Merge branch 'master' into clippy

Conflicts:
	src/service.rs
	src/views.rs
This commit is contained in:
Tomusdrw 2016-01-19 10:18:18 +01:00
commit db6e6a3e58
32 changed files with 733 additions and 309 deletions

View File

@ -19,6 +19,7 @@ time = "0.1"
#interpolate_idents = { git = "https://github.com/SkylerLipthay/interpolate_idents" }
evmjit = { path = "rust-evmjit", optional = true }
ethash = { path = "ethash" }
num_cpus = "0.2"
[features]
jit = ["evmjit"]

View File

@ -6,4 +6,4 @@ authors = ["arkpar <arkadiy@ethcore.io"]
[lib]
[dependencies]
tiny-keccak = "1.0"
sha3 = { path = "../util/sha3" }

View File

@ -6,7 +6,7 @@
use std::mem;
use std::ptr;
use sizes::{CACHE_SIZES, DAG_SIZES};
use tiny_keccak::Keccak;
use sha3::{self};
pub const ETHASH_EPOCH_LENGTH: u64 = 30000;
pub const ETHASH_CACHE_ROUNDS: usize = 3;
@ -85,9 +85,7 @@ fn fnv_hash(x: u32, y: u32) -> u32 {
#[inline]
fn sha3_512(input: &[u8], output: &mut [u8]) {
let mut sha3 = Keccak::new_keccak512();
sha3.update(input);
sha3.finalize(output);
unsafe { sha3::sha3_512(output.as_mut_ptr(), output.len(), input.as_ptr(), input.len()) };
}
#[inline]
@ -107,9 +105,7 @@ fn get_seedhash(block_number: u64) -> H256 {
let epochs = block_number / ETHASH_EPOCH_LENGTH;
let mut ret: H256 = [0u8; 32];
for _ in 0..epochs {
let mut sha3 = Keccak::new_keccak256();
sha3.update(&ret);
sha3.finalize(&mut ret);
unsafe { sha3::sha3_256(ret[..].as_mut_ptr(), 32, ret[..].as_ptr(), 32) };
}
ret
}
@ -125,15 +121,12 @@ pub fn quick_get_difficulty(header_hash: &H256, nonce: u64, mix_hash: &H256) ->
unsafe { ptr::copy_nonoverlapping(header_hash.as_ptr(), buf.as_mut_ptr(), 32) };
unsafe { ptr::copy_nonoverlapping(mem::transmute(&nonce), buf[32..].as_mut_ptr(), 8) };
let mut sha3 = Keccak::new_keccak512();
sha3.update(&buf[0..40]);
sha3.finalize(&mut buf);
unsafe { sha3::sha3_512(buf.as_mut_ptr(), 64, buf.as_ptr(), 40) };
unsafe { ptr::copy_nonoverlapping(mix_hash.as_ptr(), buf[64..].as_mut_ptr(), 32) };
let mut hash = [0u8; 32];
let mut sha3 = Keccak::new_keccak256();
sha3.update(&buf);
sha3.finalize(&mut hash);
unsafe { sha3::sha3_256(hash.as_mut_ptr(), hash.len(), buf.as_ptr(), buf.len()) };
hash.as_mut_ptr();
hash
}
@ -157,10 +150,7 @@ fn hash_compute(light: &Light, full_size: usize, header_hash: &H256, nonce: u64
// compute sha3-512 hash and replicate across mix
unsafe {
let mut sha3 = Keccak::new_keccak512();
sha3.update(&s_mix.get_unchecked(0).bytes[0..40]);
sha3.finalize(&mut s_mix.get_unchecked_mut(0).bytes);
sha3::sha3_512(s_mix.get_unchecked_mut(0).bytes.as_mut_ptr(), NODE_BYTES, s_mix.get_unchecked(0).bytes.as_ptr(), 40);
let (f_mix, mut mix) = s_mix.split_at_mut(1);
for w in 0..MIX_WORDS {
*mix.get_unchecked_mut(0).as_words_mut().get_unchecked_mut(w) = *f_mix.get_unchecked(0).as_words().get_unchecked(w % NODE_WORDS);
@ -189,15 +179,13 @@ fn hash_compute(light: &Light, full_size: usize, header_hash: &H256, nonce: u64
*mix.get_unchecked_mut(0).as_words_mut().get_unchecked_mut(i) = reduction;
}
let mut mix_hash: H256 = [0u8; 32];
let mut mix_hash = [0u8; 32];
let mut buf = [0u8; 32 + 64];
