Merge pull request #559 from ethcore/tx_queue

TransactionsQueue implementation
This commit is contained in:
Nikolay Volf 2016-03-04 21:43:33 +03:00
commit a4f4764e2a
4 changed files with 687 additions and 0 deletions

1
Cargo.lock generated
View File

@ -285,6 +285,7 @@ dependencies = [
"heapsize 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)",
"log 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)",
"rand 0.3.14 (registry+https://github.com/rust-lang/crates.io-index)",
"rustc-serialize 0.3.18 (registry+https://github.com/rust-lang/crates.io-index)",
"time 0.1.34 (registry+https://github.com/rust-lang/crates.io-index)",
]

View File

@ -16,6 +16,7 @@ env_logger = "0.3"
time = "0.1.34"
rand = "0.3.13"
heapsize = "0.3"
rustc-serialize = "0.3"
[features]
default = []

View File

@ -70,6 +70,8 @@ use io::NetSyncIo;
mod chain;
mod io;
mod range_collection;
// TODO [todr] Made public to suppress dead code warnings
pub mod transaction_queue;
#[cfg(test)]
mod tests;

View File

@ -0,0 +1,683 @@
// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
// TODO [todr] - own transactions should have higher priority
//! Transaction Queue
use std::cmp::{Ordering};
use std::collections::{HashMap, BTreeSet};
use util::numbers::{Uint, U256};
use util::hash::{Address, H256};
use util::table::*;
use ethcore::transaction::*;
#[derive(Clone, Debug)]
struct TransactionOrder {
nonce_height: U256,
gas_price: U256,
hash: H256,
}
impl TransactionOrder {
fn for_transaction(tx: &VerifiedTransaction, base_nonce: U256) -> Self {
TransactionOrder {
nonce_height: tx.nonce() - base_nonce,
gas_price: tx.transaction.gas_price,
hash: tx.hash(),
}
}
fn update_height(mut self, nonce: U256, base_nonce: U256) -> Self {
self.nonce_height = nonce - base_nonce;
self
}
}
impl Eq for TransactionOrder {}
impl PartialEq for TransactionOrder {
fn eq(&self, other: &TransactionOrder) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl PartialOrd for TransactionOrder {
fn partial_cmp(&self, other: &TransactionOrder) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for TransactionOrder {
fn cmp(&self, b: &TransactionOrder) -> Ordering {
// First check nonce_height
if self.nonce_height != b.nonce_height {
return self.nonce_height.cmp(&b.nonce_height);
}
// Then compare gas_prices
let a_gas = self.gas_price;
let b_gas = b.gas_price;
if a_gas != b_gas {
return a_gas.cmp(&b_gas);
}
// Compare hashes
self.hash.cmp(&b.hash)
}
}
struct VerifiedTransaction {
transaction: SignedTransaction
}
impl VerifiedTransaction {
fn new(transaction: SignedTransaction) -> Self {
VerifiedTransaction {
transaction: transaction
}
}
fn hash(&self) -> H256 {
self.transaction.hash()
}
fn nonce(&self) -> U256 {
self.transaction.nonce
}
fn sender(&self) -> Address {
self.transaction.sender().unwrap()
}
}
struct TransactionSet {
by_priority: BTreeSet<TransactionOrder>,
by_address: Table<Address, U256, TransactionOrder>,
limit: usize,
}
impl TransactionSet {
fn insert(&mut self, sender: Address, nonce: U256, order: TransactionOrder) {
self.by_priority.insert(order.clone());
self.by_address.insert(sender, nonce, order);
}
fn enforce_limit(&mut self, by_hash: &HashMap<H256, VerifiedTransaction>) {
let len = self.by_priority.len();
if len <= self.limit {
return;
}
let to_drop : Vec<&VerifiedTransaction> = {
self.by_priority
.iter()
.skip(self.limit)
.map(|order| by_hash.get(&order.hash).expect("Inconsistency in queue detected."))
.collect()
};
for tx in to_drop {
self.drop(&tx.sender(), &tx.nonce());
}
}
fn drop(&mut self, sender: &Address, nonce: &U256) -> Option<TransactionOrder> {
