Merge pull request #21 from gavofyork/triemut
Repot Trie and split into mutable and immutable variants.
This commit is contained in:
commit
58b68e0aef
@ -55,7 +55,7 @@ fn trie_insertions_six_high(b: &mut Bencher) {
|
||||
b.iter(||{
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
for i in d.iter() {
|
||||
t.insert(&i.0, &i.1);
|
||||
}
|
||||
@ -90,7 +90,7 @@ fn trie_insertions_six_mid(b: &mut Bencher) {
|
||||
b.iter(||{
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
for i in d.iter() {
|
||||
t.insert(&i.0, &i.1);
|
||||
}
|
||||
@ -127,7 +127,7 @@ fn trie_insertions_random_mid(b: &mut Bencher) {
|
||||
b.iter(||{
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
for i in d.iter() {
|
||||
t.insert(&i.0, &i.1);
|
||||
}
|
||||
@ -164,7 +164,7 @@ fn trie_insertions_six_low(b: &mut Bencher) {
|
||||
b.iter(||{
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
for i in d.iter() {
|
||||
t.insert(&i.0, &i.1);
|
||||
}
|
||||
|
12
src/bytes.rs
12
src/bytes.rs
@ -54,8 +54,20 @@ impl<'a> fmt::Debug for PrettySlice<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> fmt::Display for PrettySlice<'a> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
for i in 0..self.0.len() {
|
||||
try!(write!(f, "{:02x}", self.0[i]));
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub trait ToPretty {
|
||||
fn pretty(&self) -> PrettySlice;
|
||||
fn to_hex(&self) -> String {
|
||||
format!("{}", self.pretty())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ToPretty for &'a [u8] {
|
||||
|
@ -8,6 +8,8 @@ pub trait HashDB {
|
||||
/// Get the keys in the database together with number of underlying references.
|
||||
fn keys(&self) -> HashMap<H256, i32>;
|
||||
|
||||
/// Deprecated. use `get`.
|
||||
fn lookup(&self, key: &H256) -> Option<&[u8]>; // TODO: rename to get.
|
||||
/// Look up a given hash into the bytes that hash to it, returning None if the
|
||||
/// hash is not known.
|
||||
///
|
||||
@ -23,8 +25,10 @@ pub trait HashDB {
|
||||
/// assert_eq!(m.lookup(&hash).unwrap(), hello_bytes);
|
||||
/// }
|
||||
/// ```
|
||||
fn lookup(&self, key: &H256) -> Option<&[u8]>;
|
||||
fn get(&self, key: &H256) -> Option<&[u8]> { self.lookup(key) }
|
||||
|
||||
/// Deprecated. Use `contains`.
|
||||
fn exists(&self, key: &H256) -> bool; // TODO: rename to contains.
|
||||
/// Check for the existance of a hash-key.
|
||||
///
|
||||
/// # Examples
|
||||
@ -43,7 +47,7 @@ pub trait HashDB {
|
||||
/// assert!(!m.exists(&key));
|
||||
/// }
|
||||
/// ```
|
||||
fn exists(&self, key: &H256) -> bool;
|
||||
fn contains(&self, key: &H256) -> bool { self.exists(key) }
|
||||
|
||||
/// Insert a datum item into the DB and return the datum's hash for a later lookup. Insertions
|
||||
/// are counted and the equivalent number of `kill()`s must be performed before the data
|
||||
@ -66,6 +70,8 @@ pub trait HashDB {
|
||||
/// Like `insert()` , except you provide the key and the data is all moved.
|
||||
fn emplace(&mut self, key: H256, value: Bytes);
|
||||
|
||||
/// Deprecated - use `remove`.
|
||||
fn kill(&mut self, key: &H256); // TODO: rename to remove.
|
||||
/// Remove a datum previously inserted. Insertions can be "owed" such that the same number of `insert()`s may
|
||||
/// happen without the data being eventually being inserted into the DB.
|
||||
///
|
||||
@ -87,5 +93,5 @@ pub trait HashDB {
|
||||
/// assert_eq!(m.lookup(key).unwrap(), d);
|
||||
/// }
|
||||
/// ```
|
||||
fn kill(&mut self, key: &H256);
|
||||
fn remove(&mut self, key: &H256) { self.kill(key) }
|
||||
}
|
||||
|
@ -30,8 +30,8 @@
|
||||
//! * You want to get view onto rlp-slice.
|
||||
//! * You don't want to decode whole rlp at once.
|
||||
|
||||
pub mod errors;
|
||||
pub mod traits;
|
||||
pub mod rlptraits;
|
||||
pub mod rlperrors;
|
||||
pub mod rlp;
|
||||
pub mod untrusted_rlp;
|
||||
pub mod rlpstream;
|
||||
@ -39,11 +39,15 @@ pub mod rlpstream;
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub use self::errors::DecoderError;
|
||||
pub use self::traits::{Decoder, Decodable, View, Stream, Encodable, Encoder};
|
||||
pub use self::rlperrors::DecoderError;
|
||||
pub use self::rlptraits::{Decoder, Decodable, View, Stream, Encodable, Encoder};
|
||||
pub use self::untrusted_rlp::{UntrustedRlp, UntrustedRlpIterator, PayloadInfo, Prototype};
|
||||
pub use self::rlp::{Rlp, RlpIterator};
|
||||
pub use self::rlpstream::{RlpStream};
|
||||
use super::hash::H256;
|
||||
|
||||
pub const NULL_RLP: [u8; 1] = [0x80; 1];
|
||||
pub const SHA3_NULL_RLP: H256 = H256( [0x56, 0xe8, 0x1f, 0x17, 0x1b, 0xcc, 0x55, 0xa6, 0xff, 0x83, 0x45, 0xe6, 0x92, 0xc0, 0xf8, 0x6e, 0x5b, 0x48, 0xe0, 0x1b, 0x99, 0x6c, 0xad, 0xc0, 0x01, 0x62, 0x2f, 0xb5, 0xe3, 0x63, 0xb4, 0x21] );
|
||||
|
||||
/// Shortcut function to decode trusted rlp
|
||||
///
|
||||
|
76
src/trie/journal.rs
Normal file
76
src/trie/journal.rs
Normal file
@ -0,0 +1,76 @@
|
||||
use sha3::*;
|
||||
use hash::H256;
|
||||
use bytes::*;
|
||||
use rlp::*;
|
||||
use hashdb::*;
|
||||
|
||||
/// Type of operation for the backing database - either a new node or a node deletion.
|
||||
#[derive(Debug)]
|
||||
enum Operation {
|
||||
New(H256, Bytes),
|
||||
Delete(H256),
|
||||
}
|
||||
|
||||
pub struct Score {
|
||||
pub inserts: usize,
|
||||
pub removes: usize,
|
||||
}
|
||||
|
||||
/// A journal of operations on the backing database.
|
||||
#[derive(Debug)]
|
||||
pub struct Journal (Vec<Operation>);
|
||||
|
||||
impl Journal {
|
||||
/// Create a new, empty, object.
|
||||
pub fn new() -> Journal { Journal(vec![]) }
|
||||
|
||||
/// Given the RLP that encodes a node, append a reference to that node `out` and leave `journal`
|
||||
/// such that the reference is valid, once applied.
