Merge branch 'master' of github.com:gavofyork/ethcore-util

This commit is contained in:
Gav Wood 2015-11-26 21:34:38 +01:00
commit 43c087c59a
6 changed files with 1386 additions and 12 deletions

95
benches/rlp.rs Normal file
View File

@ -0,0 +1,95 @@
//! benchmarking for rlp
//! should be started with:
//! ```bash
//! multirust run nightly cargo bench
//! ```
#![feature(test)]
extern crate test;
extern crate ethcore_util;
use test::Bencher;
use std::str::FromStr;
use ethcore_util::rlp::{RlpStream, Rlp, Decodable};
use ethcore_util::uint::U256;
#[bench]
fn bench_stream_u64_value(b: &mut Bencher) {
b.iter( || {
//1029
let mut stream = RlpStream::new();
stream.append(&0x1023456789abcdefu64);
let _ = stream.out().unwrap();
});
}
#[bench]
fn bench_decode_u64_value(b: &mut Bencher) {
b.iter( || {
// 1029
let data = vec![0x88, 0x10, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef];
let rlp = Rlp::new(&data);
let _ = u64::decode(&rlp).unwrap();
});
}
#[bench]
fn bench_stream_u256_value(b: &mut Bencher) {
b.iter( || {
//u256
let mut stream = RlpStream::new();
stream.append(&U256::from_str("8090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0").unwrap());
let _ = stream.out().unwrap();
});
}
#[bench]
fn bench_decode_u256_value(b: &mut Bencher) {
b.iter( || {
// u256
let data = vec![0xa0, 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
0x09, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x77,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xf0];
let rlp = Rlp::new(&data);
let _ = U256::decode(&rlp).unwrap();
});
}
#[bench]
fn bench_stream_nested_empty_lists(b: &mut Bencher) {
b.iter( || {
// [ [], [[]], [ [], [[]] ] ]
let mut stream = RlpStream::new_list(3);
stream.append_list(0);
stream.append_list(1).append_list(0);
stream.append_list(2).append_list(0).append_list(1).append_list(0);
let _ = stream.out().unwrap();
});
}
#[bench]
fn bench_decode_nested_empty_lists(b: &mut Bencher) {
b.iter( || {
// [ [], [[]], [ [], [[]] ] ]
let data = vec![0xc7, 0xc0, 0xc1, 0xc0, 0xc3, 0xc0, 0xc1, 0xc0];
let rlp = Rlp::new(&data);
let _v0: Vec<u8> = Decodable::decode(&rlp.at(0).unwrap()).unwrap();
let _v1: Vec<Vec<u8>> = Decodable::decode(&rlp.at(1).unwrap()).unwrap();
let nested_rlp = rlp.at(2).unwrap();
let _v2a: Vec<u8> = Decodable::decode(&nested_rlp.at(0).unwrap()).unwrap();
let _v2b: Vec<Vec<u8>> = Decodable::decode(&nested_rlp.at(1).unwrap()).unwrap();
});
}
#[bench]
fn bench_stream_1000_empty_lists(b: &mut Bencher) {
b.iter( || {
let mut stream = RlpStream::new_list(1000);
for _ in 0..1000 {
stream.append_list(0);
}
let _ = stream.out().unwrap();
});
}

View File

@ -8,6 +8,7 @@
use std::fmt; use std::fmt;
use std::error::Error as StdError; use std::error::Error as StdError;
use uint::{U128, U256};
/// TODO: optimise some conversations /// TODO: optimise some conversations
pub trait ToBytes { pub trait ToBytes {
@ -59,6 +60,7 @@ impl ToBytes for u64 {
fn to_bytes(&self) -> Vec<u8> { fn to_bytes(&self) -> Vec<u8> {
let mut res= vec![]; let mut res= vec![];
let count = self.to_bytes_len(); let count = self.to_bytes_len();
res.reserve(count);
for i in 0..count { for i in 0..count {
let j = count - 1 - i; let j = count - 1 - i;
res.push((*self >> (j * 8)) as u8); res.push((*self >> (j * 8)) as u8);
@ -82,6 +84,27 @@ impl_map_to_bytes!(usize, u64);
impl_map_to_bytes!(u16, u64); impl_map_to_bytes!(u16, u64);
impl_map_to_bytes!(u32, u64); impl_map_to_bytes!(u32, u64);
macro_rules! impl_uint_to_bytes {
($name: ident) => {
impl ToBytes for $name {
fn to_bytes(&self) -> Vec<u8> {
let mut res= vec![];
let count = self.to_bytes_len();
res.reserve(count);
for i in 0..count {
let j = count - 1 - i;
res.push(self.byte(j));
}
res
}
fn to_bytes_len(&self) -> usize { (self.bits() + 7) / 8 }
}
}
}
impl_uint_to_bytes!(U256);
impl_uint_to_bytes!(U128);
#[derive(Debug, PartialEq, Eq)] #[derive(Debug, PartialEq, Eq)]
pub enum FromBytesError { pub enum FromBytesError {
UnexpectedEnd UnexpectedEnd
@ -101,6 +124,7 @@ pub type FromBytesResult<T> = Result<T, FromBytesError>;
/// implements "Sized", so the compiler can deducate the size /// implements "Sized", so the compiler can deducate the size
/// of the return type /// of the return type
/// TODO: check size of bytes before conversation and return appropriate error
pub trait FromBytes: Sized { pub trait FromBytes: Sized {
fn from_bytes(bytes: &[u8]) -> FromBytesResult<Self>; fn from_bytes(bytes: &[u8]) -> FromBytesResult<Self>;
} }
@ -149,3 +173,16 @@ macro_rules! impl_map_from_bytes {
impl_map_from_bytes!(usize, u64); impl_map_from_bytes!(usize, u64);
impl_map_from_bytes!(u16, u64); impl_map_from_bytes!(u16, u64);
impl_map_from_bytes!(u32, u64); impl_map_from_bytes!(u32, u64);
macro_rules! impl_uint_from_bytes {
($name: ident) => {
impl FromBytes for $name {
fn from_bytes(bytes: &[u8]) -> FromBytesResult<$name> {
Ok($name::from(bytes))
}
}
}
}
impl_uint_from_bytes!(U256);
impl_uint_from_bytes!(U128);

View File

@ -4,8 +4,10 @@ pub use std::str::FromStr;
pub mod error; pub mod error;
pub mod hash; pub mod hash;
pub mod uint;
pub mod bytes; pub mod bytes;
pub mod rlp; pub mod rlp;
pub mod vector;
#[test] #[test]
fn it_works() { fn it_works() {

View File

@ -1,9 +1,54 @@
//! Rlp serialization module //! Rlp serialization module
//!