if let Some(tx_order) = self.by_address.remove(sender, nonce) {
self.by_priority.remove(&tx_order);
return Some(tx_order);
}
None
}
fn clear(&mut self) {
self.by_priority.clear();
self.by_address.clear();
}
}
#[derive(Debug)]
/// Current status of the queue
pub struct TransactionQueueStatus {
/// Number of pending transactions (ready to go to block)
pub pending: usize,
/// Number of future transactions (waiting for transactions with lower nonces first)
pub future: usize,
}
/// TransactionQueue implementation
pub struct TransactionQueue {
/// Priority queue for transactions that can go to block
current: TransactionSet,
/// Priority queue for transactions that has been received but are not yet valid to go to block
future: TransactionSet,
/// All transactions managed by queue indexed by hash
by_hash: HashMap<H256, VerifiedTransaction>,
/// Last nonce of transaction in current (to quickly check next expected transaction)
last_nonces: HashMap<Address, U256>,
}
impl TransactionQueue {
/// Creates new instance of this Queue
pub fn new() -> Self {
Self::with_limits(1024, 1024)
}
/// Create new instance of this Queue with specified limits
pub fn with_limits(current_limit: usize, future_limit: usize) -> Self {
let current = TransactionSet {
by_priority: BTreeSet::new(),
by_address: Table::new(),
limit: current_limit,
};
let future = TransactionSet {
by_priority: BTreeSet::new(),
by_address: Table::new(),
limit: future_limit,
};
TransactionQueue {
current: current,
future: future,
by_hash: HashMap::new(),
last_nonces: HashMap::new(),
}
}
/// Returns current status for this queue
pub fn status(&self) -> TransactionQueueStatus {
TransactionQueueStatus {
pending: self.current.by_priority.len(),
future: self.future.by_priority.len(),
}
}
/// Adds all signed transactions to queue to be verified and imported
pub fn add_all<T>(&mut self, txs: Vec<SignedTransaction>, fetch_nonce: T)
where T: Fn(&Address) -> U256 {
for tx in txs.into_iter() {
self.add(tx, &fetch_nonce);
}
}
/// Add signed transaction to queue to be verified and imported
pub fn add<T>(&mut self, tx: SignedTransaction, fetch_nonce: &T)
where T: Fn(&Address) -> U256 {
self.import_tx(VerifiedTransaction::new(tx), fetch_nonce);
}
/// Removes all transactions identified by hashes given in slice
///
/// If gap is introduced marks subsequent transactions as future
pub fn remove_all<T>(&mut self, txs: &[H256], fetch_nonce: T)
where T: Fn(&Address) -> U256 {
for tx in txs {
self.remove(&tx, &fetch_nonce);
}
}
/// Removes transaction identified by hashes from queue.
///
/// If gap is introduced marks subsequent transactions as future
pub fn remove<T>(&mut self, hash: &H256, fetch_nonce: &T)
where T: Fn(&Address) -> U256 {
let transaction = self.by_hash.remove(hash);
if transaction.is_none() {
// We don't know this transaction
return;
}
let transaction = transaction.unwrap();
let sender = transaction.sender();
let nonce = transaction.nonce();
println!("Removing tx: {:?}", transaction.transaction);
// Remove from future
self.future.drop(&sender, &nonce);
// Remove from current
let order = self.current.drop(&sender, &nonce);
if order.is_none() {
return;
}
// Let's remove transactions where tx.nonce < current_nonce
// and if there are any future transactions matching current_nonce+1 - move to current
let current_nonce = fetch_nonce(&sender);
// We will either move transaction to future or remove it completely
// so there will be no transactions from this sender in current
self.last_nonces.remove(&sender);