|
||||
pub fn new_node(&mut self, rlp: Bytes, out: &mut RlpStream) {
|
||||
if rlp.len() >= 32 {
|
||||
let rlp_sha3 = rlp.sha3();
|
||||
|
||||
trace!("new_node: reference node {:?} => {:?}", rlp_sha3, rlp.pretty());
|
||||
out.append(&rlp_sha3);
|
||||
self.0.push(Operation::New(rlp_sha3, rlp));
|
||||
}
|
||||
else {
|
||||
trace!("new_node: inline node {:?}", rlp.pretty());
|
||||
out.append_raw(&rlp, 1);
|
||||
}
|
||||
}
|
||||
|
||||
/// Given the RLP that encodes a now-unused node, leave `journal` in such a state that it is noted.
|
||||
pub fn delete_node_sha3(&mut self, old_sha3: H256) {
|
||||
trace!("delete_node: {:?}", old_sha3);
|
||||
self.0.push(Operation::Delete(old_sha3));
|
||||
}
|
||||
|
||||
/// Register an RLP-encoded node for deletion (given a slice), if it needs to be deleted.
|
||||
pub fn delete_node(&mut self, old: &[u8]) {
|
||||
let r = Rlp::new(old);
|
||||
if r.is_data() && r.size() == 32 {
|
||||
self.delete_node_sha3(r.as_val());
|
||||
}
|
||||
}
|
||||
|
||||
pub fn apply(self, db: &mut HashDB) -> Score {
|
||||
trace!("applying {:?} changes", self.0.len());
|
||||
let mut ret = Score{inserts: 0, removes: 0};
|
||||
for d in self.0.into_iter() {
|
||||
match d {
|
||||
Operation::Delete(h) => {
|
||||
trace!("TrieDBMut::apply --- {:?}", &h);
|
||||
db.remove(&h);
|
||||
ret.removes += 1;
|
||||
},
|
||||
Operation::New(h, d) => {
|
||||
trace!("TrieDBMut::apply +++ {:?} -> {:?}", &h, d.pretty());
|
||||
db.emplace(h, d);
|
||||
ret.inserts += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
ret
|
||||
}
|
||||
}
|
11
src/trie/mod.rs
Normal file
11
src/trie/mod.rs
Normal file
@ -0,0 +1,11 @@
|
||||
pub mod trietraits;
|
||||
pub mod standardmap;
|
||||
pub mod journal;
|
||||
pub mod node;
|
||||
pub mod triedb;
|
||||
pub mod triedbmut;
|
||||
|
||||
pub use self::trietraits::*;
|
||||
pub use self::standardmap::*;
|
||||
pub use self::triedbmut::*;
|
||||
pub use self::triedb::*;
|
121
src/trie/node.rs
Normal file
121
src/trie/node.rs
Normal file
@ -0,0 +1,121 @@
|
||||
use hash::*;
|
||||
use nibbleslice::*;
|
||||
use bytes::*;
|
||||
use rlp::*;
|
||||
use super::journal::*;
|
||||
|
||||
/// Type of node in the trie and essential information thereof.
|
||||
#[derive(Eq, PartialEq, Debug)]
|
||||
pub enum Node<'a> {
|
||||
Empty,
|
||||
Leaf(NibbleSlice<'a>, &'a[u8]),
|
||||
Extension(NibbleSlice<'a>, &'a[u8]),
|
||||
Branch([&'a[u8]; 16], Option<&'a [u8]>)
|
||||
}
|
||||
|
||||
impl<'a> Node<'a> {
|
||||
/// Decode the `node_rlp` and return the Node.
|
||||
pub fn decoded(node_rlp: &'a [u8]) -> Node<'a> {
|
||||
let r = Rlp::new(node_rlp);
|
||||
match r.prototype() {
|
||||
// either leaf or extension - decode first item with NibbleSlice::???
|
||||
// and use is_leaf return to figure out which.
|
||||
// if leaf, second item is a value (is_data())
|
||||
// if extension, second item is a node (either SHA3 to be looked up and
|
||||
// fed back into this function or inline RLP which can be fed back into this function).
|
||||
Prototype::List(2) => match NibbleSlice::from_encoded(r.at(0).data()) {
|
||||
(slice, true) => Node::Leaf(slice, r.at(1).data()),
|
||||
(slice, false) => Node::Extension(slice, r.at(1).raw()),
|
||||
},
|
||||
// branch - first 16 are nodes, 17th is a value (or empty).
|
||||
Prototype::List(17) => {
|
||||
let mut nodes: [&'a [u8]; 16] = unsafe { ::std::mem::uninitialized() };
|
||||
for i in 0..16 {
|
||||
nodes[i] = r.at(i).raw();
|
||||
}
|
||||
Node::Branch(nodes, if r.at(16).is_empty() { None } else { Some(r.at(16).data()) })
|
||||
},
|
||||
// an empty branch index.
|
||||
Prototype::Data(0) => Node::Empty,
|
||||
// something went wrong.
|
||||
_ => panic!("Rlp is not valid.")
|
||||
}
|
||||
}
|
||||
|
||||
/// Encode the node into RLP.
|
||||
///
|
||||
/// Will always return the direct node RLP even if it's 32 or more bytes. To get the
|
||||
/// RLP which would be valid for using in another node, use `encoded_and_added()`.
|
||||
pub fn encoded(&self) -> Bytes {
|
||||
match *self {
|
||||
Node::Leaf(ref slice, ref value) => {
|
||||
let mut stream = RlpStream::new_list(2);
|
||||
stream.append(&slice.encoded(true));
|
||||
stream.append(value);
|
||||
stream.out()
|
||||
},
|
||||
Node::Extension(ref slice, ref raw_rlp) => {
|
||||
let mut stream = RlpStream::new_list(2);
|
||||
stream.append(&slice.encoded(false));
|
||||
stream.append_raw(raw_rlp, 1);
|
||||
stream.out()
|
||||
},
|
||||
Node::Branch(ref nodes, ref value) => {
|
||||
let mut stream = RlpStream::new_list(17);
|
||||
for i in 0..16 {
|
||||
stream.append_raw(nodes[i], 1);
|
||||
}
|
||||
match *value {
|
||||
Some(n) => { stream.append(&n); },
|
||||
None => { stream.append_empty_data(); },
|
||||
}
|
||||
stream.out()
|
||||
},
|
||||
Node::Empty => {
|
||||
let mut stream = RlpStream::new();
|
||||
stream.append_empty_data();
|
||||
stream.out()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Encode the node, adding it to `journal` if necessary and return the RLP valid for
|
||||
/// insertion into a parent node.
