1"
parity-crypto = { version = "0.5.0", features = ["publickey"] }
parity-runtime = { path = "../util/runtime" }
parity-runtime = "0.1.1"
parking_lot = "0.10.0"
percent-encoding = "2.1.0"
rustc-hex = "1.0"
@ -40,3 +40,4 @@ jsonrpc-server-utils = "14.0.3"
env_logger = "0.5"
tempdir = "0.3"
kvdb-rocksdb = "0.5.0"
parity-runtime = { version = "0.1.1", features = ["test-helpers"] }

View File

@ -17,7 +17,7 @@ rustc-hex = "1.0"
fetch = { path = "../../util/fetch" }
parity-bytes = "0.1"
ethereum-types = "0.8.0"
parity-runtime = { path = "../../util/runtime" }
parity-runtime = "0.1.1"
keccak-hash = "0.4.0"
registrar = { path = "../../util/registrar" }
types = { path = "../../ethcore/types", package = "common-types" }

View File

@ -1,11 +0,0 @@
[package]
description = "Parity Runtime"
homepage = "http://parity.io"
license = "GPL-3.0"
name = "parity-runtime"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
[dependencies]
futures = "0.1"
tokio = "0.1.22"

View File

@ -1,274 +0,0 @@
// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
//! Tokio Runtime wrapper.
pub extern crate futures;
pub extern crate tokio;
use std::{fmt, thread};
use std::sync::mpsc;
use std::time::{Duration, Instant};
use futures::{future, Future, IntoFuture};
pub use tokio::timer::Delay;
pub use tokio::runtime::{Runtime as TokioRuntime, Builder as TokioRuntimeBuilder, TaskExecutor};
/// Runtime for futures.
///
/// Runs in a separate thread.
pub struct Runtime {
executor: Executor,
handle: RuntimeHandle,
}
impl Runtime {
fn new(runtime_bldr: &mut TokioRuntimeBuilder) -> Self {
let mut runtime = runtime_bldr
.build()
.expect("Building a Tokio runtime will only fail when mio components \
cannot be initialized (catastrophic)");
let (stop, stopped) = futures::oneshot();
let (tx, rx) = mpsc::channel();
let handle = thread::spawn(move || {
tx.send(runtime.executor()).expect("Rx is blocking upper thread.");
runtime.block_on(futures::empty().select(stopped).map(|_| ()).map_err(|_| ()))
.expect("Tokio runtime should not have unhandled errors.");
});
let executor = rx.recv().expect("tx is transfered to a newly spawned thread.");
Runtime {
executor: Executor {
inner: Mode::Tokio(executor),
},
handle: RuntimeHandle {
close: Some(stop),
handle: Some(handle),
},
}
}
/// Spawns a new tokio runtime with a default thread count on a background
/// thread and returns a `Runtime` which can be used to spawn tasks via
/// its executor.
pub fn with_default_thread_count() -> Self {
let mut runtime_bldr = TokioRuntimeBuilder::new();
Self::new(&mut runtime_bldr)
}
/// Spawns a new tokio runtime with a the specified thread count on a
/// background thread and returns a `Runtime` which can be used to spawn
/// tasks via its executor.
pub fn with_thread_count(thread_count: usize) -> Self {
let mut runtime_bldr = TokioRuntimeBuilder::new();
runtime_bldr.core_threads(thread_count);
Self::new(&mut runtime_bldr)
}
/// Returns this runtime raw executor.
///
/// Deprecated: Exists only to connect with current JSONRPC implementation.
pub fn raw_executor(&self) -> TaskExecutor {
if let Mode::Tokio(ref executor) = self.executor.inner {
executor.clone()
} else {
panic!("Runtime is not initialized in Tokio mode.")
}
}
/// Returns runtime executor.
pub fn executor(&self) -> Executor {
self.executor.clone()
}
}
#[derive(Clone)]
enum Mode {
Tokio(TaskExecutor),
Sync,
ThreadPerFuture,
}
impl fmt::Debug for Mode {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
use self::Mode::*;
match *self {
Tokio(_) => write!(fmt, "tokio"),
Sync => write!(fmt, "synchronous"),
ThreadPerFuture => write!(fmt, "thread per future"),
}
}
}