let all_nonces_from_sender = match self.current.by_address.row(&sender) {
Some(row_map) => row_map.keys().cloned().collect::<Vec<U256>>(),
None => vec![],
};
for k in all_nonces_from_sender {
// Goes to future or is removed
let order = self.current.drop(&sender, &k).unwrap();
if k >= current_nonce {
println!("Moving to future: {:?}", order);
self.future.insert(sender.clone(), k, order.update_height(k, current_nonce));
} else {
self.by_hash.remove(&order.hash);
}
}
self.future.enforce_limit(&self.by_hash);
// And now lets check if there is some chain of transactions in future
// that should be placed in current
if let Some(new_current_top) = self.move_future_txs(sender.clone(), current_nonce - U256::one(), current_nonce) {
self.last_nonces.insert(sender, new_current_top);
}
}
/// Returns top transactions from the queue
pub fn top_transactions(&self, size: usize) -> Vec<SignedTransaction> {
self.current.by_priority
.iter()
.take(size)
.map(|t| self.by_hash.get(&t.hash).expect("Transaction Queue Inconsistency"))
.map(|t| t.transaction.clone())
.collect()
}
/// Removes all elements (in any state) from the queue
pub fn clear(&mut self) {
self.current.clear();
self.future.clear();
self.by_hash.clear();
self.last_nonces.clear();
}
fn move_future_txs(&mut self, address: Address, current_nonce: U256, first_nonce: U256) -> Option<U256> {
println!("Moving from future for: {:?} base: {:?}", current_nonce, first_nonce);
let mut current_nonce = current_nonce + U256::one();
{
let by_nonce = self.future.by_address.row_mut(&address);
if let None = by_nonce {
return None;
}
let mut by_nonce = by_nonce.unwrap();
while let Some(order) = by_nonce.remove(&current_nonce) {
// remove also from priority and hash
self.future.by_priority.remove(&order);
// Put to current
println!("Moved: {:?}", order);
let order = order.update_height(current_nonce.clone(), first_nonce);
self.current.insert(address.clone(), current_nonce, order);
current_nonce = current_nonce + U256::one();
}
}
self.future.by_address.clear_if_empty(&address);
// Returns last inserted nonce
Some(current_nonce - U256::one())
}
fn import_tx<T>(&mut self, tx: VerifiedTransaction, fetch_nonce: &T)
where T: Fn(&Address) -> U256 {
let nonce = tx.nonce();
let address = tx.sender();
let next_nonce = self.last_nonces
.get(&address)
.cloned()
.map_or_else(|| fetch_nonce(&address), |n| n + U256::one());
println!("Expected next: {:?}, got: {:?}", next_nonce, nonce);
// Check height
if nonce > next_nonce {
let order = TransactionOrder::for_transaction(&tx, next_nonce);
// Insert to by_hash
self.by_hash.insert(tx.hash(), tx);
// We have a gap - put to future
self.future.insert(address, nonce, order);
self.future.enforce_limit(&self.by_hash);
return;
} else if next_nonce > nonce {
// Droping transaction
return;
}
let base_nonce = fetch_nonce(&address);
let order = TransactionOrder::for_transaction(&tx, base_nonce);
// Insert to by_hash
self.by_hash.insert(tx.hash(), tx);
// Insert to current
self.current.insert(address.clone(), nonce, order);
// But maybe there are some more items waiting in future?
let new_last_nonce = self.move_future_txs(address.clone(), nonce, base_nonce);
self.last_nonces.insert(address.clone(), new_last_nonce.unwrap_or(nonce));
// Enforce limit
self.current.enforce_limit(&self.by_hash);
}
}
#[cfg(test)]
mod test {
extern crate rustc_serialize;
use self::rustc_serialize::hex::FromHex;
use std::collections::{HashMap, BTreeSet};
use util::crypto::KeyPair;
use util::numbers::{U256, Uint};
use util::hash::{Address};
use util::table::*;
use ethcore::transaction::*;