|
||||
pub fn encoded_and_added(&self, journal: &mut Journal) -> Bytes {
|
||||
let mut stream = RlpStream::new();
|
||||
match *self {
|
||||
Node::Leaf(ref slice, ref value) => {
|
||||
stream.append_list(2);
|
||||
stream.append(&slice.encoded(true));
|
||||
stream.append(value);
|
||||
},
|
||||
Node::Extension(ref slice, ref raw_rlp) => {
|
||||
stream.append_list(2);
|
||||
stream.append(&slice.encoded(false));
|
||||
stream.append_raw(raw_rlp, 1);
|
||||
},
|
||||
Node::Branch(ref nodes, ref value) => {
|
||||
stream.append_list(17);
|
||||
for i in 0..16 {
|
||||
stream.append_raw(nodes[i], 1);
|
||||
}
|
||||
match *value {
|
||||
Some(n) => { stream.append(&n); },
|
||||
None => { stream.append_empty_data(); },
|
||||
}
|
||||
},
|
||||
Node::Empty => {
|
||||
stream.append_empty_data();
|
||||
}
|
||||
}
|
||||
let node = stream.out();
|
||||
match node.len() {
|
||||
0 ... 31 => node,
|
||||
_ => {
|
||||
let mut stream = RlpStream::new();
|
||||
journal.new_node(node, &mut stream);
|
||||
stream.out()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
75
src/trie/standardmap.rs
Normal file
75
src/trie/standardmap.rs
Normal file
@ -0,0 +1,75 @@
|
||||
//! Key-value datastore with a modified Merkle tree.
|
||||
extern crate rand;
|
||||
|
||||
use bytes::*;
|
||||
use sha3::*;
|
||||
use hash::*;
|
||||
|
||||
/// Alphabet to use when creating words for insertion into tries.
|
||||
pub enum Alphabet {
|
||||
All,
|
||||
Low,
|
||||
Mid,
|
||||
Custom(Bytes),
|
||||
}
|
||||
|
||||
/// Standard test map for profiling tries.
|
||||
pub struct StandardMap {
|
||||
alphabet: Alphabet,
|
||||
min_key: usize,
|
||||
journal_key: usize,
|
||||
count: usize,
|
||||
}
|
||||
|
||||
impl StandardMap {
|
||||
/// Get a bunch of random bytes, at least `min_count` bytes, at most `min_count` + `journal_count` bytes.
|
||||
/// `seed` is mutated pseudoramdonly and used.
|
||||
fn random_bytes(min_count: usize, journal_count: usize, seed: &mut H256) -> Vec<u8> {
|
||||
assert!(min_count + journal_count <= 32);
|
||||
*seed = seed.sha3();
|
||||
let r = min_count + (seed.bytes()[31] as usize % (journal_count + 1));
|
||||
seed.bytes()[0..r].to_vec()
|
||||
}
|
||||
|
||||
/// Get a random value. Equal chance of being 1 byte as of 32. `seed` is mutated pseudoramdonly and used.
|
||||
fn random_value(seed: &mut H256) -> Bytes {
|
||||
*seed = seed.sha3();
|
||||
match seed.bytes()[0] % 2 {
|
||||
1 => vec![seed.bytes()[31];1],
|
||||
_ => seed.bytes().to_vec(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get a random word of, at least `min_count` bytes, at most `min_count` + `journal_count` bytes.
|
||||
/// Each byte is an item from `alphabet`. `seed` is mutated pseudoramdonly and used.
|
||||
fn random_word(alphabet: &[u8], min_count: usize, journal_count: usize, seed: &mut H256) -> Vec<u8> {
|
||||
assert!(min_count + journal_count <= 32);
|
||||
*seed = seed.sha3();
|
||||
let r = min_count + (seed.bytes()[31] as usize % (journal_count + 1));
|
||||
let mut ret: Vec<u8> = Vec::with_capacity(r);
|
||||
for i in 0..r {
|
||||
ret.push(alphabet[seed.bytes()[i] as usize % alphabet.len()]);
|
||||
}
|
||||
ret
|
||||
}
|
||||
|
||||
/// Create the standard map (set of keys and values) for the object's fields.
|
||||
pub fn make(&self) -> Vec<(Bytes, Bytes)> {
|
||||
let low = b"abcdef";
|
||||
let mid = b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_";
|
||||
|
||||
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
|
||||
let mut seed = H256::new();
|
||||
for _ in 0..self.count {
|
||||
let k = match self.alphabet {
|
||||
Alphabet::All => Self::random_bytes(self.min_key, self.journal_key, &mut seed),
|
||||
Alphabet::Low => Self::random_word(low, self.min_key, self.journal_key, &mut seed),
|
||||
Alphabet::Mid => Self::random_word(mid, self.min_key, self.journal_key, &mut seed),
|
||||
Alphabet::Custom(ref a) => Self::random_word(&a, self.min_key, self.journal_key, &mut seed),
|
||||
};
|
||||
let v = Self::random_value(&mut seed);
|
||||
d.push((k, v))
|
||||
}
|
||||
d
|
||||
}
|
||||
}
|
220
src/trie/triedb.rs
Normal file
220
src/trie/triedb.rs
Normal file
@ -0,0 +1,220 @@
|
||||
use std::fmt;
|
||||
use hashdb::*;
|
||||
use hash::*;
|
||||
use nibbleslice::*;
|
||||
use bytes::*;
|
||||
use rlp::*;
|
||||
use std::collections::HashMap;
|
||||
use super::trietraits::*;
|
||||
use super::node::*;
|
||||
|
||||
/// A `Trie` implementation using a generic `HashDB` backing database.
|
||||
///
|
||||
/// Use it as a `Trie` trait object. You can use `db()` to get the backing database object, `keys`
|
||||
/// to get the keys belonging to the trie in the backing database, and `db_items_remaining()` to get
|
||||
/// which items in the backing database do not belong to this trie. If this is the only trie in the
|
||||
/// backing database, then `db_items_remaining()` should be empty.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// extern crate ethcore_util as util;
|
||||
/// use util::trie::*;
|
||||
/// use util::hashdb::*;
|
||||
/// use util::memorydb::*;
|
||||
/// use util::hash::*;
|
||||
/// use util::rlp::*;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let mut memdb = MemoryDB::new();
|
||||
/// let mut root = H256::new();
|
||||
/// TrieDBMut::new(&mut memdb, &mut root).insert(b"foo", b"bar");
|
||||
/// let t = TrieDB::new(&memdb, &root);
|
||||
/// assert!(t.contains(b"foo"));
|
||||
/// assert_eq!(t.get(b"foo").unwrap(), b"bar");
|
||||
/// assert!(t.db_items_remaining().is_empty());
|
||||
/// }
|
||||
/// ```
|
||||
pub struct TrieDB<'db> {
|
||||
db: &'db HashDB,
|
||||
root: &'db H256,
|
||||
pub hash_count: usize,
|
||||
}
|
||||
|
||||
impl<'db> TrieDB<'db> {
|
||||
/// Create a new trie with the backing database `db` and `root`
|
||||
/// Panics, if `root` does not exist
|
||||
pub fn new(db: &'db HashDB, root: &'db H256) -> Self {
|
||||
assert!(db.exists(root));
|
||||
TrieDB {
|
||||
db: db,
|
||||
root: root,
|
||||
hash_count: 0
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the backing database.
|
||||
pub fn db(&'db self) -> &'db HashDB {
|
||||
self.db
|
||||
}
|
||||
|
||||
/// Determine all the keys in the backing database that belong to the trie.
|
||||
pub fn keys(&self) -> Vec<H256> {
|
||||
let mut ret: Vec<H256> = Vec::new();
|
||||
ret.push(self.root.clone());
|
||||
self.accumulate_keys(self.root_node(), &mut ret);
|
||||
ret
|
||||
}
|
||||
|
||||
/// Convert a vector of hashes to a hashmap of hash to occurances.
