SecretStore: add node to existing session poc + discussion (#6480)

* full_generation_math_session_with_refreshing_shares && full_generation_math_session_with_adding_new_node

* add serveral secret shares at once
This commit is contained in:
Svyatoslav Nikolsky 2017-10-02 12:07:18 +03:00 committed by Arkadiy Paronyan
parent 7cc43893d8
commit 3a60d723d8

View File

@ -93,6 +93,29 @@ pub fn generate_random_polynom(threshold: usize) -> Result<Vec<Secret>, Error> {
.collect() .collect()
} }
/// Compute absolute term of additional polynom1 when new node is added to the existing generation node set
#[cfg(test)]
pub fn compute_additional_polynom1_absolute_term<'a, I>(secret_values: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
let mut absolute_term = compute_secret_sum(secret_values)?;
absolute_term.neg()?;
Ok(absolute_term)
}
/// Add two polynoms together (coeff = coeff1 + coeff2).
#[cfg(test)]
pub fn add_polynoms(polynom1: &[Secret], polynom2: &[Secret], is_absolute_term2_zero: bool) -> Result<Vec<Secret>, Error> {
polynom1.iter().zip(polynom2.iter())
.enumerate()
.map(|(i, (c1, c2))| {
let mut sum_coeff = c1.clone();
if !is_absolute_term2_zero || i != 0 {
sum_coeff.add(c2)?;
}
Ok(sum_coeff)
})
.collect()
}
/// Compute value of polynom, using `node_number` as argument /// Compute value of polynom, using `node_number` as argument
pub fn compute_polynom(polynom: &[Secret], node_number: &Secret) -> Result<Secret, Error> { pub fn compute_polynom(polynom: &[Secret], node_number: &Secret) -> Result<Secret, Error> {
debug_assert!(!polynom.is_empty()); debug_assert!(!polynom.is_empty());
@ -166,6 +189,28 @@ pub fn keys_verification(threshold: usize, derived_point: &Public, number_id: &S
Ok(left == right) Ok(left == right)
} }
/// Check refreshed keys passed by other participants.
#[cfg(test)]
pub fn refreshed_keys_verification(threshold: usize, number_id: &Secret, secret1: &Secret, publics: &[Public]) -> Result<bool, Error> {
// calculate left part
let mut left = math::generation_point();
math::public_mul_secret(&mut left, secret1)?;
// calculate right part
let mut right = publics[0].clone();
for i in 1..threshold + 1 {
let mut secret_pow = number_id.clone();
secret_pow.pow(i)?;
let mut public_k = publics[i].clone();
math::public_mul_secret(&mut public_k, &secret_pow)?;
math::public_add(&mut right, &public_k)?;
}
Ok(left == right)
}
/// Compute secret share. /// Compute secret share.
pub fn compute_secret_share<'a, I>(secret_values: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> { pub fn compute_secret_share<'a, I>(secret_values: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
compute_secret_sum(secret_values) compute_secret_sum(secret_values)
@ -407,6 +452,7 @@ pub mod tests {
// === PART1: DKG === // === PART1: DKG ===
// data, gathered during initialization // data, gathered during initialization
let derived_point = Random.generate().unwrap().public().clone();
let id_numbers: Vec<_> = match id_numbers { let id_numbers: Vec<_> = match id_numbers {
Some(id_numbers) => id_numbers, Some(id_numbers) => id_numbers,
None => (0..n).map(|_| generate_random_scalar().unwrap()).collect(), None => (0..n).map(|_| generate_random_scalar().unwrap()).collect(),
@ -415,6 +461,15 @@ pub mod tests {
// data, generated during keys dissemination // data, generated during keys dissemination
let polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect(); let polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
let secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms1[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect(); let secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms1[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
// following data is used only on verification step
let polynoms2: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
let secrets2: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms2[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
let publics: Vec<_> = (0..n).map(|i| public_values_generation(t, &derived_point, &polynoms1[i], &polynoms2[i]).unwrap()).collect();
// keys verification
(0..n).map(|i| (0..n).map(|j| if i != j {
assert!(keys_verification(t, &derived_point, &id_numbers[i], &secrets1[j][i], &secrets2[j][i], &publics[j]).unwrap());
}).collect::<Vec<_>>()).collect::<Vec<_>>();
// data, generated during keys generation // data, generated during keys generation
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&polynoms1[i][0]).unwrap()).collect(); let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&polynoms1[i][0]).unwrap()).collect();
@ -433,6 +488,97 @@ pub mod tests {
} }
} }
fn run_key_share_refreshing(t: usize, n: usize, artifacts: &KeyGenerationArtifacts) -> KeyGenerationArtifacts {
// === share refreshing protocol from http://www.wu.ece.ufl.edu/mypapers/msig.pdf
// key refreshing distribution algorithm (KRD)
let refreshed_polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
let refreshed_polynoms1_sum: Vec<_> = (0..n).map(|i| add_polynoms(&artifacts.polynoms1[i], &refreshed_polynoms1[i], true).unwrap()).collect();
let refreshed_secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&refreshed_polynoms1_sum[i], &artifacts.id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
let refreshed_publics: Vec<_> = (0..n).map(|i| {
(0..t+1).map(|j| compute_public_share(&refreshed_polynoms1_sum[i][j]).unwrap()).collect::<Vec<_>>()
}).collect();
// key refreshing verification algorithm (KRV)
