ethcore: minor optimization of modexp by using LR exponentiation (#9697)
This commit is contained in:
parent
5a2f3e700b
commit
726884afcb
@ -25,12 +25,10 @@ extern crate ethereum_types;
|
|||||||
extern crate parity_bytes as bytes;
|
extern crate parity_bytes as bytes;
|
||||||
extern crate rustc_hex;
|
extern crate rustc_hex;
|
||||||
|
|
||||||
use std::collections::BTreeMap;
|
|
||||||
|
|
||||||
use bytes::BytesRef;
|
use bytes::BytesRef;
|
||||||
use ethcore::builtin::Builtin;
|
use ethcore::builtin::Builtin;
|
||||||
use ethcore::machine::EthereumMachine;
|
use ethcore::machine::EthereumMachine;
|
||||||
use ethereum_types::{Address, U256};
|
use ethereum_types::U256;
|
||||||
use ethcore::ethereum::new_byzantium_test_machine;
|
use ethcore::ethereum::new_byzantium_test_machine;
|
||||||
use rustc_hex::FromHex;
|
use rustc_hex::FromHex;
|
||||||
use self::test::Bencher;
|
use self::test::Bencher;
|
||||||
|
@ -311,35 +311,51 @@ impl Impl for Ripemd160 {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// calculate modexp: exponentiation by squaring. the `num` crate has pow, but not modular.
|
// calculate modexp: left-to-right binary exponentiation to keep multiplicands lower
|
||||||
fn modexp(mut base: BigUint, mut exp: BigUint, modulus: BigUint) -> BigUint {
|
fn modexp(mut base: BigUint, exp: Vec<u8>, modulus: BigUint) -> BigUint {
|
||||||
use num::Integer;
|
const BITS_PER_DIGIT: usize = 8;
|
||||||
|
|
||||||
if modulus <= BigUint::one() { // n^m % 0 || n^m % 1
|
// n^m % 0 || n^m % 1
|
||||||
|
if modulus <= BigUint::one() {
|
||||||
return BigUint::zero();
|
return BigUint::zero();
|
||||||
}
|
}
|
||||||
|
|
||||||
if exp.is_zero() { // n^0 % m
|
// normalize exponent
|
||||||
|
let mut exp = exp.into_iter().skip_while(|d| *d == 0).peekable();
|
||||||
|
|
||||||
|
// n^0 % m
|
||||||
|
if let None = exp.peek() {
|
||||||
return BigUint::one();
|
return BigUint::one();
|
||||||
}
|
}
|
||||||
|
|
||||||
if base.is_zero() { // 0^n % m, n>0
|
// 0^n % m, n > 0
|
||||||
|
if base.is_zero() {
|
||||||
return BigUint::zero();
|
return BigUint::zero();
|
||||||
}
|
}
|
||||||
|
|
||||||
let mut result = BigUint::one();
|
|
||||||
base = base % &modulus;
|
base = base % &modulus;
|
||||||
|
|
||||||
// fast path for base divisible by modulus.
|
// Fast path for base divisible by modulus.
|
||||||
if base.is_zero() { return BigUint::zero() }
|
if base.is_zero() { return BigUint::zero() }
|
||||||
while !exp.is_zero() {
|
|
||||||
if exp.is_odd() {
|
// Left-to-right binary exponentiation (Handbook of Applied Cryptography - Algorithm 14.79).
|
||||||
result = (result * &base) % &modulus;
|
// http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
|
||||||
|
let mut result = BigUint::one();
|
||||||
|
|
||||||
|
for digit in exp {
|
||||||
|
let mut mask = 1 << (BITS_PER_DIGIT - 1);
|
||||||
|
|
||||||
|
for _ in 0..BITS_PER_DIGIT {
|
||||||
|
result = &result * &result % &modulus;
|
||||||
|
|
||||||
|
if digit & mask > 0 {
|
||||||
|
result = result * &base % &modulus;
|
||||||
}
|
}
|
||||||
|
|
||||||
exp = exp >> 1;
|
mask >>= 1;
|
||||||
base = (base.clone() * base) % &modulus;
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
result
|
result
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -366,15 +382,19 @@ impl Impl for ModexpImpl {
|
|||||||
} else {
|
} else {
|
||||||
// read the numbers themselves.
|
// read the numbers themselves.