ptr::copy_nonoverlapping(f_mix.get_unchecked_mut(0).bytes.as_ptr(), buf.as_mut_ptr(), 64);
ptr::copy_nonoverlapping(mix.get_unchecked_mut(0).bytes.as_ptr(), buf[64..].as_mut_ptr(), 32);
ptr::copy_nonoverlapping(mix.get_unchecked_mut(0).bytes.as_ptr(), mix_hash.as_mut_ptr(), 32);
let mut value: H256 = [0u8; 32];
let mut sha3 = Keccak::new_keccak256();
sha3.update(&f_mix.get_unchecked(0).bytes);
sha3.update(&mix_hash);
sha3.finalize(&mut value);
sha3::sha3_256(value.as_mut_ptr(), value.len(), buf.as_ptr(), buf.len());
ProofOfWork {
mix_hash: mix_hash,
value: value,
@ -212,10 +200,7 @@ fn calculate_dag_item(node_index: u32, light: &Light) -> Node {
let init = cache_nodes.get_unchecked(node_index as usize % num_parent_nodes);
let mut ret = init.clone();
*ret.as_words_mut().get_unchecked_mut(0) ^= node_index;
let mut sha3 = Keccak::new_keccak512();
sha3.update(&ret.bytes);
sha3.finalize(&mut ret.bytes);
sha3::sha3_512(ret.bytes.as_mut_ptr(), ret.bytes.len(), ret.bytes.as_ptr(), ret.bytes.len());
for i in 0..ETHASH_DATASET_PARENTS {
let parent_index = fnv_hash(node_index ^ i, *ret.as_words().get_unchecked(i as usize % NODE_WORDS)) % num_parent_nodes as u32;
@ -224,10 +209,7 @@ fn calculate_dag_item(node_index: u32, light: &Light) -> Node {
*ret.as_words_mut().get_unchecked_mut(w) = fnv_hash(*ret.as_words().get_unchecked(w), *parent.as_words().get_unchecked(w));
}
}
let mut sha3 = Keccak::new_keccak512();
sha3.update(&ret.bytes);
sha3.finalize(&mut ret.bytes);
sha3::sha3_512(ret.bytes.as_mut_ptr(), ret.bytes.len(), ret.bytes.as_ptr(), ret.bytes.len());
ret
}
}
@ -246,9 +228,7 @@ fn light_new(block_number: u64) -> Light {
unsafe {
sha3_512(&seedhash[0..32], &mut nodes.get_unchecked_mut(0).bytes);
for i in 1..num_nodes {
let mut sha3 = Keccak::new_keccak512();
sha3.update(&nodes.get_unchecked_mut(i - 1).bytes);
sha3.finalize(&mut nodes.get_unchecked_mut(i).bytes);
sha3::sha3_512(nodes.get_unchecked_mut(i).bytes.as_mut_ptr(), NODE_BYTES, nodes.get_unchecked(i - 1).bytes.as_ptr(), NODE_BYTES);
}
for _ in 0..ETHASH_CACHE_ROUNDS {
@ -275,9 +255,9 @@ fn test_difficulty_test() {
let mix_hash = [0x1f, 0xff, 0x04, 0xce, 0xc9, 0x41, 0x73, 0xfd, 0x59, 0x1e, 0x3d, 0x89, 0x60, 0xce, 0x6b, 0xdf, 0x8b, 0x19, 0x71, 0x04, 0x8c, 0x71, 0xff, 0x93, 0x7b, 0xb2, 0xd3, 0x2a, 0x64, 0x31, 0xab, 0x6d ];
let nonce = 0xd7b3ac70a301a249;
let boundary_good = [0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x3e, 0x9b, 0x6c, 0x69, 0xbc, 0x2c, 0xe2, 0xa2, 0x4a, 0x8e, 0x95, 0x69, 0xef, 0xc7, 0xd7, 0x1b, 0x33, 0x35, 0xdf, 0x36, 0x8c, 0x9a, 0xe9, 0x7e, 0x53, 0x84];
assert!(quick_check_difficulty(&hash, nonce, &mix_hash, &boundary_good));
assert_eq!(quick_get_difficulty(&hash, nonce, &mix_hash)[..], boundary_good[..]);
let boundary_bad = [0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x3a, 0x9b, 0x6c, 0x69, 0xbc, 0x2c, 0xe2, 0xa2, 0x4a, 0x8e, 0x95, 0x69, 0xef, 0xc7, 0xd7, 0x1b, 0x33, 0x35, 0xdf, 0x36, 0x8c, 0x9a, 0xe9, 0x7e, 0x53, 0x84];
assert!(!quick_check_difficulty(&hash, nonce, &mix_hash, &boundary_bad));
assert!(quick_get_difficulty(&hash, nonce, &mix_hash)[..] != boundary_bad[..]);
}
#[test]

