SecretStore: add node to existing session poc + discussion (#6480)
* full_generation_math_session_with_refreshing_shares && full_generation_math_session_with_adding_new_node * add serveral secret shares at once
This commit is contained in:
parent
7cc43893d8
commit
3a60d723d8
@ -93,6 +93,29 @@ pub fn generate_random_polynom(threshold: usize) -> Result<Vec<Secret>, Error> {
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Compute absolute term of additional polynom1 when new node is added to the existing generation node set
|
||||
#[cfg(test)]
|
||||
pub fn compute_additional_polynom1_absolute_term<'a, I>(secret_values: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
||||
let mut absolute_term = compute_secret_sum(secret_values)?;
|
||||
absolute_term.neg()?;
|
||||
Ok(absolute_term)
|
||||
}
|
||||
|
||||
/// Add two polynoms together (coeff = coeff1 + coeff2).
|
||||
#[cfg(test)]
|
||||
pub fn add_polynoms(polynom1: &[Secret], polynom2: &[Secret], is_absolute_term2_zero: bool) -> Result<Vec<Secret>, Error> {
|
||||
polynom1.iter().zip(polynom2.iter())
|
||||
.enumerate()
|
||||
.map(|(i, (c1, c2))| {
|
||||
let mut sum_coeff = c1.clone();
|
||||
if !is_absolute_term2_zero || i != 0 {
|
||||
sum_coeff.add(c2)?;
|
||||
}
|
||||
Ok(sum_coeff)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Compute value of polynom, using `node_number` as argument
|
||||
pub fn compute_polynom(polynom: &[Secret], node_number: &Secret) -> Result<Secret, Error> {
|
||||
debug_assert!(!polynom.is_empty());
|
||||
@ -166,6 +189,28 @@ pub fn keys_verification(threshold: usize, derived_point: &Public, number_id: &S
|
||||
Ok(left == right)
|
||||
}
|
||||
|
||||
/// Check refreshed keys passed by other participants.
|
||||
#[cfg(test)]
|
||||
pub fn refreshed_keys_verification(threshold: usize, number_id: &Secret, secret1: &Secret, publics: &[Public]) -> Result<bool, Error> {
|
||||
// calculate left part
|
||||
let mut left = math::generation_point();
|
||||
math::public_mul_secret(&mut left, secret1)?;
|
||||
|
||||
// calculate right part
|
||||
let mut right = publics[0].clone();
|
||||
for i in 1..threshold + 1 {
|
||||
let mut secret_pow = number_id.clone();
|
||||
secret_pow.pow(i)?;
|
||||
|
||||
let mut public_k = publics[i].clone();
|
||||
math::public_mul_secret(&mut public_k, &secret_pow)?;
|
||||
|
||||
math::public_add(&mut right, &public_k)?;
|
||||
}
|
||||
|
||||
Ok(left == right)
|
||||
}
|
||||
|
||||
/// Compute secret share.
|
||||
pub fn compute_secret_share<'a, I>(secret_values: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
||||
compute_secret_sum(secret_values)
|
||||
@ -407,6 +452,7 @@ pub mod tests {
|
||||
// === PART1: DKG ===
|
||||
|
||||
// data, gathered during initialization
|
||||
let derived_point = Random.generate().unwrap().public().clone();
|
||||
let id_numbers: Vec<_> = match id_numbers {
|
||||
Some(id_numbers) => id_numbers,
|
||||
None => (0..n).map(|_| generate_random_scalar().unwrap()).collect(),
|
||||
@ -415,6 +461,15 @@ pub mod tests {
|
||||
// data, generated during keys dissemination
|
||||
let polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
|
||||
let secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms1[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
|
||||
// following data is used only on verification step
|
||||
let polynoms2: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
|
||||
let secrets2: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms2[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
|
||||
let publics: Vec<_> = (0..n).map(|i| public_values_generation(t, &derived_point, &polynoms1[i], &polynoms2[i]).unwrap()).collect();
|
||||
|
||||
// keys verification