|
||||
pub fn to_map(hashes: Vec<H256>) -> HashMap<H256, u32> {
|
||||
let mut r: HashMap<H256, u32> = HashMap::new();
|
||||
for h in hashes.into_iter() {
|
||||
let c = *r.get(&h).unwrap_or(&0);
|
||||
r.insert(h, c + 1);
|
||||
}
|
||||
r
|
||||
}
|
||||
|
||||
/// Determine occurances of items in the backing database which are not related to this
|
||||
/// trie.
|
||||
pub fn db_items_remaining(&self) -> HashMap<H256, i32> {
|
||||
let mut ret = self.db.keys();
|
||||
for (k, v) in Self::to_map(self.keys()).into_iter() {
|
||||
let keycount = *ret.get(&k).unwrap_or(&0);
|
||||
match keycount == v as i32 {
|
||||
true => ret.remove(&k),
|
||||
_ => ret.insert(k, keycount - v as i32),
|
||||
};
|
||||
}
|
||||
ret
|
||||
}
|
||||
|
||||
/// Recursion helper for `keys`.
|
||||
fn accumulate_keys(&self, node: Node, acc: &mut Vec<H256>) {
|
||||
let mut handle_payload = |payload| {
|
||||
let p = Rlp::new(payload);
|
||||
if p.is_data() && p.size() == 32 {
|
||||
acc.push(p.as_val());
|
||||
}
|
||||
|
||||
self.accumulate_keys(self.get_node(payload), acc);
|
||||
};
|
||||
|
||||
match node {
|
||||
Node::Extension(_, payload) => handle_payload(payload),
|
||||
Node::Branch(payloads, _) => for payload in payloads.iter() { handle_payload(payload) },
|
||||
_ => {},
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the root node's RLP.
|
||||
fn root_node(&self) -> Node {
|
||||
Node::decoded(self.db.lookup(&self.root).expect("Trie root not found!"))
|
||||
}
|
||||
|
||||
/// Get the root node as a `Node`.
|
||||
fn get_node<'a>(&'a self, node: &'a [u8]) -> Node {
|
||||
Node::decoded(self.get_raw_or_lookup(node))
|
||||
}
|
||||
|
||||
/// Indentation helper for `formal_all`.
|
||||
fn fmt_indent(&self, f: &mut fmt::Formatter, size: usize) -> fmt::Result {
|
||||
for _ in 0..size {
|
||||
try!(write!(f, " "));
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Recursion helper for implementation of formatting trait.
|
||||
fn fmt_all(&self, node: Node, f: &mut fmt::Formatter, deepness: usize) -> fmt::Result {
|
||||
match node {
|
||||
Node::Leaf(slice, value) => try!(writeln!(f, "'{:?}: {:?}.", slice, value.pretty())),
|
||||
Node::Extension(ref slice, ref item) => {
|
||||
try!(write!(f, "'{:?} ", slice));
|
||||
try!(self.fmt_all(self.get_node(item), f, deepness));
|
||||
},
|
||||
Node::Branch(ref nodes, ref value) => {
|
||||
try!(writeln!(f, ""));
|
||||
match value {
|
||||
&Some(v) => {
|
||||
try!(self.fmt_indent(f, deepness + 1));
|
||||
try!(writeln!(f, "=: {:?}", v.pretty()))
|
||||
},
|
||||
&None => {}
|
||||
}
|
||||
for i in 0..16 {
|
||||
match self.get_node(nodes[i]) {
|
||||
Node::Empty => {},
|
||||
n => {
|
||||
try!(self.fmt_indent(f, deepness + 1));
|
||||
try!(write!(f, "'{:x} ", i));
|
||||
try!(self.fmt_all(n, f, deepness + 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
// empty
|
||||
Node::Empty => {
|
||||
try!(writeln!(f, "<empty>"));
|
||||
}
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Return optional data for a key given as a `NibbleSlice`. Returns `None` if no data exists.
|
||||
fn do_lookup<'a, 'key>(&'a self, key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key {
|
||||
let root_rlp = self.db.lookup(&self.root).expect("Trie root not found!");
|
||||
self.get_from_node(&root_rlp, key)
|
||||
}
|
||||
|
||||
/// Recursible function to retrieve the value given a `node` and a partial `key`. `None` if no
|
||||
/// value exists for the key.
|
||||
///
|
||||
/// Note: Not a public API; use Trie trait functions.
|
||||
fn get_from_node<'a, 'key>(&'a self, node: &'a [u8], key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key {
|
||||
match Node::decoded(node) {
|
||||
Node::Leaf(ref slice, ref value) if key == slice => Some(value),
|
||||
Node::Extension(ref slice, ref item) if key.starts_with(slice) => {
|
||||
self.get_from_node(self.get_raw_or_lookup(item), &key.mid(slice.len()))
|
||||
},
|
||||
Node::Branch(ref nodes, value) => match key.is_empty() {
|
||||
true => value,
|
||||
false => self.get_from_node(self.get_raw_or_lookup(nodes[key.at(0) as usize]), &key.mid(1))
|
||||
},
|
||||
_ => None
|
||||
}
|
||||
}
|
||||
|
||||
/// Given some node-describing data `node`, return the actual node RLP.
|
||||
/// This could be a simple identity operation in the case that the node is sufficiently small, but
|
||||
/// may require a database lookup.
|
||||
fn get_raw_or_lookup<'a>(&'a self, node: &'a [u8]) -> &'a [u8] {
|
||||
// check if its sha3 + len
|
||||
let r = Rlp::new(node);
|
||||
match r.is_data() && r.size() == 32 {
|
||||
true => self.db.lookup(&r.as_val::<H256>()).expect("Not found!"),
|
||||
false => node
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> Trie for TrieDB<'db> {
|
||||
fn root(&self) -> &H256 { &self.root }
|
||||
|
||||
fn contains(&self, key: &[u8]) -> bool {
|
||||
self.get(key).is_some()
|
||||
}
|
||||
|
||||
fn get<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key {
|
||||
self.do_lookup(&NibbleSlice::new(key))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> fmt::Debug for TrieDB<'db> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
try!(writeln!(f, "c={:?} [", self.hash_count));
|
||||
let root_rlp = self.db.lookup(&self.root).expect("Trie root not found!");
|
||||
try!(self.fmt_all(Node::decoded(root_rlp), f, 0));
|
||||
writeln!(f, "]")
|
||||
}
|
||||
}
|
@ -1,272 +1,24 @@
|
||||
//! Key-value datastore with a modified Merkle tree.
|
||||
extern crate rand;
|
||||
|
||||
use std::fmt;
|
||||
use sha3::*;
|
||||
use hashdb::*;
|
||||
use hash::*;
|
||||
use nibbleslice::*;
|
||||
use bytes::*;
|
||||
use rlp::*;
|
||||
use std::collections::HashMap;
|
||||
use super::node::*;
|
||||
use super::journal::*;
|
||||
use super::trietraits::*;
|
||||
|
||||
//use log::*;
|
||||
|
||||
pub const NULL_RLP: [u8; 1] = [0x80; 1];
|
||||
pub const SHA3_NULL_RLP: H256 = H256( [0x56, 0xe8, 0x1f, 0x17, 0x1b, 0xcc, 0x55, 0xa6, 0xff, 0x83, 0x45, 0xe6, 0x92, 0xc0, 0xf8, 0x6e, 0x5b, 0x48, 0xe0, 0x1b, 0x99, 0x6c, 0xad, 0xc0, 0x01, 0x62, 0x2f, 0xb5, 0xe3, 0x63, 0xb4, 0x21] );
|
||||
|
||||
/// A key-value datastore implemented as a database-backed modified Merkle tree.