//! Types implementing `Endocable` and `Decodable` traits
//! can be easily coverted to and from rlp
//!
//! # Examples:
//!
//! ```rust
//! extern crate ethcore_util;
//! use ethcore_util::rlp::{RlpStream};
//!
//! fn encode_value() {
//! // 1029
//! let mut stream = RlpStream::new();
//! stream.append(&1029u32);
//! let out = stream.out().unwrap();
//! assert_eq!(out, vec![0x82, 0x04, 0x05]);
//! }
//!
//! fn encode_list() {
//! // [ "cat", "dog" ]
//! let mut stream = RlpStream::new_list(2);
//! stream.append(&"cat").append(&"dog");
//! let out = stream.out().unwrap();
//! assert_eq!(out, vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o', b'g']);
//! }
//!
//! fn encode_list2() {
//! // [ [], [[]], [ [], [[]] ] ]
//! let mut stream = RlpStream::new_list(3);
//! stream.append_list(0);
//! stream.append_list(1).append_list(0);
//! stream.append_list(2).append_list(0).append_list(1).append_list(0);
//! let out = stream.out().unwrap();
//! assert_eq!(out, vec![0xc7, 0xc0, 0xc1, 0xc0, 0xc3, 0xc0, 0xc1, 0xc0]);
//! }
//!
//! fn main() {
//! encode_value();
//! encode_list();
//! encode_list2();
//! }
//! ```
//!
use std::fmt; use std::fmt;
use std::cell::Cell; use std::cell::Cell;
use std::collections::LinkedList;
use std::error::Error as StdError; use std::error::Error as StdError;
use bytes::{FromBytes, FromBytesError}; use bytes::{ToBytes, FromBytes, FromBytesError};
use vector::InsertSlice;
/// rlp container /// rlp container
#[derive(Debug)] #[derive(Debug)]
@ -41,7 +86,8 @@ impl ItemInfo {
pub enum DecoderError { pub enum DecoderError {
FromBytesError(FromBytesError), FromBytesError(FromBytesError),
RlpIsTooShort, RlpIsTooShort,
RlpExpectedToBeArray, RlpExpectedToBeList,
RlpExpectedToBeValue,
BadRlp, BadRlp,
} }
impl StdError for DecoderError { impl StdError for DecoderError {
@ -71,16 +117,16 @@ impl <'a>Rlp<'a> {
/// ///
/// paren container caches searched position /// paren container caches searched position
pub fn at(&self, index: usize) -> Result<Rlp<'a>, DecoderError> { pub fn at(&self, index: usize) -> Result<Rlp<'a>, DecoderError> {
if !self.is_array() { if !self.is_list() {
return Err(DecoderError::RlpExpectedToBeArray); return Err(DecoderError::RlpExpectedToBeList);
} }
// move to cached position if it's index is less or equal to // move to cached position if it's index is less or equal to
// current search index, otherwise move to beginning of array // current search index, otherwise move to beginning of list
let c = self.cache.get(); let c = self.cache.get();
let (mut bytes, to_skip) = match c.index <= index { let (mut bytes, to_skip) = match c.index <= index {
true => (try!(Rlp::consume(self.bytes, c.offset)), index - c.index), true => (try!(Rlp::consume(self.bytes, c.offset)), index - c.index),
false => (try!(self.consume_array_prefix()), index) false => (try!(self.consume_list_prefix()), index)
}; };
// skip up to x items // skip up to x items
@ -94,8 +140,8 @@ impl <'a>Rlp<'a> {
Ok(Rlp::new(&bytes[0..found.prefix_len + found.value_len])) Ok(Rlp::new(&bytes[0..found.prefix_len + found.value_len]))
} }
/// returns true if rlp is an array /// returns true if rlp is a list
pub fn is_array(&self) -> bool { pub fn is_list(&self) -> bool {
self.bytes.len() > 0 && self.bytes[0] >= 0xc0 self.bytes.len() > 0 && self.bytes[0] >= 0xc0
} }
@ -110,7 +156,7 @@ impl <'a>Rlp<'a> {
} }
/// consumes first found prefix /// consumes first found prefix
fn consume_array_prefix(&self) -> Result<&'a [u8], DecoderError> { fn consume_list_prefix(&self) -> Result<&'a [u8], DecoderError> {
let item = try!(Rlp::item_info(self.bytes)); let item = try!(Rlp::item_info(self.bytes));
let bytes = try!(Rlp::consume(self.bytes, item.prefix_len)); let bytes = try!(Rlp::consume(self.bytes, item.prefix_len));
Ok(bytes) Ok(bytes)
@ -189,29 +235,315 @@ impl <'a> Iterator for RlpIterator<'a> {
} }
} }
/// shortcut function to decode a Rlp `&[u8]` into an object
pub fn decode<T>(bytes: &[u8]) -> Result<T, DecoderError> where T: Decodable {
let rlp = Rlp::new(bytes);
T::decode(&rlp)
}
pub trait Decodable: Sized {
fn decode(rlp: &Rlp) -> Result<Self, DecoderError>;
}
impl <T> Decodable for T where T: FromBytes {
fn decode(rlp: &Rlp) -> Result<Self, DecoderError> {
match rlp.is_value() {
true => BasicDecoder::read_value(rlp.bytes),
false => Err(DecoderError::RlpExpectedToBeValue)
}
}
}
impl <T> Decodable for Vec<T> where T: Decodable {
fn decode(rlp: &Rlp) -> Result<Self, DecoderError> {
match rlp.is_list() {