|
||||||
let mut buf = vec![0; max(mod_len, max(base_len, exp_len))];
|
let mut buf = vec![0; max(mod_len, max(base_len, exp_len))];
|
||||||
let mut read_num = |len| {
|
let mut read_num = |reader: &mut io::Chain<&[u8], io::Repeat>, len: usize| {
|
||||||
reader.read_exact(&mut buf[..len]).expect("reading from zero-extended memory cannot fail; qed");
|
reader.read_exact(&mut buf[..len]).expect("reading from zero-extended memory cannot fail; qed");
|
||||||
BigUint::from_bytes_be(&buf[..len])
|
BigUint::from_bytes_be(&buf[..len])
|
||||||
};
|
};
|
||||||
|
|
||||||
let base = read_num(base_len);
|
let base = read_num(&mut reader, base_len);
|
||||||
let exp = read_num(exp_len);
|
|
||||||
let modulus = read_num(mod_len);
|
let mut exp_buf = vec![0; exp_len];
|
||||||
modexp(base, exp, modulus)
|
reader.read_exact(&mut exp_buf[..exp_len]).expect("reading from zero-extended memory cannot fail; qed");
|
||||||
|
|
||||||
|
let modulus = read_num(&mut reader, mod_len);
|
||||||
|
|
||||||
|
modexp(base, exp_buf, modulus)
|
||||||
};
|
};
|
||||||
|
|
||||||
// write output to given memory, left padded and same length as the modulus.
|
// write output to given memory, left padded and same length as the modulus.
|
||||||
@ -551,31 +571,31 @@ mod tests {
|
|||||||
let mut base = BigUint::parse_bytes(b"12345", 10).unwrap();
|
let mut base = BigUint::parse_bytes(b"12345", 10).unwrap();
|
||||||
let mut exp = BigUint::zero();
|
let mut exp = BigUint::zero();
|
||||||
let mut modulus = BigUint::parse_bytes(b"789", 10).unwrap();
|
let mut modulus = BigUint::parse_bytes(b"789", 10).unwrap();
|
||||||
assert_eq!(me(base, exp, modulus), BigUint::one());
|
assert_eq!(me(base, exp.to_bytes_be(), modulus), BigUint::one());
|
||||||
|
|
||||||
// 0^n % m == 0
|
// 0^n % m == 0
|
||||||
base = BigUint::zero();
|
base = BigUint::zero();
|
||||||
exp = BigUint::parse_bytes(b"12345", 10).unwrap();
|
exp = BigUint::parse_bytes(b"12345", 10).unwrap();
|
||||||
modulus = BigUint::parse_bytes(b"789", 10).unwrap();
|
modulus = BigUint::parse_bytes(b"789", 10).unwrap();
|
||||||
assert_eq!(me(base, exp, modulus), BigUint::zero());
|
assert_eq!(me(base, exp.to_bytes_be(), modulus), BigUint::zero());
|
||||||
|
|
||||||
// n^m % 1 == 0
|
// n^m % 1 == 0
|
||||||
base = BigUint::parse_bytes(b"12345", 10).unwrap();
|
base = BigUint::parse_bytes(b"12345", 10).unwrap();
|
||||||
exp = BigUint::parse_bytes(b"789", 10).unwrap();
|
exp = BigUint::parse_bytes(b"789", 10).unwrap();
|
||||||
modulus = BigUint::one();
|
modulus = BigUint::one();
|
||||||
assert_eq!(me(base, exp, modulus), BigUint::zero());
|
assert_eq!(me(base, exp.to_bytes_be(), modulus), BigUint::zero());
|
||||||
|
|
||||||
// if n % d == 0, then n^m % d == 0
|
// if n % d == 0, then n^m % d == 0
|
||||||
base = BigUint::parse_bytes(b"12345", 10).unwrap();
|
base = BigUint::parse_bytes(b"12345", 10).unwrap();
|
||||||
exp = BigUint::parse_bytes(b"789", 10).unwrap();
|
exp = BigUint::parse_bytes(b"789", 10).unwrap();
|
||||||
modulus = BigUint::parse_bytes(b"15", 10).unwrap();
|
modulus = BigUint::parse_bytes(b"15", 10).unwrap();
|
||||||
assert_eq!(me(base, exp, modulus), BigUint::zero());
|
assert_eq!(me(base, exp.to_bytes_be(), modulus), BigUint::zero());
|
||||||
|
|
||||||
// others
|
// others
|
||||||
base = BigUint::parse_bytes(b"12345", 10).unwrap();
|
base = BigUint::parse_bytes(b"12345", 10).unwrap();
|
||||||
exp = BigUint::parse_bytes(b"789", 10).unwrap();
|
exp = BigUint::parse_bytes(b"789", 10).unwrap();
|
||||||
modulus = BigUint::parse_bytes(b"97", 10).unwrap();
|
modulus = BigUint::parse_bytes(b"97", 10).unwrap();
|
||||||
assert_eq!(me(base, exp, modulus), BigUint::parse_bytes(b"55", 10).unwrap());
|
assert_eq!(me(base, exp.to_bytes_be(), modulus), BigUint::parse_bytes(b"55", 10).unwrap());
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
Loading…
Reference in New Issue
Block a user