|
||||
pub trait Trie {
|
||||
/// Return the root of the trie.
|
||||
fn root(&self) -> &H256;
|
||||
|
||||
/// Is the trie empty?
|
||||
fn is_empty(&self) -> bool { *self.root() == SHA3_NULL_RLP }
|
||||
|
||||
/// Does the trie contain a given key?
|
||||
fn contains(&self, key: &[u8]) -> bool;
|
||||
|
||||
/// What is the value of the given key in this trie?
|
||||
fn at<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key;
|
||||
|
||||
/// Insert a `key`/`value` pair into the trie. An `empty` value is equivalent to removing
|
||||
/// `key` from the trie.
|
||||
fn insert(&mut self, key: &[u8], value: &[u8]);
|
||||
|
||||
/// Remove a `key` from the trie. Equivalent to making it equal to the empty
|
||||
/// value.
|
||||
fn remove(&mut self, key: &[u8]);
|
||||
pub struct TrieDBMut<'db> {
|
||||
db: &'db mut HashDB,
|
||||
root: &'db mut H256,
|
||||
pub hash_count: usize,
|
||||
}
|
||||
|
||||
/// Alphabet to use when creating words for insertion into tries.
|
||||
pub enum Alphabet {
|
||||
All,
|
||||
Low,
|
||||
Mid,
|
||||
Custom(Bytes),
|
||||
}
|
||||
|
||||
/// Standard test map for profiling tries.
|
||||
pub struct StandardMap {
|
||||
alphabet: Alphabet,
|
||||
min_key: usize,
|
||||
journal_key: usize,
|
||||
count: usize,
|
||||
}
|
||||
|
||||
impl StandardMap {
|
||||
/// Get a bunch of random bytes, at least `min_count` bytes, at most `min_count` + `journal_count` bytes.
|
||||
/// `seed` is mutated pseudoramdonly and used.
|
||||
fn random_bytes(min_count: usize, journal_count: usize, seed: &mut H256) -> Vec<u8> {
|
||||
assert!(min_count + journal_count <= 32);
|
||||
*seed = seed.sha3();
|
||||
let r = min_count + (seed.bytes()[31] as usize % (journal_count + 1));
|
||||
seed.bytes()[0..r].to_vec()
|
||||
}
|
||||
|
||||
/// Get a random value. Equal chance of being 1 byte as of 32. `seed` is mutated pseudoramdonly and used.
|
||||
fn random_value(seed: &mut H256) -> Bytes {
|
||||
*seed = seed.sha3();
|
||||
match seed.bytes()[0] % 2 {
|
||||
1 => vec![seed.bytes()[31];1],
|
||||
_ => seed.bytes().to_vec(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get a random word of, at least `min_count` bytes, at most `min_count` + `journal_count` bytes.
|
||||
/// Each byte is an item from `alphabet`. `seed` is mutated pseudoramdonly and used.
|
||||
fn random_word(alphabet: &[u8], min_count: usize, journal_count: usize, seed: &mut H256) -> Vec<u8> {
|
||||
assert!(min_count + journal_count <= 32);
|
||||
*seed = seed.sha3();
|
||||
let r = min_count + (seed.bytes()[31] as usize % (journal_count + 1));
|
||||
let mut ret: Vec<u8> = Vec::with_capacity(r);
|
||||
for i in 0..r {
|
||||
ret.push(alphabet[seed.bytes()[i] as usize % alphabet.len()]);
|
||||
}
|
||||
ret
|
||||
}
|
||||
|
||||
/// Create the standard map (set of keys and values) for the object's fields.
|
||||
pub fn make(&self) -> Vec<(Bytes, Bytes)> {
|
||||
let low = b"abcdef";
|
||||
let mid = b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_";
|
||||
|
||||
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
|
||||
let mut seed = H256::new();
|
||||
for _ in 0..self.count {
|
||||
let k = match self.alphabet {
|
||||
Alphabet::All => Self::random_bytes(self.min_key, self.journal_key, &mut seed),
|
||||
Alphabet::Low => Self::random_word(low, self.min_key, self.journal_key, &mut seed),
|
||||
Alphabet::Mid => Self::random_word(mid, self.min_key, self.journal_key, &mut seed),
|
||||
Alphabet::Custom(ref a) => Self::random_word(&a, self.min_key, self.journal_key, &mut seed),
|
||||
};
|
||||
let v = Self::random_value(&mut seed);
|
||||
d.push((k, v))
|
||||
}
|
||||
d
|
||||
}
|
||||
}
|
||||
|
||||
/// Type of node in the trie and essential information thereof.
|
||||
#[derive(Eq, PartialEq, Debug)]
|
||||
pub enum Node<'a> {
|
||||
Empty,
|
||||
Leaf(NibbleSlice<'a>, &'a[u8]),
|
||||
Extension(NibbleSlice<'a>, &'a[u8]),
|
||||
Branch([&'a[u8]; 16], Option<&'a [u8]>)
|
||||
}
|
||||
|
||||
/// Type of operation for the backing database - either a new node or a node deletion.
|
||||
#[derive(Debug)]
|
||||
enum Operation {
|
||||
New(H256, Bytes),
|
||||
Delete(H256),
|
||||
}
|
||||
|
||||
/// A journal of operations on the backing database.
|
||||
#[derive(Debug)]
|
||||
struct Journal (Vec<Operation>);
|
||||
|
||||
impl Journal {
|
||||
/// Create a new, empty, object.
|
||||
fn new() -> Journal { Journal(vec![]) }
|
||||
|
||||
/// Given the RLP that encodes a node, append a reference to that node `out` and leave `journal`
|
||||
/// such that the reference is valid, once applied.
|
||||
fn new_node(&mut self, rlp: Bytes, out: &mut RlpStream) {
|
||||
if rlp.len() >= 32 {
|
||||
let rlp_sha3 = rlp.sha3();
|
||||
|
||||
trace!("new_node: reference node {:?} => {:?}", rlp_sha3, rlp.pretty());
|
||||
out.append(&rlp_sha3);
|
||||
self.0.push(Operation::New(rlp_sha3, rlp));
|
||||
}
|
||||
else {
|
||||
trace!("new_node: inline node {:?}", rlp.pretty());
|
||||
out.append_raw(&rlp, 1);
|
||||
}
|
||||
}
|
||||
|
||||
/// Given the RLP that encodes a now-unused node, leave `journal` in such a state that it is noted.
|
||||
fn delete_node_sha3(&mut self, old_sha3: H256) {
|
||||
trace!("delete_node: {:?}", old_sha3);
|
||||
self.0.push(Operation::Delete(old_sha3));
|
||||
}
|
||||
|
||||
/// Register an RLP-encoded node for deletion (given a slice), if it needs to be deleted.
|
||||
fn delete_node(&mut self, old: &[u8]) {
|
||||
let r = Rlp::new(old);
|
||||
if r.is_data() && r.size() == 32 {
|
||||
self.delete_node_sha3(r.as_val());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl <'a>Node<'a> {
|
||||
/// Decode the `node_rlp` and return the Node.