/// Returns a future which runs `f` until `duration` has elapsed, at which
/// time `on_timeout` is run and the future resolves.
fn timeout<F, R, T>(f: F, duration: Duration, on_timeout: T)
-> impl Future<Item = (), Error = ()> + Send + 'static
where
T: FnOnce() -> () + Send + 'static,
F: FnOnce() -> R + Send + 'static,
R: IntoFuture<Item=(), Error=()> + Send + 'static,
R::Future: Send + 'static,
{
let future = future::lazy(f);
let timeout = Delay::new(Instant::now() + duration)
.then(move |_| {
on_timeout();
Ok(())
});
future.select(timeout).then(|_| Ok(()))
}
#[derive(Debug, Clone)]
pub struct Executor {
inner: Mode,
}
impl Executor {
/// Executor for existing runtime.
///
/// Deprecated: Exists only to connect with current JSONRPC implementation.
pub fn new(executor: TaskExecutor) -> Self {
Executor {
inner: Mode::Tokio(executor),
}
}
/// Synchronous executor, used mostly for tests.
pub fn new_sync() -> Self {
Executor {
inner: Mode::Sync,
}
}
/// Spawns a new thread for each future (use only for tests).
pub fn new_thread_per_future() -> Self {
Executor {
inner: Mode::ThreadPerFuture,
}
}
/// Spawn a future to this runtime
pub fn spawn<R>(&self, r: R) where
R: IntoFuture<Item=(), Error=()> + Send + 'static,
R::Future: Send + 'static,
{
match self.inner {
Mode::Tokio(ref executor) => executor.spawn(r.into_future()),
Mode::Sync => {
let _= r.into_future().wait();
},
Mode::ThreadPerFuture => {
thread::spawn(move || {
let _= r.into_future().wait();
});
},
}
}
/// Spawn a new future returned by given closure.
pub fn spawn_fn<F, R>(&self, f: F) where
F: FnOnce() -> R + Send + 'static,
R: IntoFuture<Item=(), Error=()> + Send + 'static,
R::Future: Send + 'static,
{
match self.inner {
Mode::Tokio(ref executor) => executor.spawn(future::lazy(f)),
Mode::Sync => {
let _ = future::lazy(f).wait();
},
Mode::ThreadPerFuture => {
thread::spawn(move || {
let _= f().into_future().wait();
});
},
}
}
/// Spawn a new future and wait for it or for a timeout to occur.
pub fn spawn_with_timeout<F, R, T>(&self, f: F, duration: Duration, on_timeout: T) where
T: FnOnce() -> () + Send + 'static,
F: FnOnce() -> R + Send + 'static,
R: IntoFuture<Item=(), Error=()> + Send + 'static,
R::Future: Send + 'static,
{
match self.inner {
Mode::Tokio(ref executor) => {
executor.spawn(timeout(f, duration, on_timeout))
},
Mode::Sync => {
let _ = timeout(f, duration, on_timeout).wait();
},
Mode::ThreadPerFuture => {
thread::spawn(move || {
let _ = timeout(f, duration, on_timeout).wait();
});
},
}
}
}
impl<F: Future<Item = (), Error = ()> + Send + 'static> future::Executor<F> for Executor {
fn execute(&self, future: F) -> Result<(), future::ExecuteError<F>> {
match self.inner {
Mode::Tokio(ref executor) => executor.execute(future),
Mode::Sync => {
let _= future.wait();
Ok(())
},
Mode::ThreadPerFuture => {
thread::spawn(move || {
let _= future.wait();
});
Ok(())
},
}
}
}
/// A handle to a runtime. Dropping the handle will cause runtime to shutdown.
pub struct RuntimeHandle {
close: Option<futures::Complete<()>>,
handle: Option<thread::JoinHandle<()>>
}
impl From<Runtime> for RuntimeHandle {
fn from(el: Runtime) -> Self {
el.handle
}
}
impl Drop for RuntimeHandle {
fn drop(&mut self) {
self.close.take().map(|v| v.send(()));
}
}
impl RuntimeHandle {
/// Blocks current thread and waits until the runtime is finished.
pub fn wait(mut self) -> thread::Result<()> {
self.handle.take()
.expect("Handle is taken only in `wait`, `wait` is consuming; qed").join()
}
/// Finishes this runtime.
pub fn close(mut self) {
let _ = self.close.take()
.expect("Close is taken only in `close` and `drop`. `close` is consuming; qed")
.send(());
}
}