|
||||
(0..n).map(|i| (0..n).map(|j| if i != j {
|
||||
assert!(keys_verification(t, &derived_point, &id_numbers[i], &secrets1[j][i], &secrets2[j][i], &publics[j]).unwrap());
|
||||
}).collect::<Vec<_>>()).collect::<Vec<_>>();
|
||||
|
||||
// data, generated during keys generation
|
||||
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&polynoms1[i][0]).unwrap()).collect();
|
||||
@ -433,6 +488,97 @@ pub mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
fn run_key_share_refreshing(t: usize, n: usize, artifacts: &KeyGenerationArtifacts) -> KeyGenerationArtifacts {
|
||||
// === share refreshing protocol from http://www.wu.ece.ufl.edu/mypapers/msig.pdf
|
||||
|
||||
// key refreshing distribution algorithm (KRD)
|
||||
let refreshed_polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
|
||||
let refreshed_polynoms1_sum: Vec<_> = (0..n).map(|i| add_polynoms(&artifacts.polynoms1[i], &refreshed_polynoms1[i], true).unwrap()).collect();
|
||||
let refreshed_secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&refreshed_polynoms1_sum[i], &artifacts.id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
|
||||
let refreshed_publics: Vec<_> = (0..n).map(|i| {
|
||||
(0..t+1).map(|j| compute_public_share(&refreshed_polynoms1_sum[i][j]).unwrap()).collect::<Vec<_>>()
|
||||
}).collect();
|
||||
|
||||
// key refreshing verification algorithm (KRV)
|
||||
(0..n).map(|i| (0..n).map(|j| if i != j {
|
||||
assert!(refreshed_keys_verification(t, &artifacts.id_numbers[i], &refreshed_secrets1[j][i], &refreshed_publics[j]).unwrap())
|
||||
}).collect::<Vec<_>>()).collect::<Vec<_>>();
|
||||
|
||||
// data, generated during keys generation
|
||||
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&refreshed_polynoms1_sum[i][0]).unwrap()).collect();
|
||||
let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(refreshed_secrets1.iter().map(|s| &s[i])).unwrap()).collect();
|
||||
|
||||
// joint public key, as a result of DKG
|
||||
let joint_public = compute_joint_public(public_shares.iter()).unwrap();
|
||||
|
||||
KeyGenerationArtifacts {
|
||||
id_numbers: artifacts.id_numbers.clone(),
|
||||
polynoms1: refreshed_polynoms1_sum,
|
||||
secrets1: refreshed_secrets1,
|
||||
public_shares: public_shares,
|
||||
secret_shares: secret_shares,
|
||||
joint_public: joint_public,
|
||||
}
|
||||
}
|
||||
|
||||
fn run_key_share_refreshing_and_add_new_nodes(t: usize, n: usize, new_nodes: usize, artifacts: &KeyGenerationArtifacts) -> KeyGenerationArtifacts {
|
||||
// === share refreshing protocol (with new node addition) from http://www.wu.ece.ufl.edu/mypapers/msig.pdf
|
||||
let mut id_numbers: Vec<_> = artifacts.id_numbers.iter().cloned().collect();
|
||||
|
||||
// key refreshing distribution algorithm (KRD)
|
||||
// for each new node: generate random polynom
|
||||
let refreshed_polynoms1: Vec<_> = (0..n).map(|_| (0..new_nodes).map(|_| generate_random_polynom(t).unwrap()).collect::<Vec<_>>()).collect();
|
||||
let mut refreshed_polynoms1_sum: Vec<_> = (0..n).map(|i| {
|
||||
let mut refreshed_polynom1_sum = artifacts.polynoms1[i].clone();
|
||||
for refreshed_polynom1 in &refreshed_polynoms1[i] {
|
||||
refreshed_polynom1_sum = add_polynoms(&refreshed_polynom1_sum, refreshed_polynom1, false).unwrap();
|
||||
}
|
||||
refreshed_polynom1_sum
|
||||
}).collect();
|
||||
|
||||
// new nodes receiving private information and generates its own polynom
|
||||
let mut new_nodes_polynom1 = Vec::with_capacity(new_nodes);
|
||||
for i in 0..new_nodes {
|
||||
let mut new_polynom1 = generate_random_polynom(t).unwrap();
|
||||
let new_polynom_absolute_term = compute_additional_polynom1_absolute_term(refreshed_polynoms1.iter().map(|polynom1| &polynom1[i][0])).unwrap();