true => rlp.iter().map(|rlp| T::decode(&rlp)).collect(),
false => Err(DecoderError::RlpExpectedToBeList)
}
}
}
pub trait Decoder {
fn read_value<T>(bytes: &[u8]) -> Result<T, DecoderError> where T: FromBytes;
}
struct BasicDecoder;
impl Decoder for BasicDecoder {
fn read_value<T>(bytes: &[u8]) -> Result<T, DecoderError> where T: FromBytes {
match bytes.first().map(|&x| x) {
// rlp is too short
None => Err(DecoderError::RlpIsTooShort),
// single byt value
Some(l @ 0...0x7f) => Ok(try!(T::from_bytes(&[l]))),
// 0-55 bytes
Some(l @ 0x80...0xb7) => Ok(try!(T::from_bytes(&bytes[1..(1 + l as usize - 0x80)]))),
// longer than 55 bytes
Some(l @ 0xb8...0xbf) => {
let len_of_len = l as usize - 0xb7;
let begin_of_value = 1 as usize + len_of_len;
let len = try!(usize::from_bytes(&bytes[1..begin_of_value]));
Ok(try!(T::from_bytes(&bytes[begin_of_value..begin_of_value + len])))
},
_ => Err(DecoderError::BadRlp)
}
}
}
#[derive(Debug)]
struct ListInfo {
position: usize,
current: usize,
max: usize
}
impl ListInfo {
fn new(position: usize, max: usize) -> ListInfo {
ListInfo {
position: position,
current: 0,
max: max
}
}
}
/// container that should be used to encode rlp
pub struct RlpStream {
unfinished_lists: LinkedList<ListInfo>,
encoder: BasicEncoder
}
impl RlpStream {
/// create new container for values appended one after another,
/// but not being part of the same list
pub fn new() -> RlpStream {
RlpStream {
unfinished_lists: LinkedList::new(),
encoder: BasicEncoder::new()
}
}
/// create new container for list of size `max_len`
pub fn new_list(len: usize) -> RlpStream {
let mut stream = RlpStream::new();
stream.append_list(len);
stream
}
/// apends value to the end of stream, chainable
pub fn append<'a, E>(&'a mut self, object: &E) -> &'a mut RlpStream where E: Encodable {
// encode given value and add it at the end of the stream
object.encode(&mut self.encoder);
// if list is finished, prepend the length
self.try_to_finish();
// return chainable self
self
}
/// declare appending the list of given size
pub fn append_list<'a>(&'a mut self, len: usize) -> &'a mut RlpStream {
// push new list
let position = self.encoder.bytes.len();
match len {
0 => {
// we may finish, if the appended list len is equal 0
self.encoder.bytes.push(0xc0u8);
self.try_to_finish();
},
_ => self.unfinished_lists.push_back(ListInfo::new(position, len))
}
// return chainable self
self
}
/// return true if stream is ready
pub fn is_finished(&self) -> bool {
self.unfinished_lists.back().is_none()
}
/// streams out encoded bytes
pub fn out(self) -> Result<Vec<u8>, EncoderError> {
match self.is_finished() {
true => Ok(self.encoder.out()),
false => Err(EncoderError::StreamIsUnfinished)
}
}
/// try to finish lists
fn try_to_finish(&mut self) -> () {
let should_finish = match self.unfinished_lists.back_mut() {
None => false,
Some(ref mut x) => {
x.current += 1;
x.current == x.max
}
};
if should_finish {
let x = self.unfinished_lists.pop_back().unwrap();
let len = self.encoder.bytes.len() - x.position;
self.encoder.insert_list_len_at_pos(len, x.position);
self.try_to_finish();
}
}
}
/// shortcut function to encode a `T: Encodable` into a Rlp `Vec<u8>`
pub fn encode<E>(object: &E) -> Vec<u8> where E: Encodable {
let mut encoder = BasicEncoder::new();
object.encode(&mut encoder);
encoder.out()
}
#[derive(Debug)]
pub enum EncoderError {
StreamIsUnfinished
}
impl StdError for EncoderError {
fn description(&self) -> &str { "encoder error" }
}
impl fmt::Display for EncoderError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self, f)
}
}
pub trait Encodable {
fn encode<E>(&self, encoder: &mut E) -> () where E: Encoder;
}
pub trait Encoder {
fn emit_value(&mut self, bytes: &[u8]) -> ();
fn emit_list<F>(&mut self, f: F) -> () where F: FnOnce(&mut Self) -> ();
}
impl <T> Encodable for T where T: ToBytes {
fn encode<E>(&self, encoder: &mut E) -> () where E: Encoder {
encoder.emit_value(&self.to_bytes())
}
}
impl <'a, T> Encodable for &'a [T] where T: Encodable + 'a {
fn encode<E>(&self, encoder: &mut E) -> () where E: Encoder {
encoder.emit_list(|e| {
// insert all list elements
for el in self.iter() {
el.encode(e);
}
})
}
}
impl <T> Encodable for Vec<T> where T: Encodable {
fn encode<E>(&self, encoder: &mut E) -> () where E: Encoder {
let r: &[T] = self.as_ref();
r.encode(encoder)
}
}
struct BasicEncoder {
bytes: Vec<u8>
}
impl BasicEncoder {
fn new() -> BasicEncoder {
BasicEncoder { bytes: vec![] }
}
/// inserts list prefix at given position
/// TODO: optimise it further?