|
||||
fn decoded(node_rlp: &'a [u8]) -> Node<'a> {
|
||||
let r = Rlp::new(node_rlp);
|
||||
match r.prototype() {
|
||||
// either leaf or extension - decode first item with NibbleSlice::???
|
||||
// and use is_leaf return to figure out which.
|
||||
// if leaf, second item is a value (is_data())
|
||||
// if extension, second item is a node (either SHA3 to be looked up and
|
||||
// fed back into this function or inline RLP which can be fed back into this function).
|
||||
Prototype::List(2) => match NibbleSlice::from_encoded(r.at(0).data()) {
|
||||
(slice, true) => Node::Leaf(slice, r.at(1).data()),
|
||||
(slice, false) => Node::Extension(slice, r.at(1).raw()),
|
||||
},
|
||||
// branch - first 16 are nodes, 17th is a value (or empty).
|
||||
Prototype::List(17) => {
|
||||
let mut nodes: [&'a [u8]; 16] = unsafe { ::std::mem::uninitialized() };
|
||||
for i in 0..16 {
|
||||
nodes[i] = r.at(i).raw();
|
||||
}
|
||||
Node::Branch(nodes, if r.at(16).is_empty() { None } else { Some(r.at(16).data()) })
|
||||
},
|
||||
// an empty branch index.
|
||||
Prototype::Data(0) => Node::Empty,
|
||||
// something went wrong.
|
||||
_ => panic!("Rlp is not valid.")
|
||||
}
|
||||
}
|
||||
|
||||
/// Encode the node into RLP.
|
||||
///
|
||||
/// Will always return the direct node RLP even if it's 32 or more bytes. To get the
|
||||
/// RLP which would be valid for using in another node, use `encoded_and_added()`.
|
||||
fn encoded(&self) -> Bytes {
|
||||
match *self {
|
||||
Node::Leaf(ref slice, ref value) => {
|
||||
let mut stream = RlpStream::new_list(2);
|
||||
stream.append(&slice.encoded(true));
|
||||
stream.append(value);
|
||||
stream.out()
|
||||
},
|
||||
Node::Extension(ref slice, ref raw_rlp) => {
|
||||
let mut stream = RlpStream::new_list(2);
|
||||
stream.append(&slice.encoded(false));
|
||||
stream.append_raw(raw_rlp, 1);
|
||||
stream.out()
|
||||
},
|
||||
Node::Branch(ref nodes, ref value) => {
|
||||
let mut stream = RlpStream::new_list(17);
|
||||
for i in 0..16 {
|
||||
stream.append_raw(nodes[i], 1);
|
||||
}
|
||||
match *value {
|
||||
Some(n) => { stream.append(&n); },
|
||||
None => { stream.append_empty_data(); },
|
||||
}
|
||||
stream.out()
|
||||
},
|
||||
Node::Empty => {
|
||||
let mut stream = RlpStream::new();
|
||||
stream.append_empty_data();
|
||||
stream.out()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Encode the node, adding it to `journal` if necessary and return the RLP valid for
|
||||
/// insertion into a parent node.
|
||||
fn encoded_and_added(&self, journal: &mut Journal) -> Bytes {
|
||||
let mut stream = RlpStream::new();
|
||||
match *self {
|
||||
Node::Leaf(ref slice, ref value) => {
|
||||
stream.append_list(2);
|
||||
stream.append(&slice.encoded(true));
|
||||
stream.append(value);
|
||||
},
|
||||
Node::Extension(ref slice, ref raw_rlp) => {
|
||||
stream.append_list(2);
|
||||
stream.append(&slice.encoded(false));
|
||||
stream.append_raw(raw_rlp, 1);
|
||||
},
|
||||
Node::Branch(ref nodes, ref value) => {
|
||||
stream.append_list(17);
|
||||
for i in 0..16 {
|
||||
stream.append_raw(nodes[i], 1);
|
||||
}
|
||||
match *value {
|
||||
Some(n) => { stream.append(&n); },
|
||||
None => { stream.append_empty_data(); },
|
||||
}
|
||||
},
|
||||
Node::Empty => {
|
||||
stream.append_empty_data();
|
||||
}
|
||||
}
|
||||
let node = stream.out();
|
||||
match node.len() {
|
||||
0 ... 31 => node,
|
||||
_ => {
|
||||
let mut stream = RlpStream::new();
|
||||
journal.new_node(node, &mut stream);
|
||||
stream.out()
|
||||
}
|
||||
}
|
||||
}
|
||||
/// Option-like type allowing either a Node object passthrough or Bytes in the case of data alteration.
|
||||
enum MaybeChanged<'a> {
|
||||
Same(Node<'a>),
|
||||
Changed(Bytes),
|
||||
}
|
||||
|
||||
/// A `Trie` implementation using a generic `HashDB` backing database.
|
||||
@ -283,40 +35,29 @@ impl <'a>Node<'a> {
|
||||
/// use util::hashdb::*;
|
||||
/// use util::memorydb::*;
|
||||
/// use util::hash::*;
|
||||
/// use util::rlp::*;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let mut memdb = MemoryDB::new();
|
||||
/// let mut root = H256::new();
|
||||
/// let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
/// let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
/// assert!(t.is_empty());
|
||||
/// assert_eq!(*t.root(), SHA3_NULL_RLP);
|
||||
/// t.insert(b"foo", b"bar");
|
||||
/// assert!(t.contains(b"foo"));
|
||||
/// assert_eq!(t.at(b"foo").unwrap(), b"bar");
|
||||
/// assert_eq!(t.get(b"foo").unwrap(), b"bar");
|
||||
/// assert!(t.db_items_remaining().is_empty());
|
||||
/// t.remove(b"foo");
|
||||
/// assert!(!t.contains(b"foo"));
|
||||
/// assert!(t.db_items_remaining().is_empty());
|
||||
/// }
|
||||
/// ```
|
||||
pub struct TrieDB<'db> {
|
||||
db: &'db mut HashDB,
|
||||
root: &'db mut H256,
|
||||
pub hash_count: usize,
|
||||
}
|
||||
|
||||
/// Option-like type allowing either a Node object passthrough or Bytes in the case of data alteration.
|
||||
enum MaybeChanged<'a> {
|
||||
Same(Node<'a>),
|
||||
Changed(Bytes),
|
||||
}
|
||||
|
||||
impl<'db> TrieDB<'db> {
|
||||
impl<'db> TrieDBMut<'db> {
|
||||
/// Create a new trie with the backing database `db` and empty `root`
|
||||
/// Initialise to the state entailed by the genesis block.
|
||||
/// This guarantees the trie is built correctly.
|
||||
pub fn new(db: &'db mut HashDB, root: &'db mut H256) -> Self {
|
||||
let mut r = TrieDB{
|
||||
let mut r = TrieDBMut{
|
||||
db: db,
|
||||
root: root,
|
||||
hash_count: 0
|
||||
@ -331,7 +72,7 @@ impl<'db> TrieDB<'db> {
|
||||
/// Panics, if `root` does not exist
|
||||
pub fn new_existing(db: &'db mut HashDB, root: &'db mut H256) -> Self {
|
||||
assert!(db.exists(root));
|
||||
TrieDB {
|
||||
TrieDBMut {
|
||||
db: db,
|
||||
root: root,
|
||||
hash_count: 0
|
||||
@ -386,20 +127,7 @@ impl<'db> TrieDB<'db> {
|
||||
|
||||
/// Apply the items in `journal` into the backing database.