View File

@ -1,6 +1,6 @@
//! Ethash implementation
//! See https://github.com/ethereum/wiki/wiki/Ethash
extern crate tiny_keccak;
extern crate sha3;
mod sizes;
mod compute;

View File

@ -1,6 +1,7 @@
use common::*;
use engine::*;
use state::*;
use verification::PreVerifiedBlock;
/// A transaction/receipt execution entry.
pub struct Entry {
@ -263,30 +264,39 @@ impl IsBlock for SealedBlock {
fn block(&self) -> &Block { &self.block }
}
/// Enact the block given by `block_bytes` using `engine` on the database `db` with given `parent` block header
pub fn enact<'x, 'y>(block_bytes: &[u8], engine: &'x Engine, db: OverlayDB, parent: &Header, last_hashes: &'y LastHashes) -> Result<ClosedBlock<'x, 'y>, Error> {
/// Enact the block given by block header, transactions and uncles
pub fn enact<'x, 'y>(header: &Header, transactions: &[Transaction], uncles: &[Header], engine: &'x Engine, db: OverlayDB, parent: &Header, last_hashes: &'y LastHashes) -> Result<ClosedBlock<'x, 'y>, Error> {
{
let header = BlockView::new(block_bytes).header_view();
let s = State::from_existing(db.clone(), parent.state_root().clone(), engine.account_start_nonce());
trace!("enact(): root={}, author={}, author_balance={}\n", s.root(), header.author(), s.balance(&header.author()));
}
let block = BlockView::new(block_bytes);
let header = block.header_view();
let mut b = OpenBlock::new(engine, db, parent, last_hashes, header.author(), header.extra_data());
b.set_difficulty(header.difficulty());
b.set_gas_limit(header.gas_limit());
let mut b = OpenBlock::new(engine, db, parent, last_hashes, header.author().clone(), header.extra_data().clone());
b.set_difficulty(*header.difficulty());
b.set_gas_limit(*header.gas_limit());
b.set_timestamp(header.timestamp());
// info!("enact: Enacting #{}. env_info={:?}", header.number(), b.env_info());
for t in block.transactions().into_iter() { try!(b.push_transaction(t, None)); }
for u in block.uncles().into_iter() { try!(b.push_uncle(u)); }
for t in transactions { try!(b.push_transaction(t.clone(), None)); }
for u in uncles { try!(b.push_uncle(u.clone())); }
Ok(b.close())
}
/// Enact the block given by `block_bytes` using `engine` on the database `db` with given `parent` block header
pub fn enact_bytes<'x, 'y>(block_bytes: &[u8], engine: &'x Engine, db: OverlayDB, parent: &Header, last_hashes: &'y LastHashes) -> Result<ClosedBlock<'x, 'y>, Error> {
let block = BlockView::new(block_bytes);
let header = block.header();
enact(&header, &block.transactions(), &block.uncles(), engine, db, parent, last_hashes)
}
/// Enact the block given by `block_bytes` using `engine` on the database `db` with given `parent` block header
pub fn enact_verified<'x, 'y>(block: &PreVerifiedBlock, engine: &'x Engine, db: OverlayDB, parent: &Header, last_hashes: &'y LastHashes) -> Result<ClosedBlock<'x, 'y>, Error> {
let view = BlockView::new(&block.bytes);
enact(&block.header, &block.transactions, &view.uncles(), engine, db, parent, last_hashes)
}
/// Enact the block given by `block_bytes` using `engine` on the database `db` with given `parent` block header. Seal the block aferwards
pub fn enact_and_seal(block_bytes: &[u8], engine: &Engine, db: OverlayDB, parent: &Header, last_hashes: &LastHashes) -> Result<SealedBlock, Error> {
let header = BlockView::new(block_bytes).header_view();
Ok(try!(try!(enact(block_bytes, engine, db, parent, last_hashes)).seal(header.seal())))
Ok(try!(try!(enact_bytes(block_bytes, engine, db, parent, last_hashes)).seal(header.seal())))
}
#[test]