fn insert_list_len_at_pos(&mut self, len: usize, pos: usize) -> () {
let mut res = vec![];
match len {
0...55 => res.push(0xc0u8 + len as u8),
_ => {
res.push(0x7fu8 + len.to_bytes_len() as u8);
res.extend(len.to_bytes());
}
};
self.bytes.insert_slice(pos, &res);
}
/// get encoded value
fn out(self) -> Vec<u8> {
self.bytes
}
}
impl Encoder for BasicEncoder {
fn emit_value(&mut self, bytes: &[u8]) -> () {
match bytes.len() {
// just 0
0 => self.bytes.push(0x80u8),
// byte is its own encoding
1 if bytes[0] < 0x80 => self.bytes.extend(bytes),
// (prefix + length), followed by the string
len @ 1 ... 55 => {
self.bytes.push(0x80u8 + len as u8);
self.bytes.extend(bytes);
}
// (prefix + length of length), followed by the length, followd by the string
len => {
self.bytes.push(0xb7 + len.to_bytes_len() as u8);
self.bytes.extend(len.to_bytes());
self.bytes.extend(bytes);
}
}
}
fn emit_list<F>(&mut self, f: F) -> () where F: FnOnce(&mut Self) -> () {
// get len before inserting a list
let before_len = self.bytes.len();
// insert all list elements
f(self);
// get len after inserting a list
let after_len = self.bytes.len();
// diff is list len
let list_len = after_len - before_len;
self.insert_list_len_at_pos(list_len, before_len);
}
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use std::{fmt, cmp};
use std::str::FromStr;
use rlp; use rlp;
use rlp::Rlp; use rlp::{Rlp, RlpStream, Decodable};
use uint::U256;
#[test] #[test]
fn rlp_at() { fn rlp_at() {
let data = vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o', b'g']; let data = vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o', b'g'];
{ {
let rlp = Rlp::new(&data); let rlp = Rlp::new(&data);
assert!(rlp.is_array()); assert!(rlp.is_list());
let animals = <Vec<String> as rlp::Decodable>::decode(&rlp).unwrap();
assert_eq!(animals, vec!["cat".to_string(), "dog".to_string()]);
let cat = rlp.at(0).unwrap(); let cat = rlp.at(0).unwrap();
assert!(cat.is_value()); assert!(cat.is_value());
assert_eq!(cat.bytes, &[0x83, b'c', b'a', b't']); assert_eq!(cat.bytes, &[0x83, b'c', b'a', b't']);
assert_eq!(String::decode(&cat).unwrap(), "cat".to_string());
let dog = rlp.at(1).unwrap(); let dog = rlp.at(1).unwrap();
assert!(dog.is_value()); assert!(dog.is_value());
assert_eq!(dog.bytes, &[0x83, b'd', b'o', b'g']); assert_eq!(dog.bytes, &[0x83, b'd', b'o', b'g']);
assert_eq!(String::decode(&dog).unwrap(), "dog".to_string());
let cat_again = rlp.at(0).unwrap(); let cat_again = rlp.at(0).unwrap();
assert!(cat_again.is_value()); assert!(cat_again.is_value());
assert_eq!(cat_again.bytes, &[0x83, b'c', b'a', b't']); assert_eq!(cat_again.bytes, &[0x83, b'c', b'a', b't']);
assert_eq!(String::decode(&cat_again).unwrap(), "cat".to_string());
} }
} }
@ -220,7 +552,7 @@ mod tests {
let data = vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o']; let data = vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o'];
{ {
let rlp = Rlp::new(&data); let rlp = Rlp::new(&data);
assert!(rlp.is_array()); assert!(rlp.is_list());
let cat_err = rlp.at(0).unwrap_err(); let cat_err = rlp.at(0).unwrap_err();
assert_eq!(cat_err, rlp::DecoderError::RlpIsTooShort); assert_eq!(cat_err, rlp::DecoderError::RlpIsTooShort);
@ -253,5 +585,269 @@ mod tests {
assert_eq!(cat_again.bytes, &[0x83, b'c', b'a', b't']); assert_eq!(cat_again.bytes, &[0x83, b'c', b'a', b't']);
} }
} }
struct ETestPair<T>(T, Vec<u8>) where T: rlp::Encodable;
fn run_encode_tests<T>(tests: Vec<ETestPair<T>>) where T: rlp::Encodable {
for t in &tests {
let res = rlp::encode(&t.0);
assert_eq!(res, &t.1[..]);
}
}
#[test]
fn encode_u8() {
let tests = vec![
ETestPair(0u8, vec![0x80u8]),
ETestPair(15, vec![15]),
ETestPair(55, vec![55]),
ETestPair(56, vec![56]),
ETestPair(0x7f, vec![0x7f]),
ETestPair(0x80, vec![0x81, 0x80]),
ETestPair(0xff, vec![0x81, 0xff]),
];
run_encode_tests(tests);
}
#[test]
fn encode_u16() {
let tests = vec![
ETestPair(0u16, vec![0x80u8]),
ETestPair(0x100, vec![0x82, 0x01, 0x00]),
ETestPair(0xffff, vec![0x82, 0xff, 0xff]),
];
run_encode_tests(tests);
}
#[test]
fn encode_u32() {
let tests = vec![
ETestPair(0u32, vec![0x80u8]),
ETestPair(0x10000, vec![0x83, 0x01, 0x00, 0x00]),
ETestPair(0xffffff, vec![0x83, 0xff, 0xff, 0xff]),
];
run_encode_tests(tests);
}
#[test]
fn encode_u64() {
let tests = vec![
ETestPair(0u64, vec![0x80u8]),
ETestPair(0x1000000, vec![0x84, 0x01, 0x00, 0x00, 0x00]),
ETestPair(0xFFFFFFFF, vec![0x84, 0xff, 0xff, 0xff, 0xff]),
];
run_encode_tests(tests);
}
#[test]
fn encode_u256() {
let tests = vec![
ETestPair(U256::from(0u64), vec![0x80u8]),
ETestPair(U256::from(0x1000000u64), vec![0x84, 0x01, 0x00, 0x00, 0x00]),
ETestPair(U256::from(0xffffffffu64), vec![0x84, 0xff, 0xff, 0xff, 0xff]),
ETestPair(U256::from_str("8090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0").unwrap(),
vec![0xa0, 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
0x09, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x77,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xf0])
];
run_encode_tests(tests);
}
#[test]
fn encode_str() {
let tests = vec![
ETestPair("cat", vec![0x83, b'c', b'a', b't']),
ETestPair("dog", vec![0x83, b'd', b'o', b'g']),
ETestPair("Marek", vec![0x85, b'M', b'a', b'r', b'e', b'k']),
ETestPair("", vec![0x80]),
ETestPair("Lorem ipsum dolor sit amet, consectetur adipisicing elit",
vec![0xb8, 0x38, b'L', b'o', b'r', b'e', b'm', b' ', b'i',
b'p', b's', b'u', b'm', b' ', b'd', b'o', b'l', b'o', b'r',