(0..n).map(|i| (0..n).map(|j| if i != j {
assert!(refreshed_keys_verification(t, &artifacts.id_numbers[i], &refreshed_secrets1[j][i], &refreshed_publics[j]).unwrap())
}).collect::<Vec<_>>()).collect::<Vec<_>>();
// data, generated during keys generation
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&refreshed_polynoms1_sum[i][0]).unwrap()).collect();
let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(refreshed_secrets1.iter().map(|s| &s[i])).unwrap()).collect();
// joint public key, as a result of DKG
let joint_public = compute_joint_public(public_shares.iter()).unwrap();
KeyGenerationArtifacts {
id_numbers: artifacts.id_numbers.clone(),
polynoms1: refreshed_polynoms1_sum,
secrets1: refreshed_secrets1,
public_shares: public_shares,
secret_shares: secret_shares,
joint_public: joint_public,
}
}
fn run_key_share_refreshing_and_add_new_nodes(t: usize, n: usize, new_nodes: usize, artifacts: &KeyGenerationArtifacts) -> KeyGenerationArtifacts {
// === share refreshing protocol (with new node addition) from http://www.wu.ece.ufl.edu/mypapers/msig.pdf
let mut id_numbers: Vec<_> = artifacts.id_numbers.iter().cloned().collect();
// key refreshing distribution algorithm (KRD)
// for each new node: generate random polynom
let refreshed_polynoms1: Vec<_> = (0..n).map(|_| (0..new_nodes).map(|_| generate_random_polynom(t).unwrap()).collect::<Vec<_>>()).collect();
let mut refreshed_polynoms1_sum: Vec<_> = (0..n).map(|i| {
let mut refreshed_polynom1_sum = artifacts.polynoms1[i].clone();
for refreshed_polynom1 in &refreshed_polynoms1[i] {
refreshed_polynom1_sum = add_polynoms(&refreshed_polynom1_sum, refreshed_polynom1, false).unwrap();
}
refreshed_polynom1_sum
}).collect();
// new nodes receiving private information and generates its own polynom
let mut new_nodes_polynom1 = Vec::with_capacity(new_nodes);
for i in 0..new_nodes {
let mut new_polynom1 = generate_random_polynom(t).unwrap();
let new_polynom_absolute_term = compute_additional_polynom1_absolute_term(refreshed_polynoms1.iter().map(|polynom1| &polynom1[i][0])).unwrap();
new_polynom1[0] = new_polynom_absolute_term;
new_nodes_polynom1.push(new_polynom1);
}
// new nodes sends its own information to all other nodes
let n = n + new_nodes;
id_numbers.extend((0..new_nodes).map(|_| Random.generate().unwrap().secret().clone()));
refreshed_polynoms1_sum.extend(new_nodes_polynom1);
// the rest of protocol is the same as without new node
let refreshed_secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&refreshed_polynoms1_sum[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
let refreshed_publics: Vec<_> = (0..n).map(|i| {
(0..t+1).map(|j| compute_public_share(&refreshed_polynoms1_sum[i][j]).unwrap()).collect::<Vec<_>>()
}).collect();
// key refreshing verification algorithm (KRV)
(0..n).map(|i| (0..n).map(|j| if i != j {
assert!(refreshed_keys_verification(t, &id_numbers[i], &refreshed_secrets1[j][i], &refreshed_publics[j]).unwrap())
}).collect::<Vec<_>>()).collect::<Vec<_>>();
// data, generated during keys generation
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&refreshed_polynoms1_sum[i][0]).unwrap()).collect();
let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(refreshed_secrets1.iter().map(|s| &s[i])).unwrap()).collect();
// joint public key, as a result of DKG
let joint_public = compute_joint_public(public_shares.iter()).unwrap();
KeyGenerationArtifacts {
id_numbers: id_numbers,
polynoms1: refreshed_polynoms1_sum,
secrets1: refreshed_secrets1,
public_shares: public_shares,
secret_shares: secret_shares,
joint_public: joint_public,
}
}
pub fn do_encryption_and_decryption(t: usize, joint_public: &Public, id_numbers: &[Secret], secret_shares: &[Secret], joint_secret: Option<&Secret>, document_secret_plain: Public) -> (Public, Public) { pub fn do_encryption_and_decryption(t: usize, joint_public: &Public, id_numbers: &[Secret], secret_shares: &[Secret], joint_secret: Option<&Secret>, document_secret_plain: Public) -> (Public, Public) {
// === PART2: encryption using joint public key === // === PART2: encryption using joint public key ===
@ -583,4 +729,37 @@ pub mod tests {
} }
} }
} }
#[test]
fn full_generation_math_session_with_refreshing_shares() {
// generate key using 6-of-10 session
let (t, n) = (5, 10);
let artifacts1 = run_key_generation(t, n, None);
// let's say we want to refresh existing secret shares
// by doing this every T seconds, and assuming that in each T-second period adversary KS is not able to collect t+1 secret shares
// we can be sure that the scheme is secure
let artifacts2 = run_key_share_refreshing(t, n, &artifacts1);
assert_eq!(artifacts1.joint_public, artifacts2.joint_public);
// refresh again
let artifacts3 = run_key_share_refreshing(t, n, &artifacts2);
assert_eq!(artifacts1.joint_public, artifacts3.joint_public);
}
#[test]
fn full_generation_math_session_with_adding_new_nodes() {
// generate key using 6-of-10 session
let (t, n) = (5, 10);
let artifacts1 = run_key_generation(t, n, None);
// let's say we want to include additional server to the set
// so that scheme becames 6-of-11
let artifacts2 = run_key_share_refreshing_and_add_new_nodes(t, n, 1, &artifacts1);
assert_eq!(artifacts1.joint_public, artifacts2.joint_public);
// include another couple of servers (6-of-13)
let artifacts3 = run_key_share_refreshing_and_add_new_nodes(t, n + 1, 2, &artifacts2);
assert_eq!(artifacts1.joint_public, artifacts3.joint_public);
}
} }