View File

@ -88,7 +88,7 @@ pub trait BlockChainClient : Sync + Send {
fn block_receipts(&self, hash: &H256) -> Option<Bytes>;
/// Import a block into the blockchain.
fn import_block(&mut self, byte: &[u8]) -> ImportResult;
fn import_block(&mut self, bytes: Bytes) -> ImportResult;
/// Get block queue information.
fn queue_status(&self) -> BlockQueueStatus;
@ -152,12 +152,26 @@ impl Client {
}
/// This is triggered by a message coming from a block queue when the block is ready for insertion
pub fn import_verified_block(&mut self, bytes: Bytes) {
let block = BlockView::new(&bytes);
let header = block.header();
if let Err(e) = verify_block_family(&header, &bytes, self.engine.deref().deref(), self.chain.read().unwrap().deref()) {
pub fn import_verified_blocks(&mut self) {
let mut bad = HashSet::new();
let blocks = self.queue.drain(128);
if blocks.is_empty() {
return;
}
for block in blocks {
if bad.contains(&block.header.parent_hash) {
self.queue.mark_as_bad(&block.header.hash());
bad.insert(block.header.hash());
continue;
}
let header = &block.header;
if let Err(e) = verify_block_family(&header, &block.bytes, self.engine.deref().deref(), self.chain.read().unwrap().deref()) {
warn!(target: "client", "Stage 3 block verification failed for #{} ({})\nError: {:?}", header.number(), header.hash(), e);
self.queue.mark_as_bad(&header.hash());
bad.insert(block.header.hash());
return;
};
let parent = match self.chain.read().unwrap().block_header(&header.parent_hash) {
@ -165,6 +179,7 @@ impl Client {
None => {
warn!(target: "client", "Block import failed for #{} ({}): Parent not found ({}) ", header.number(), header.hash(), header.parent_hash);
self.queue.mark_as_bad(&header.hash());
bad.insert(block.header.hash());
return;
},
};
@ -181,10 +196,11 @@ impl Client {
}
}
let result = match enact(&bytes, self.engine.deref().deref(), self.state_db.clone(), &parent, &last_hashes) {
let result = match enact_verified(&block, self.engine.deref().deref(), self.state_db.clone(), &parent, &last_hashes) {
Ok(b) => b,
Err(e) => {
warn!(target: "client", "Block import failed for #{} ({})\nError: {:?}", header.number(), header.hash(), e);
bad.insert(block.header.hash());
self.queue.mark_as_bad(&header.hash());
return;
}
@ -195,7 +211,7 @@ impl Client {
return;
}
self.chain.write().unwrap().insert_block(&bytes); //TODO: err here?
self.chain.write().unwrap().insert_block(&block.bytes); //TODO: err here?
match result.drain().commit() {
Ok(_) => (),
Err(e) => {
@ -205,6 +221,7 @@ impl Client {
}
info!(target: "client", "Imported #{} ({})", header.number(), header.hash());
}
}
}
impl BlockChainClient for Client {
@ -261,8 +278,8 @@ impl BlockChainClient for Client {
unimplemented!();
}
fn import_block(&mut self, bytes: &[u8]) -> ImportResult {
let header = BlockView::new(bytes).header();
fn import_block(&mut self, bytes: Bytes) -> ImportResult {
let header = BlockView::new(&bytes).header();
if self.chain.read().unwrap().is_known(&header.hash()) {
return Err(ImportError::AlreadyInChain);
}