b' ', b's', b'i', b't', b' ', b'a', b'm', b'e', b't', b',',
b' ', b'c', b'o', b'n', b's', b'e', b'c', b't', b'e', b't',
b'u', b'r', b' ', b'a', b'd', b'i', b'p', b'i', b's', b'i',
b'c', b'i', b'n', b'g', b' ', b'e', b'l', b'i', b't'])
];
run_encode_tests(tests);
}
#[test]
fn encode_vector_u8() {
let tests = vec![
ETestPair(vec![], vec![0xc0]),
ETestPair(vec![15u8], vec![0xc1, 0x0f]),
ETestPair(vec![1, 2, 3, 7, 0xff], vec![0xc6, 1, 2, 3, 7, 0x81, 0xff]),
];
run_encode_tests(tests);
}
#[test]
fn encode_vector_u64() {
let tests = vec![
ETestPair(vec![], vec![0xc0]),
ETestPair(vec![15u64], vec![0xc1, 0x0f]),
ETestPair(vec![1, 2, 3, 7, 0xff], vec![0xc6, 1, 2, 3, 7, 0x81, 0xff]),
ETestPair(vec![0xffffffff, 1, 2, 3, 7, 0xff], vec![0xcb, 0x84, 0xff, 0xff, 0xff, 0xff, 1, 2, 3, 7, 0x81, 0xff]),
];
run_encode_tests(tests);
}
#[test]
fn encode_vector_str() {
let tests = vec![
ETestPair(vec!["cat", "dog"], vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o', b'g'])
];
run_encode_tests(tests);
}
#[test]
fn encode_vector_of_vectors_str() {
let tests = vec![
ETestPair(vec![vec!["cat"]], vec![0xc5, 0xc4, 0x83, b'c', b'a', b't'])
];
run_encode_tests(tests);
}
#[test]
fn rlp_stream() {
let mut stream = RlpStream::new_list(2);
stream.append(&"cat").append(&"dog");
let out = stream.out().unwrap();
assert_eq!(out, vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o', b'g']);
}
#[test]
fn rlp_stream_list() {
let mut stream = RlpStream::new_list(3);
stream.append_list(0);
stream.append_list(1).append_list(0);
stream.append_list(2).append_list(0).append_list(1).append_list(0);
let out = stream.out().unwrap();
assert_eq!(out, vec![0xc7, 0xc0, 0xc1, 0xc0, 0xc3, 0xc0, 0xc1, 0xc0]);
}
struct DTestPair<T>(T, Vec<u8>) where T: rlp::Decodable + fmt::Debug + cmp::Eq;
fn run_decode_tests<T>(tests: Vec<DTestPair<T>>) where T: rlp::Decodable + fmt::Debug + cmp::Eq {
for t in &tests {
let res: T = rlp::decode(&t.1).unwrap();
assert_eq!(res, t.0);
}
}
#[test]
fn decode_u8() {
let tests = vec![
DTestPair(0u8, vec![0u8]),
DTestPair(15, vec![15]),
DTestPair(55, vec![55]),
DTestPair(56, vec![56]),
DTestPair(0x7f, vec![0x7f]),
DTestPair(0x80, vec![0x81, 0x80]),
DTestPair(0xff, vec![0x81, 0xff]),
];
run_decode_tests(tests);
}
#[test]
fn decode_u16() {
let tests = vec![
DTestPair(0u16, vec![0u8]),
DTestPair(0x100, vec![0x82, 0x01, 0x00]),
DTestPair(0xffff, vec![0x82, 0xff, 0xff]),
];
run_decode_tests(tests);
}
#[test]
fn decode_u32() {
let tests = vec![
DTestPair(0u32, vec![0u8]),
DTestPair(0x10000, vec![0x83, 0x01, 0x00, 0x00]),
DTestPair(0xffffff, vec![0x83, 0xff, 0xff, 0xff]),
];
run_decode_tests(tests);
}
#[test]
fn decode_u64() {
let tests = vec![
DTestPair(0u64, vec![0u8]),
DTestPair(0x1000000, vec![0x84, 0x01, 0x00, 0x00, 0x00]),
DTestPair(0xFFFFFFFF, vec![0x84, 0xff, 0xff, 0xff, 0xff]),
];
run_decode_tests(tests);
}
#[test]
fn decode_u256() {
let tests = vec![
DTestPair(U256::from(0u64), vec![0x80u8]),
DTestPair(U256::from(0x1000000u64), vec![0x84, 0x01, 0x00, 0x00, 0x00]),
DTestPair(U256::from(0xffffffffu64), vec![0x84, 0xff, 0xff, 0xff, 0xff]),
DTestPair(U256::from_str("8090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0").unwrap(),
vec![0xa0, 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
0x09, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x77,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xf0])
];
run_decode_tests(tests);
}
#[test]
fn decode_str() {
let tests = vec![
DTestPair("cat".to_string(), vec![0x83, b'c', b'a', b't']),
DTestPair("dog".to_string(), vec![0x83, b'd', b'o', b'g']),
DTestPair("Marek".to_string(), vec![0x85, b'M', b'a', b'r', b'e', b'k']),
DTestPair("".to_string(), vec![0x80]),
DTestPair("Lorem ipsum dolor sit amet, consectetur adipisicing elit".to_string(),
vec![0xb8, 0x38, b'L', b'o', b'r', b'e', b'm', b' ', b'i',
b'p', b's', b'u', b'm', b' ', b'd', b'o', b'l', b'o', b'r',
b' ', b's', b'i', b't', b' ', b'a', b'm', b'e', b't', b',',
b' ', b'c', b'o', b'n', b's', b'e', b'c', b't', b'e', b't',
b'u', b'r', b' ', b'a', b'd', b'i', b'p', b'i', b's', b'i',
b'c', b'i', b'n', b'g', b' ', b'e', b'l', b'i', b't'])
];
run_decode_tests(tests);
}
#[test]
fn decode_vector_u8() {
let tests = vec![
DTestPair(vec![] as Vec<u8>, vec![0xc0]),
DTestPair(vec![15u8], vec![0xc1, 0x0f]),
DTestPair(vec![1u8, 2, 3, 7, 0xff], vec![0xc6, 1, 2, 3, 7, 0x81, 0xff]),
];
run_decode_tests(tests);
}
#[test]
fn decode_vector_u64() {
let tests = vec![
DTestPair(vec![], vec![0xc0]),
DTestPair(vec![15u64], vec![0xc1, 0x0f]),
DTestPair(vec![1, 2, 3, 7, 0xff], vec![0xc6, 1, 2, 3, 7, 0x81, 0xff]),
DTestPair(vec![0xffffffff, 1, 2, 3, 7, 0xff], vec![0xcb, 0x84, 0xff, 0xff, 0xff, 0xff, 1, 2, 3, 7, 0x81, 0xff]),
];
run_decode_tests(tests);
}
#[test]
fn decode_vector_str() {
let tests = vec![
DTestPair(vec!["cat".to_string(), "dog".to_string()], vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd', b'o', b'g'])
];
run_decode_tests(tests);
}
#[test]
fn decode_vector_of_vectors_str() {
let tests = vec![
DTestPair(vec![vec!["cat".to_string()]], vec![0xc5, 0xc4, 0x83, b'c', b'a', b't'])
];
run_decode_tests(tests);
}
} }

610
src/uint.rs Normal file
View File

@ -0,0 +1,610 @@
// taken from Rust Bitcoin Library (https://github.com/apoelstra/rust-bitcoin)
// original author: Andrew Poelstra <apoelstra@wpsoftware.net>
// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Big unsigned integer types
///!