use super::*;
use super::{TransactionSet, TransactionOrder, VerifiedTransaction};
fn new_unsigned_tx(nonce: U256) -> Transaction {
Transaction {
action: Action::Create,
value: U256::from(100),
data: "3331600055".from_hex().unwrap(),
gas: U256::from(100_000),
gas_price: U256::one(),
nonce: nonce
}
}
fn new_tx() -> SignedTransaction {
let keypair = KeyPair::create().unwrap();
new_unsigned_tx(U256::from(123)).sign(&keypair.secret())
}
fn default_nonce(_address: &Address) -> U256 {
U256::from(123)
}
fn new_txs(second_nonce: U256) -> (SignedTransaction, SignedTransaction) {
let keypair = KeyPair::create().unwrap();
let secret = &keypair.secret();
let nonce = U256::from(123);
let tx = new_unsigned_tx(nonce);
let tx2 = new_unsigned_tx(nonce + second_nonce);
(tx.sign(secret), tx2.sign(secret))
}
#[test]
fn should_create_transaction_set() {
// given
let mut set = TransactionSet {
by_priority: BTreeSet::new(),
by_address: Table::new(),
limit: 1
};
let (tx1, tx2) = new_txs(U256::from(1));
let tx1 = VerifiedTransaction::new(tx1);
let tx2 = VerifiedTransaction::new(tx2);
let by_hash = {
let mut x = HashMap::new();
let tx1 = VerifiedTransaction::new(tx1.transaction.clone());
let tx2 = VerifiedTransaction::new(tx2.transaction.clone());
x.insert(tx1.hash(), tx1);
x.insert(tx2.hash(), tx2);
x
};
// Insert both transactions
let order1 = TransactionOrder::for_transaction(&tx1, U256::zero());
set.insert(tx1.sender(), tx1.nonce(), order1.clone());
let order2 = TransactionOrder::for_transaction(&tx2, U256::zero());
set.insert(tx2.sender(), tx2.nonce(), order2.clone());
assert_eq!(set.by_priority.len(), 2);
assert_eq!(set.by_address.len(), 2);
// when
set.enforce_limit(&by_hash);
// then
assert_eq!(set.by_priority.len(), 1);
assert_eq!(set.by_address.len(), 1);
assert_eq!(set.by_priority.iter().next().unwrap().clone(), order1);
set.clear();
assert_eq!(set.by_priority.len(), 0);
assert_eq!(set.by_address.len(), 0);
}
#[test]
fn should_import_tx() {
// given
let mut txq = TransactionQueue::new();
let tx = new_tx();
// when
txq.add(tx, &default_nonce);
// then
let stats = txq.status();
assert_eq!(stats.pending, 1);
}
#[test]
fn should_import_txs_from_same_sender() {
// given
let mut txq = TransactionQueue::new();
let (tx, tx2) = new_txs(U256::from(1));
// when
txq.add(tx.clone(), &default_nonce);
txq.add(tx2.clone(), &default_nonce);
// then
let top = txq.top_transactions(5);
assert_eq!(top[0], tx);
assert_eq!(top[1], tx2);
assert_eq!(top.len(), 2);
}
#[test]
fn should_put_transaction_to_futures_if_gap_detected() {
// given
let mut txq = TransactionQueue::new();
let (tx, tx2) = new_txs(U256::from(2));
// when
txq.add(tx.clone(), &default_nonce);
txq.add(tx2.clone(), &default_nonce);
// then
let stats = txq.status();
assert_eq!(stats.pending, 1);
assert_eq!(stats.future, 1);
let top = txq.top_transactions(5);
assert_eq!(top.len(), 1);
assert_eq!(top[0], tx);
}
#[test]
fn should_move_transactions_if_gap_filled() {
// given
let mut txq = TransactionQueue::new();
let kp = KeyPair::create().unwrap();
let secret = kp.secret();
let tx = new_unsigned_tx(U256::from(123)).sign(&secret);
let tx1 = new_unsigned_tx(U256::from(124)).sign(&secret);
let tx2 = new_unsigned_tx(U256::from(125)).sign(&secret);
txq.add(tx, &default_nonce);
assert_eq!(txq.status().pending, 1);
txq.add(tx2, &default_nonce);
assert_eq!(txq.status().future, 1);
// when
txq.add(tx1, &default_nonce);
// then
let stats = txq.status();
assert_eq!(stats.pending, 3);
assert_eq!(stats.future, 0);
}
#[test]
fn should_remove_transaction() {
// given