View File

@ -146,6 +146,10 @@ impl Engine for Ethash {
}
Ok(())
}
fn verify_transaction(&self, t: &Transaction, _header: &Header) -> Result<(), Error> {
t.sender().map(|_|()) // Perform EC recovery and cache sender
}
}
impl Ethash {

View File

@ -27,6 +27,14 @@ fn color(instruction: Instruction, name: &'static str) -> String {
format!("\x1B[1;{}m{}\x1B[0m", colors[c], name)
}
macro_rules! overflowing {
($x: expr) => {{
let (v, overflow) = $x;
if overflow { return Err(evm::Error::OutOfGas); }
v
}}
}
type CodePosition = usize;
type Gas = U256;
type ProgramCounter = usize;
@ -136,7 +144,7 @@ trait Memory {
/// Checks whether offset and size is valid memory range
fn is_valid_range(off: usize, size: usize) -> bool {
// When size is zero we haven't actually expanded the memory
let (_a, overflow) = off.overflowing_add(size);
let overflow = off.overflowing_add(size).1;
size > 0 && !overflow
}
@ -235,15 +243,10 @@ impl<'a> CodeReader<'a> {
}
}
enum RequiredMem {
Mem(U256),
OutOfMemory
}
enum InstructionCost {
Gas(U256),
GasMem(U256, RequiredMem),
GasMemCopy(U256, RequiredMem, U256)
GasMem(U256, U256),
GasMemCopy(U256, U256, U256)
}
enum InstructionResult {
@ -373,35 +376,31 @@ impl Interpreter {
InstructionCost::Gas(U256::from(schedule.sload_gas))
},
instructions::MSTORE => {
InstructionCost::GasMem(default_gas, self.mem_needed_const(stack.peek(0), 32))
InstructionCost::GasMem(default_gas, try!(self.mem_needed_const(stack.peek(0), 32)))
},
instructions::MLOAD => {
InstructionCost::GasMem(default_gas, self.mem_needed_const(stack.peek(0), 32))
InstructionCost::GasMem(default_gas, try!(self.mem_needed_const(stack.peek(0), 32)))
},
instructions::MSTORE8 => {
InstructionCost::GasMem(default_gas, self.mem_needed_const(stack.peek(0), 1))
InstructionCost::GasMem(default_gas, try!(self.mem_needed_const(stack.peek(0), 1)))
},
instructions::RETURN => {
InstructionCost::GasMem(default_gas, self.mem_needed(stack.peek(0), stack.peek(1)))
InstructionCost::GasMem(default_gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::SHA3 => {
match add_u256_usize(stack.peek(1), 31) {
(_w, true) => InstructionCost::GasMem(U256::zero(), RequiredMem::OutOfMemory),
(w, false) => {
let w = overflowing!(add_u256_usize(stack.peek(1), 31));
let words = w >> 5;
let gas = U256::from(schedule.sha3_gas) + (U256::from(schedule.sha3_word_gas) * words);
InstructionCost::GasMem(gas, self.mem_needed(stack.peek(0), stack.peek(1)))
}
}
InstructionCost::GasMem(gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::CALLDATACOPY => {
InstructionCost::GasMemCopy(default_gas, self.mem_needed(stack.peek(0), stack.peek(2)), stack.peek(2).clone())
InstructionCost::GasMemCopy(default_gas, try!(self.mem_needed(stack.peek(0), stack.peek(2))), stack.peek(2).clone())
},
instructions::CODECOPY => {