|
||||
new_polynom1[0] = new_polynom_absolute_term;
|
||||
new_nodes_polynom1.push(new_polynom1);
|
||||
}
|
||||
|
||||
|
||||
// new nodes sends its own information to all other nodes
|
||||
let n = n + new_nodes;
|
||||
id_numbers.extend((0..new_nodes).map(|_| Random.generate().unwrap().secret().clone()));
|
||||
refreshed_polynoms1_sum.extend(new_nodes_polynom1);
|
||||
|
||||
// the rest of protocol is the same as without new node
|
||||
let refreshed_secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&refreshed_polynoms1_sum[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
|
||||
let refreshed_publics: Vec<_> = (0..n).map(|i| {
|
||||
(0..t+1).map(|j| compute_public_share(&refreshed_polynoms1_sum[i][j]).unwrap()).collect::<Vec<_>>()
|
||||
}).collect();
|
||||
|
||||
// key refreshing verification algorithm (KRV)
|
||||
(0..n).map(|i| (0..n).map(|j| if i != j {
|
||||
assert!(refreshed_keys_verification(t, &id_numbers[i], &refreshed_secrets1[j][i], &refreshed_publics[j]).unwrap())
|
||||
}).collect::<Vec<_>>()).collect::<Vec<_>>();
|
||||
|
||||
// data, generated during keys generation
|
||||
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&refreshed_polynoms1_sum[i][0]).unwrap()).collect();
|
||||
let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(refreshed_secrets1.iter().map(|s| &s[i])).unwrap()).collect();
|
||||
|
||||
// joint public key, as a result of DKG
|
||||
let joint_public = compute_joint_public(public_shares.iter()).unwrap();
|
||||
|
||||
KeyGenerationArtifacts {
|
||||
id_numbers: id_numbers,
|
||||
polynoms1: refreshed_polynoms1_sum,
|
||||
secrets1: refreshed_secrets1,
|
||||
public_shares: public_shares,
|
||||
secret_shares: secret_shares,
|
||||
joint_public: joint_public,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn do_encryption_and_decryption(t: usize, joint_public: &Public, id_numbers: &[Secret], secret_shares: &[Secret], joint_secret: Option<&Secret>, document_secret_plain: Public) -> (Public, Public) {
|
||||
// === PART2: encryption using joint public key ===
|
||||
|
||||
@ -583,4 +729,37 @@ pub mod tests {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn full_generation_math_session_with_refreshing_shares() {
|
||||
// generate key using 6-of-10 session
|
||||
let (t, n) = (5, 10);
|
||||
let artifacts1 = run_key_generation(t, n, None);
|
||||
|
||||
// let's say we want to refresh existing secret shares
|
||||
// by doing this every T seconds, and assuming that in each T-second period adversary KS is not able to collect t+1 secret shares
|
||||
// we can be sure that the scheme is secure
|
||||
let artifacts2 = run_key_share_refreshing(t, n, &artifacts1);
|
||||
assert_eq!(artifacts1.joint_public, artifacts2.joint_public);
|
||||
|
||||
// refresh again
|
||||
let artifacts3 = run_key_share_refreshing(t, n, &artifacts2);
|
||||
assert_eq!(artifacts1.joint_public, artifacts3.joint_public);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn full_generation_math_session_with_adding_new_nodes() {
|
||||
// generate key using 6-of-10 session
|
||||
let (t, n) = (5, 10);
|
||||
let artifacts1 = run_key_generation(t, n, None);
|
||||
|
||||
// let's say we want to include additional server to the set
|
||||
// so that scheme becames 6-of-11
|
||||
let artifacts2 = run_key_share_refreshing_and_add_new_nodes(t, n, 1, &artifacts1);
|
||||
assert_eq!(artifacts1.joint_public, artifacts2.joint_public);
|
||||
|
||||
// include another couple of servers (6-of-13)
|
||||
let artifacts3 = run_key_share_refreshing_and_add_new_nodes(t, n + 1, 2, &artifacts2);
|
||||
assert_eq!(artifacts1.joint_public, artifacts3.joint_public);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user