///! Implementation of a various large-but-fixed sized unsigned integer types.
///! The functions here are designed to be fast.
///!
use std::fmt;
use std::cmp::{Ord, PartialOrd, Ordering};
use std::ops::*;
use std::str::FromStr;
use rustc_serialize::hex::{FromHex, FromHexError};
macro_rules! impl_map_from {
($thing:ident, $from:ty, $to:ty) => {
impl From<$from> for $thing {
fn from(value: $from) -> $thing {
From::from(value as $to)
}
}
}
}
macro_rules! impl_array_newtype {
($thing:ident, $ty:ty, $len:expr) => {
impl $thing {
#[inline]
/// Converts the object to a raw pointer
pub fn as_ptr(&self) -> *const $ty {
let &$thing(ref dat) = self;
dat.as_ptr()
}
#[inline]
/// Converts the object to a mutable raw pointer
pub fn as_mut_ptr(&mut self) -> *mut $ty {
let &mut $thing(ref mut dat) = self;
dat.as_mut_ptr()
}
#[inline]
/// Returns the length of the object as an array
pub fn len(&self) -> usize { $len }
#[inline]
/// Returns whether the object, as an array, is empty. Always false.
pub fn is_empty(&self) -> bool { false }
}
impl<'a> From<&'a [$ty]> for $thing {
fn from(data: &'a [$ty]) -> $thing {
assert_eq!(data.len(), $len);
unsafe {
use std::intrinsics::copy_nonoverlapping;
use std::mem;
let mut ret: $thing = mem::uninitialized();
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
mem::size_of::<$thing>());
ret
}
}
}
impl Index<usize> for $thing {
type Output = $ty;
#[inline]
fn index(&self, index: usize) -> &$ty {
let &$thing(ref dat) = self;
&dat[index]
}
}
impl_index_newtype!($thing, $ty);
impl PartialEq for $thing {
#[inline]
fn eq(&self, other: &$thing) -> bool {
&self[..] == &other[..]
}
}
impl Eq for $thing {}
impl Clone for $thing {
#[inline]
fn clone(&self) -> $thing {
$thing::from(&self[..])
}
}
impl Copy for $thing {}
}
}
macro_rules! impl_index_newtype {
($thing:ident, $ty:ty) => {
impl Index<Range<usize>> for $thing {
type Output = [$ty];
#[inline]
fn index(&self, index: Range<usize>) -> &[$ty] {
&self.0[index]
}
}
impl Index<RangeTo<usize>> for $thing {
type Output = [$ty];
#[inline]
fn index(&self, index: RangeTo<usize>) -> &[$ty] {
&self.0[index]
}
}
impl Index<RangeFrom<usize>> for $thing {
type Output = [$ty];
#[inline]
fn index(&self, index: RangeFrom<usize>) -> &[$ty] {
&self.0[index]
}
}
impl Index<RangeFull> for $thing {
type Output = [$ty];
#[inline]
fn index(&self, _: RangeFull) -> &[$ty] {
&self.0[..]