InstructionCost::GasMemCopy(default_gas, self.mem_needed(stack.peek(0), stack.peek(2)), stack.peek(2).clone())
InstructionCost::GasMemCopy(default_gas, try!(self.mem_needed(stack.peek(0), stack.peek(2))), stack.peek(2).clone())
},
instructions::EXTCODECOPY => {
InstructionCost::GasMemCopy(default_gas, self.mem_needed(stack.peek(1), stack.peek(3)), stack.peek(3).clone())
InstructionCost::GasMemCopy(default_gas, try!(self.mem_needed(stack.peek(1), stack.peek(3))), stack.peek(3).clone())
},
instructions::JUMPDEST => {
InstructionCost::Gas(U256::one())
@ -409,50 +408,41 @@ impl Interpreter {
instructions::LOG0...instructions::LOG4 => {
let no_of_topics = instructions::get_log_topics(instruction);
let log_gas = schedule.log_gas + schedule.log_topic_gas * no_of_topics;
// TODO [todr] potential overflow of datagass
let data_gas = stack.peek(1).clone() * U256::from(schedule.log_data_gas);
let gas = try!(self.gas_add(data_gas, U256::from(log_gas)));
InstructionCost::GasMem(gas, self.mem_needed(stack.peek(0), stack.peek(1)))
let data_gas = overflowing!(stack.peek(1).overflowing_mul(U256::from(schedule.log_data_gas)));
let gas = overflowing!(data_gas.overflowing_add(U256::from(log_gas)));
InstructionCost::GasMem(gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::CALL | instructions::CALLCODE => {
match add_u256_usize(stack.peek(0), schedule.call_gas) {
(_gas, true) => InstructionCost::GasMem(U256::zero(), RequiredMem::OutOfMemory),
(mut gas, false) => {
let mem = self.mem_max(
self.mem_needed(stack.peek(5), stack.peek(6)),
self.mem_needed(stack.peek(3), stack.peek(4))
let mut gas = overflowing!(add_u256_usize(stack.peek(0), schedule.call_gas));
let mem = cmp::max(
try!(self.mem_needed(stack.peek(5), stack.peek(6))),
try!(self.mem_needed(stack.peek(3), stack.peek(4)))
);
let address = u256_to_address(stack.peek(1));
// TODO [todr] Potential overflows
if instruction == instructions::CALL && !ext.exists(&address) {
gas = gas + U256::from(schedule.call_new_account_gas);
gas = overflowing!(gas.overflowing_add(U256::from(schedule.call_new_account_gas)));
};
if stack.peek(2).clone() > U256::zero() {
gas = gas + U256::from(schedule.call_value_transfer_gas)
gas = overflowing!(gas.overflowing_add(U256::from(schedule.call_value_transfer_gas)));
};
InstructionCost::GasMem(gas,mem)
}
}
},
instructions::DELEGATECALL => {
match add_u256_usize(stack.peek(0), schedule.call_gas) {
(_gas, true) => InstructionCost::GasMem(U256::zero(), RequiredMem::OutOfMemory),
(gas, false) => {
let mem = self.mem_max(
self.mem_needed(stack.peek(4), stack.peek(5)),
self.mem_needed(stack.peek(2), stack.peek(3))
let gas = overflowing!(add_u256_usize(stack.peek(0), schedule.call_gas));
let mem = cmp::max(
try!(self.mem_needed(stack.peek(4), stack.peek(5))),
try!(self.mem_needed(stack.peek(2), stack.peek(3)))
);
InstructionCost::GasMem(gas, mem)