let mut txq2 = TransactionQueue::new();
let (tx, tx2) = new_txs(U256::from(3));
txq2.add(tx.clone(), &default_nonce);
txq2.add(tx2.clone(), &default_nonce);
assert_eq!(txq2.status().pending, 1);
assert_eq!(txq2.status().future, 1);
// when
txq2.remove(&tx.hash(), &default_nonce);
txq2.remove(&tx2.hash(), &default_nonce);
// then
let stats = txq2.status();
assert_eq!(stats.pending, 0);
assert_eq!(stats.future, 0);
}
#[test]
fn should_move_transactions_to_future_if_gap_introduced() {
// given
let mut txq = TransactionQueue::new();
let (tx, tx2) = new_txs(U256::from(1));
let tx3 = new_tx();
txq.add(tx2.clone(), &default_nonce);
assert_eq!(txq.status().future, 1);
txq.add(tx3.clone(), &default_nonce);
txq.add(tx.clone(), &default_nonce);
assert_eq!(txq.status().pending, 3);
// when
txq.remove(&tx.hash(), &default_nonce);
// then
let stats = txq.status();
assert_eq!(stats.future, 1);
assert_eq!(stats.pending, 1);
}
#[test]
fn should_clear_queue() {
// given
let mut txq = TransactionQueue::new();
let (tx, tx2) = new_txs(U256::one());
// add
txq.add(tx2.clone(), &default_nonce);
txq.add(tx.clone(), &default_nonce);
let stats = txq.status();
assert_eq!(stats.pending, 2);
// when
txq.clear();
// then
let stats = txq.status();
assert_eq!(stats.pending, 0);
}
#[test]
fn should_drop_old_transactions_when_hitting_the_limit() {
// given
let mut txq = TransactionQueue::with_limits(1, 1);
let (tx, tx2) = new_txs(U256::one());
txq.add(tx.clone(), &default_nonce);
assert_eq!(txq.status().pending, 1);
// when
txq.add(tx2.clone(), &default_nonce);
// then
let t = txq.top_transactions(2);
assert_eq!(txq.status().pending, 1);
assert_eq!(t.len(), 1);
assert_eq!(t[0], tx);
}
#[test]
fn should_limit_future_transactions() {
let mut txq = TransactionQueue::with_limits(10, 1);
let (tx1, tx2) = new_txs(U256::from(4));
let (tx3, tx4) = new_txs(U256::from(4));
txq.add(tx1.clone(), &default_nonce);
txq.add(tx3.clone(), &default_nonce);
assert_eq!(txq.status().pending, 2);
// when
txq.add(tx2.clone(), &default_nonce);
assert_eq!(txq.status().future, 1);
txq.add(tx4.clone(), &default_nonce);
// then
assert_eq!(txq.status().future, 1);
}
#[test]
fn should_drop_transactions_with_old_nonces() {
let mut txq = TransactionQueue::new();
let tx = new_tx();
let last_nonce = tx.nonce.clone() + U256::one();
let fetch_last_nonce = |_a: &Address| last_nonce;
// when
txq.add(tx, &fetch_last_nonce);
// then
let stats = txq.status();
assert_eq!(stats.pending, 0);
assert_eq!(stats.future, 0);
}
#[test]
fn should_accept_same_transaction_twice() {
// given
let mut txq = TransactionQueue::new();
let (tx1, tx2) = new_txs(U256::from(1));
txq.add(tx1.clone(), &default_nonce);
txq.add(tx2.clone(), &default_nonce);
assert_eq!(txq.status().pending, 2);
// when
txq.remove(&tx1.hash(), &default_nonce);
assert_eq!(txq.status().pending, 0);
assert_eq!(txq.status().future, 1);
txq.add(tx1.clone(), &default_nonce);
// then
let stats = txq.status();
assert_eq!(stats.future, 0);
assert_eq!(stats.pending, 2);
}
#[test]
fn should_not_move_to_future_if_state_nonce_is_higher() {
// given
let next_nonce = |a: &Address| default_nonce(a) + U256::one();
let mut txq = TransactionQueue::new();
let (tx, tx2) = new_txs(U256::from(1));
let tx3 = new_tx();
txq.add(tx2.clone(), &default_nonce);
assert_eq!(txq.status().future, 1);
txq.add(tx3.clone(), &default_nonce);
txq.add(tx.clone(), &default_nonce);
assert_eq!(txq.status().pending, 3);
// when
txq.remove(&tx.hash(), &next_nonce);
// then
let stats = txq.status();
assert_eq!(stats.future, 0);
assert_eq!(stats.pending, 2);
}
}