}
}
}
}
macro_rules! construct_uint {
($name:ident, $n_words:expr) => (
/// Little-endian large integer type
pub struct $name(pub [u64; $n_words]);
impl_array_newtype!($name, u64, $n_words);
impl $name {
/// Conversion to u32
#[inline]
fn low_u32(&self) -> u32 {
let &$name(ref arr) = self;
arr[0] as u32
}
/// Return the least number of bits needed to represent the number
#[inline]
pub fn bits(&self) -> usize {
let &$name(ref arr) = self;
for i in 1..$n_words {
if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as usize; }
}
0x40 - arr[0].leading_zeros() as usize
}
#[inline]
pub fn bit(&self, index: usize) -> bool {
let &$name(ref arr) = self;
arr[index / 64] & (1 << (index % 64)) != 0
}
#[inline]
pub fn byte(&self, index: usize) -> u8 {
let &$name(ref arr) = self;
(arr[index / 8] >> ((index % 8)) * 8) as u8
}
/// Multiplication by u32
fn mul_u32(self, other: u32) -> $name {
let $name(ref arr) = self;
let mut carry = [0u64; $n_words];
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
let upper = other as u64 * (arr[i] >> 32);
let lower = other as u64 * (arr[i] & 0xFFFFFFFF);
if i < 3 {
carry[i + 1] += upper >> 32;
}
ret[i] = lower + (upper << 32);
}
$name(ret) + $name(carry)
}
}
impl From<u64> for $name {
fn from(value: u64) -> $name {
let mut ret = [0; $n_words];
ret[0] = value;
$name(ret)
}
}
impl_map_from!($name, u8, u64);
impl_map_from!($name, u16, u64);
impl_map_from!($name, u32, u64);
impl<'a> From<&'a [u8]> for $name {
fn from(bytes: &[u8]) -> $name {
assert!($n_words * 8 >= bytes.len());
let mut ret = [0; $n_words];
for i in 0..bytes.len() {
let rev = bytes.len() - 1 - i;
let pos = rev / 8;
ret[pos] += (bytes[i] as u64) << (rev % 8) * 8;
}
$name(ret)
}
}
impl FromStr for $name {
type Err = FromHexError;
fn from_str(value: &str) -> Result<$name, Self::Err> {
let bytes: &[u8] = &try!(value.from_hex());
Ok(From::from(bytes))
}
}
impl Add<$name> for $name {
type Output = $name;
fn add(self, other: $name) -> $name {
let $name(ref me) = self;
let $name(ref you) = other;
let mut ret = [0u64; $n_words];
let mut carry = [0u64; $n_words];
let mut b_carry = false;
for i in 0..$n_words {
ret[i] = me[i].wrapping_add(you[i]);
if i < $n_words - 1 && ret[i] < me[i] {
carry[i + 1] = 1;
b_carry = true;
}
}
if b_carry { $name(ret) + $name(carry) } else { $name(ret) }
}
}
impl Sub<$name> for $name {
type Output = $name;
#[inline]
fn sub(self, other: $name) -> $name {
self + !other + From::from(1u64)
}
}
impl Mul<$name> for $name {
type Output = $name;
fn mul(self, other: $name) -> $name {
let mut me = self;
// TODO: be more efficient about this
for i in 0..(2 * $n_words) {
me = (me + me.mul_u32((other >> (32 * i)).low_u32())) << (32 * i);
}
me
}
}
impl Div<$name> for $name {
type Output = $name;
fn div(self, other: $name) -> $name {
let mut sub_copy = self;
let mut shift_copy = other;
let mut ret = [0u64; $n_words];
let my_bits = self.bits();
let your_bits = other.bits();
// Check for division by 0
assert!(your_bits != 0);
// Early return in case we are dividing by a larger number than us
if my_bits < your_bits {
return $name(ret);
}
// Bitwise long division
let mut shift = my_bits - your_bits;
shift_copy = shift_copy << shift;
loop {
if sub_copy >= shift_copy {
ret[shift / 64] |= 1 << (shift % 64);
sub_copy = sub_copy - shift_copy;
}
shift_copy = shift_copy >> 1;
if shift == 0 { break; }
shift -= 1;
}
$name(ret)
}
}
impl BitAnd<$name> for $name {
type Output = $name;
#[inline]
fn bitand(self, other: $name) -> $name {
let $name(ref arr1) = self;
let $name(ref arr2) = other;
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
ret[i] = arr1[i] & arr2[i];
}
$name(ret)
}
}
impl BitXor<$name> for $name {
type Output = $name;
#[inline]
fn bitxor(self, other: $name) -> $name {
let $name(ref arr1) = self;
let $name(ref arr2) = other;
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
ret[i] = arr1[i] ^ arr2[i];
}
$name(ret)
}
}
impl BitOr<$name> for $name {
type Output = $name;
#[inline]
fn bitor(self, other: $name) -> $name {
let $name(ref arr1) = self;
let $name(ref arr2) = other;
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
ret[i] = arr1[i] | arr2[i];
}
$name(ret)
}
}
impl Not for $name {
type Output = $name;
#[inline]
fn not(self) -> $name {
let $name(ref arr) = self;
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
ret[i] = !arr[i];
}
$name(ret)
}
}
impl Shl<usize> for $name {
type Output = $name;
fn shl(self, shift: usize) -> $name {
let $name(ref original) = self;
let mut ret = [0u64; $n_words];
let word_shift = shift / 64;
let bit_shift = shift % 64;
for i in 0..$n_words {
// Shift
if bit_shift < 64 && i + word_shift < $n_words {
ret[i + word_shift] += original[i] << bit_shift;
}
// Carry
if bit_shift > 0 && i + word_shift + 1 < $n_words {
ret[i + word_shift + 1] += original[i] >> (64 - bit_shift);
}
}
$name(ret)
}
}
impl Shr<usize> for $name {
type Output = $name;
fn shr(self, shift: usize) -> $name {
let $name(ref original) = self;
let mut ret = [0u64; $n_words];
let word_shift = shift / 64;
let bit_shift = shift % 64;
for i in word_shift..$n_words {
// Shift
ret[i - word_shift] += original[i] >> bit_shift;
// Carry
if bit_shift > 0 && i < $n_words - 1 {
ret[i - word_shift] += original[i + 1] << (64 - bit_shift);
}
}
$name(ret)
}
}
impl Ord for $name {
fn cmp(&self, other: &$name) -> Ordering {
let &$name(ref me) = self;
let &$name(ref you) = other;
for i in 0..$n_words {
if me[$n_words - 1 - i] < you[$n_words - 1 - i] { return Ordering::Less; }
if me[$n_words - 1 - i] > you[$n_words - 1 - i] { return Ordering::Greater; }
}
Ordering::Equal
}
}
impl PartialOrd for $name {
fn partial_cmp(&self, other: &$name) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl fmt::Debug for $name {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let &$name(ref data) = self;
try!(write!(f, "0x"));
for ch in data.iter().rev() {
try!(write!(f, "{:02x}", ch));
}
Ok(())
}
}
);
}
construct_uint!(U256, 4);
construct_uint!(U128, 2);
impl From<U128> for U256 {
fn from(value: U128) -> U256 {
let U128(ref arr) = value;
let mut ret = [0; 4];
ret[0] = arr[0];