|
||||
fn apply(&mut self, journal: Journal) {
|
||||
trace!("applying {:?} changes", journal.0.len());
|
||||
for d in journal.0.into_iter() {
|
||||
match d {
|
||||
Operation::Delete(h) => {
|
||||
trace!("TrieDB::apply --- {:?}", &h);
|
||||
self.db.kill(&h);
|
||||
},
|
||||
Operation::New(h, d) => {
|
||||
trace!("TrieDB::apply +++ {:?} -> {:?}", &h, d.pretty());
|
||||
self.db.emplace(h, d);
|
||||
self.hash_count += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
self.hash_count += journal.apply(self.db).inserts;
|
||||
}
|
||||
|
||||
/// Recursion helper for `keys`.
|
||||
@ -475,7 +203,7 @@ impl<'db> TrieDB<'db> {
|
||||
}
|
||||
|
||||
/// Return optional data for a key given as a `NibbleSlice`. Returns `None` if no data exists.
|
||||
fn get<'a, 'key>(&'a self, key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key {
|
||||
fn do_lookup<'a, 'key>(&'a self, key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key {
|
||||
let root_rlp = self.db.lookup(&self.root).expect("Trie root not found!");
|
||||
self.get_from_node(&root_rlp, key)
|
||||
}
|
||||
@ -892,17 +620,19 @@ impl<'db> TrieDB<'db> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> Trie for TrieDB<'db> {
|
||||
impl<'db> Trie for TrieDBMut<'db> {
|
||||
fn root(&self) -> &H256 { &self.root }
|
||||
|
||||
fn contains(&self, key: &[u8]) -> bool {
|
||||
self.at(key).is_some()
|
||||
self.get(key).is_some()
|
||||
}
|
||||
|
||||
fn at<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key {
|
||||
self.get(&NibbleSlice::new(key))
|
||||
fn get<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key {
|
||||
self.do_lookup(&NibbleSlice::new(key))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> TrieMut for TrieDBMut<'db> {
|
||||
fn insert(&mut self, key: &[u8], value: &[u8]) {
|
||||
match value.is_empty() {
|
||||
false => self.insert_ns(&NibbleSlice::new(key), value),
|
||||
@ -915,7 +645,7 @@ impl<'db> Trie for TrieDB<'db> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> fmt::Debug for TrieDB<'db> {
|
||||
impl<'db> fmt::Debug for TrieDBMut<'db> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
try!(writeln!(f, "c={:?} [", self.hash_count));
|
||||
let root_rlp = self.db.lookup(&self.root).expect("Trie root not found!");
|
||||
@ -934,11 +664,13 @@ mod tests {
|
||||
use memorydb::*;
|
||||
use super::*;
|
||||
use nibbleslice::*;
|
||||
use rlp;
|
||||
use rlp::*;
|
||||
use env_logger;
|
||||
use rand::random;
|
||||
use std::collections::HashSet;
|
||||
use bytes::{ToPretty,Bytes};
|
||||
use super::super::node::*;
|
||||
use super::super::trietraits::*;
|
||||
|
||||
fn random_key(alphabet: &[u8], min_count: usize, journal_count: usize) -> Vec<u8> {
|
||||
let mut ret: Vec<u8> = Vec::new();
|
||||
@ -951,17 +683,17 @@ mod tests {
|
||||
|
||||
fn random_value_indexed(j: usize) -> Bytes {
|
||||
match random::<usize>() % 2 {
|
||||
0 => rlp::encode(&j),
|
||||
0 => encode(&j),
|
||||
_ => {
|
||||
let mut h = H256::new();
|
||||
h.mut_bytes()[31] = j as u8;
|
||||
rlp::encode(&h)
|
||||
encode(&h)
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn populate_trie<'db>(db: &'db mut HashDB, root: &'db mut H256, v: &Vec<(Vec<u8>, Vec<u8>)>) -> TrieDB<'db> {
|
||||
let mut t = TrieDB::new(db, root);
|
||||
fn populate_trie<'db>(db: &'db mut HashDB, root: &'db mut H256, v: &Vec<(Vec<u8>, Vec<u8>)>) -> TrieDBMut<'db> {
|
||||
let mut t = TrieDBMut::new(db, root);
|
||||
for i in 0..v.len() {
|
||||
let key: &[u8]= &v[i].0;
|
||||
let val: &[u8] = &v[i].1;
|
||||
@ -970,7 +702,7 @@ mod tests {
|
||||
t
|
||||
}
|
||||
|
||||
fn unpopulate_trie<'a, 'db>(t: &mut TrieDB<'db>, v: &Vec<(Vec<u8>, Vec<u8>)>) {
|
||||
fn unpopulate_trie<'a, 'db>(t: &mut TrieDBMut<'db>, v: &Vec<(Vec<u8>, Vec<u8>)>) {
|
||||
for i in v.iter() {
|
||||
let key: &[u8]= &i.0;
|
||||
t.remove(&key);
|
||||
@ -1011,7 +743,7 @@ mod tests {
|
||||
let mut x: Vec<(Vec<u8>, Vec<u8>)> = Vec::new();
|
||||
let mut got: HashSet<Vec<u8>> = HashSet::new();
|
||||
let alphabet = b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_";
|
||||
for j in 0..1000usize {
|
||||
for j in 0..100usize {
|
||||
let key = random_key(alphabet, 5, 0);
|
||||
if !got.contains(&key) {
|
||||
x.push((key.clone(), random_value_indexed(j)));
|
||||
@ -1053,7 +785,7 @@ mod tests {
|
||||
fn init() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let t = TrieDB::new(&mut memdb, &mut root);
|
||||
let t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
assert_eq!(*t.root(), SHA3_NULL_RLP);
|
||||
assert!(t.is_empty());
|
||||
}
|
||||
@ -1062,7 +794,7 @@ mod tests {
|
||||
fn insert_on_empty() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]) ]));
|
||||
}
|
||||
@ -1073,14 +805,14 @@ mod tests {
|
||||
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t1 = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t1 = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t1.insert(&[0x01, 0x23], &big_value.to_vec());
|
||||
t1.insert(&[0x01, 0x34], &big_value.to_vec());
|
||||
trace!("keys remaining {:?}", t1.db_items_remaining());
|
||||
assert!(t1.db_items_remaining().is_empty());
|
||||
let mut memdb2 = MemoryDB::new();
|
||||
let mut root2 = H256::new();
|
||||
let mut t2 = TrieDB::new(&mut memdb2, &mut root2);
|
||||
let mut t2 = TrieDBMut::new(&mut memdb2, &mut root2);
|
||||
t2.insert(&[0x01], &big_value.to_vec());
|
||||
t2.insert(&[0x01, 0x23], &big_value.to_vec());
|
||||
t2.insert(&[0x01, 0x34], &big_value.to_vec());
|
||||
@ -1096,7 +828,7 @@ mod tests {
|
||||
fn insert_replace_root() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
t.insert(&[0x01u8, 0x23], &[0x23u8, 0x45]);
|
||||
assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x23u8, 0x45]) ]));
|
||||
@ -1106,7 +838,7 @@ mod tests {
|
||||
fn insert_make_branch_root() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
t.insert(&[0x11u8, 0x23], &[0x11u8, 0x23]);
|
||||
assert_eq!(*t.root(), trie_root(vec![