ret[1] = arr[1];
U256(ret)
}
}
#[cfg(test)]
mod tests {
use uint::U256;
use std::str::FromStr;
#[test]
pub fn uint256_from() {
let e = U256([10, 0, 0, 0]);
// test unsigned initialization
let ua = U256::from(10u8);
let ub = U256::from(10u16);
let uc = U256::from(10u32);
let ud = U256::from(10u64);
assert_eq!(e, ua);
assert_eq!(e, ub);
assert_eq!(e, uc);
assert_eq!(e, ud);
// test initialization from bytes
let va = U256::from(&[10u8][..]);
assert_eq!(e, va);
// more tests for initialization from bytes
assert_eq!(U256([0x1010, 0, 0, 0]), U256::from(&[0x10u8, 0x10][..]));
assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from(&[0x12u8, 0xf0][..]));
assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from(&[0, 0x12u8, 0xf0][..]));
assert_eq!(U256([0x12f0, 0 , 0, 0]), U256::from(&[0, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..]));
assert_eq!(U256([0x12f0, 1 , 0, 0]), U256::from(&[1, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..]));
assert_eq!(U256([0x12f0, 1 , 0x0910203040506077, 0x8090a0b0c0d0e0f0]), U256::from(&[
0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
0x09, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x77,
0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..]));
assert_eq!(U256([0x00192437100019fa, 0x243710, 0, 0]), U256::from(&[
0x24u8, 0x37, 0x10,
0, 0x19, 0x24, 0x37, 0x10, 0, 0x19, 0xfa][..]));
// test initializtion from string
let sa = U256::from_str("0a").unwrap();
assert_eq!(e, sa);
assert_eq!(U256([0x1010, 0, 0, 0]), U256::from_str("1010").unwrap());
assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from_str("12f0").unwrap());
assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from_str("12f0").unwrap());
assert_eq!(U256([0x12f0, 0 , 0, 0]), U256::from_str("0000000012f0").unwrap());
assert_eq!(U256([0x12f0, 1 , 0, 0]), U256::from_str("0100000000000012f0").unwrap());
assert_eq!(U256([0x12f0, 1 , 0x0910203040506077, 0x8090a0b0c0d0e0f0]), U256::from_str("8090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0").unwrap());
}
#[test]
pub fn uint256_bits_test() {
assert_eq!(U256::from(0u64).bits(), 0);
assert_eq!(U256::from(255u64).bits(), 8);
assert_eq!(U256::from(256u64).bits(), 9);
assert_eq!(U256::from(300u64).bits(), 9);
assert_eq!(U256::from(60000u64).bits(), 16);
assert_eq!(U256::from(70000u64).bits(), 17);
//// Try to read the following lines out loud quickly
let mut shl = U256::from(70000u64);
shl = shl << 100;
assert_eq!(shl.bits(), 117);
shl = shl << 100;
assert_eq!(shl.bits(), 217);
shl = shl << 100;
assert_eq!(shl.bits(), 0);
//// Bit set check
//// 01010
assert!(!U256::from(10u8).bit(0));
assert!(U256::from(10u8).bit(1));
assert!(!U256::from(10u8).bit(2));
assert!(U256::from(10u8).bit(3));
assert!(!U256::from(10u8).bit(4));
//// byte check
assert_eq!(U256::from(10u8).byte(0), 10);
assert_eq!(U256::from(0xffu64).byte(0), 0xff);
assert_eq!(U256::from(0xffu64).byte(1), 0);
assert_eq!(U256::from(0x01ffu64).byte(0), 0xff);
assert_eq!(U256::from(0x01ffu64).byte(1), 0x1);
assert_eq!(U256([0u64, 0xfc, 0, 0]).byte(8), 0xfc);
assert_eq!(U256([0u64, 0, 0, u64::max_value()]).byte(31), 0xff);
assert_eq!(U256([0u64, 0, 0, (u64::max_value() >> 8) + 1]).byte(31), 0x01);
}
#[test]
pub fn uint256_comp_test() {
let small = U256([10u64, 0, 0, 0]);
let big = U256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
let bigger = U256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
let biggest = U256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]);
assert!(small < big);
assert!(big < bigger);
assert!(bigger < biggest);
assert!(bigger <= biggest);
assert!(biggest <= biggest);
assert!(bigger >= big);
assert!(bigger >= small);
assert!(small <= small);
}
#[test]
pub fn uint256_arithmetic_test() {
let init = U256::from(0xDEADBEEFDEADBEEFu64);
let copy = init;
let add = init + copy;
assert_eq!(add, U256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0]));
// Bitshifts
let shl = add << 88;
assert_eq!(shl, U256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0]));
let shr = shl >> 40;
assert_eq!(shr, U256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0]));
// Increment
let incr = shr + U256::from(1u64);
assert_eq!(incr, U256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0]));
// Subtraction
let sub = incr - init;
assert_eq!(sub, U256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0]));
// Multiplication
let mult = sub.mul_u32(300);
assert_eq!(mult, U256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]));
// Division
assert_eq!(U256::from(105u8) / U256::from(5u8), U256::from(21u8));
let div = mult / U256::from(300u16);
assert_eq!(div, U256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0]));
//// TODO: bit inversion
}
#[test]
pub fn uint256_extreme_bitshift_test() {
//// Shifting a u64 by 64 bits gives an undefined value, so make sure that
//// we're doing the Right Thing here
let init = U256::from(0xDEADBEEFDEADBEEFu64);
assert_eq!(init << 64, U256([0, 0xDEADBEEFDEADBEEF, 0, 0]));
let add = (init << 64) + init;
assert_eq!(add, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add >> 0, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add << 0, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add >> 64, U256([0xDEADBEEFDEADBEEF, 0, 0, 0]));
assert_eq!(add << 64, U256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0]));
}
}

34
src/vector.rs Normal file
View File

@ -0,0 +1,34 @@
use std::ptr;
pub trait InsertSlice<T> {
fn insert_slice(&mut self, index: usize, elements: &[T]);
}
/// based on `insert` function implementation from standard library
impl<T> InsertSlice<T> for Vec<T> {
fn insert_slice(&mut self, index: usize, elements: &[T]) {
let e_len = elements.len();
if e_len == 0 {
return;
}
let len = self.len();
assert!(index <= len);
// space for the new element
self.reserve(e_len);
unsafe {
{
let p = self.as_mut_ptr().offset(index as isize);
let ep = elements.as_ptr().offset(0);
// shift everything by e_len, to make space
ptr::copy(p, p.offset(e_len as isize), len - index);
// write new element
ptr::copy(ep, p, e_len);
}
self.set_len(len + e_len);
}
}
}