|
||||
@ -1119,7 +851,7 @@ mod tests {
|
||||
fn insert_into_branch_root() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]);
|
||||
t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]);
|
||||
@ -1134,7 +866,7 @@ mod tests {
|
||||
fn insert_value_into_branch_root() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
t.insert(&[], &[0x0]);
|
||||
assert_eq!(*t.root(), trie_root(vec![
|
||||
@ -1147,7 +879,7 @@ mod tests {
|
||||
fn insert_split_leaf() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
t.insert(&[0x01u8, 0x34], &[0x01u8, 0x34]);
|
||||
assert_eq!(*t.root(), trie_root(vec![
|
||||
@ -1160,7 +892,7 @@ mod tests {
|
||||
fn insert_split_extenstion() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01, 0x23, 0x45], &[0x01]);
|
||||
t.insert(&[0x01, 0xf3, 0x45], &[0x02]);
|
||||
t.insert(&[0x01, 0xf3, 0xf5], &[0x03]);
|
||||
@ -1178,7 +910,7 @@ mod tests {
|
||||
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], big_value0);
|
||||
t.insert(&[0x11u8, 0x23], big_value1);
|
||||
assert_eq!(*t.root(), trie_root(vec![
|
||||
@ -1193,7 +925,7 @@ mod tests {
|
||||
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], big_value);
|
||||
t.insert(&[0x11u8, 0x23], big_value);
|
||||
assert_eq!(*t.root(), trie_root(vec![
|
||||
@ -1218,7 +950,7 @@ mod tests {
|
||||
fn test_node_extension() {
|
||||
let k = vec![0x00u8, 0x01, 0x23, 0x45];
|
||||
// in extension, value must be valid rlp
|
||||
let v = rlp::encode(&"cat");
|
||||
let v = encode(&"cat");
|
||||
let (slice, is_leaf) = NibbleSlice::from_encoded(&k);
|
||||
assert_eq!(is_leaf, false);
|
||||
let ex = Node::Extension(slice, &v);
|
||||
@ -1239,7 +971,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_node_branch() {
|
||||
let k = rlp::encode(&"cat");
|
||||
let k = encode(&"cat");
|
||||
let mut nodes: [&[u8]; 16] = unsafe { ::std::mem::uninitialized() };
|
||||
for i in 0..16 { nodes[i] = &k; }
|
||||
let v: Vec<u8> = From::from("dog");
|
||||
@ -1253,38 +985,38 @@ mod tests {
|
||||
fn test_at_empty() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let t = TrieDB::new(&mut memdb, &mut root);
|
||||
assert_eq!(t.at(&[0x5]), None);
|
||||
let t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
assert_eq!(t.get(&[0x5]), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_at_one() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
assert_eq!(t.at(&[0x1, 0x23]).unwrap(), &[0x1u8, 0x23]);
|
||||
assert_eq!(t.get(&[0x1, 0x23]).unwrap(), &[0x1u8, 0x23]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_at_three() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]);
|
||||
t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]);
|
||||
assert_eq!(t.at(&[0x01, 0x23]).unwrap(), &[0x01u8, 0x23]);
|
||||
assert_eq!(t.at(&[0xf1, 0x23]).unwrap(), &[0xf1u8, 0x23]);
|
||||
assert_eq!(t.at(&[0x81, 0x23]).unwrap(), &[0x81u8, 0x23]);
|
||||
assert_eq!(t.at(&[0x82, 0x23]), None);
|
||||
assert_eq!(t.get(&[0x01, 0x23]).unwrap(), &[0x01u8, 0x23]);
|
||||
assert_eq!(t.get(&[0xf1, 0x23]).unwrap(), &[0xf1u8, 0x23]);
|
||||
assert_eq!(t.get(&[0x81, 0x23]).unwrap(), &[0x81u8, 0x23]);
|
||||
assert_eq!(t.get(&[0x82, 0x23]), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_print_trie() {
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
t.insert(&[0x02u8, 0x23], &[0x01u8, 0x23]);
|
||||
t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]);
|
||||
@ -1296,12 +1028,12 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn stress() {
|
||||
for _ in 0..500 {
|
||||
for _ in 0..50 {
|
||||
let mut x: Vec<(Vec<u8>, Vec<u8>)> = Vec::new();
|
||||
let alphabet = b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_";
|
||||
for j in 0..4u32 {
|
||||
let key = random_key(alphabet, 5, 1);
|
||||
x.push((key, rlp::encode(&j)));
|
||||
x.push((key, encode(&j)));
|
||||
}
|
||||
let real = trie_root(x.clone());
|
||||
let mut memdb = MemoryDB::new();
|
||||
@ -1339,7 +1071,7 @@ mod tests {
|
||||
|
||||
let mut memdb = MemoryDB::new();
|
||||
let mut root = H256::new();
|
||||
let mut t = TrieDB::new(&mut memdb, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
||||
for operation in input.into_iter() {
|
||||
match operation {
|
||||
trie::Operation::Insert(key, value) => t.insert(&key, &value),
|
||||
@ -1356,12 +1088,12 @@ mod tests {
|
||||
let mut root = H256::new();
|
||||
let mut db = MemoryDB::new();
|
||||
{
|
||||
let mut t = TrieDB::new(&mut db, &mut root);
|
||||
let mut t = TrieDBMut::new(&mut db, &mut root);
|
||||
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
|
||||
}
|
||||
|
||||
{
|
||||
let _ = TrieDB::new_existing(&mut db, &mut root);
|
||||
let _ = TrieDBMut::new_existing(&mut db, &mut root);
|
||||
}
|
||||
}
|
||||
}
|
29
src/trie/trietraits.rs
Normal file
29
src/trie/trietraits.rs
Normal file
@ -0,0 +1,29 @@
|
||||
use hash::H256;
|
||||
use rlp::SHA3_NULL_RLP;
|
||||
|
||||
/// A key-value datastore implemented as a database-backed modified Merkle tree.
|
||||
pub trait Trie {
|
||||
/// Return the root of the trie.
|
||||
fn root(&self) -> &H256;
|
||||
|
||||
/// Is the trie empty?
|
||||
fn is_empty(&self) -> bool { *self.root() == SHA3_NULL_RLP }
|
||||
|
||||
/// Does the trie contain a given key?
|
||||
fn contains(&self, key: &[u8]) -> bool;
|
||||
|
||||
/// What is the value of the given key in this trie?
|
||||
fn get<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key;
|
||||
}
|
||||
|
||||
/// A key-value datastore implemented as a database-backed modified Merkle tree.
|
||||
pub trait TrieMut: Trie {
|
||||
/// Insert a `key`/`value` pair into the trie. An `empty` value is equivalent to removing
|
||||
/// `key` from the trie.
|
||||
fn insert(&mut self, key: &[u8], value: &[u8]);
|
||||
|
||||
/// Remove a `key` from the trie. Equivalent to making it equal to the empty
|
||||
/// value.
|
||||
fn remove(&mut self, key: &[u8]);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user