}
}
},
instructions::CREATE => {
let gas = U256::from(schedule.create_gas);
let mem = self.mem_needed(stack.peek(1), stack.peek(2));
let mem = try!(self.mem_needed(stack.peek(1), stack.peek(2)));
InstructionCost::GasMem(gas, mem)
},
instructions::EXP => {
@ -468,84 +458,57 @@ impl Interpreter {
InstructionCost::Gas(gas) => {
Ok((gas, 0))
},
InstructionCost::GasMem(gas, mem_size) => match mem_size {
RequiredMem::Mem(mem_size) => {
let (mem_gas, new_mem_size) = self.mem_gas_cost(schedule, mem.size(), &mem_size);
let gas = try!(self.gas_add(gas, mem_gas));
InstructionCost::GasMem(gas, mem_size) => {
let (mem_gas, new_mem_size) = try!(self.mem_gas_cost(schedule, mem.size(), &mem_size));
let gas = overflowing!(gas.overflowing_add(mem_gas));
Ok((gas, new_mem_size))
},
RequiredMem::OutOfMemory => Err(evm::Error::OutOfGas)
},
InstructionCost::GasMemCopy(gas, mem_size, copy) => match mem_size {
RequiredMem::Mem(mem_size) => {
let (mem_gas, new_mem_size) = self.mem_gas_cost(schedule, mem.size(), &mem_size);
match add_u256_usize(&copy, 31) {
(_c, true) => Err(evm::Error::OutOfGas),
(copy, false) => {
InstructionCost::GasMemCopy(gas, mem_size, copy) => {
let (mem_gas, new_mem_size) = try!(self.mem_gas_cost(schedule, mem.size(), &mem_size));
let copy = overflowing!(add_u256_usize(&copy, 31));
let copy_gas = U256::from(schedule.copy_gas) * (copy / U256::from(32));
let gas = try!(self.gas_add(try!(self.gas_add(gas, copy_gas)), mem_gas));
let gas = overflowing!(gas.overflowing_add(copy_gas));
let gas = overflowing!(gas.overflowing_add(mem_gas));
Ok((gas, new_mem_size))
}
}
},
RequiredMem::OutOfMemory => Err(evm::Error::OutOfGas)
}
}
}
fn gas_add(&self, a: U256, b: U256) -> Result<U256, evm::Error> {
match a.overflowing_add(b) {
(_val, true) => Err(evm::Error::OutOfGas),
(val, false) => Ok(val)
}
}
fn mem_gas_cost(&self, schedule: &evm::Schedule, current_mem_size: usize, mem_size: &U256) -> (U256, usize) {
fn mem_gas_cost(&self, schedule: &evm::Schedule, current_mem_size: usize, mem_size: &U256) -> Result<(U256, usize), evm::Error> {
let gas_for_mem = |mem_size: U256| {
let s = mem_size >> 5;
s * U256::from(schedule.memory_gas) + s * s / U256::from(schedule.quad_coeff_div)
// s * memory_gas + s * s / quad_coeff_div
let a = overflowing!(s.overflowing_mul(U256::from(schedule.memory_gas)));
// We need to go to U512 to calculate s*s/quad_coeff_div
let b = U512::from(s) * U512::from(s) / U512::from(schedule.quad_coeff_div);
if b > U512::from(!U256::zero()) {
Err(evm::Error::OutOfGas)
} else {
Ok(overflowing!(a.overflowing_add(U256::from(b))))
}
};
let current_mem_size = U256::from(current_mem_size);
let req_mem_size_rounded = ((mem_size.clone() + U256::from(31)) >> 5) << 5;
let new_mem_gas = gas_for_mem(U256::from(req_mem_size_rounded));
let current_mem_gas = gas_for_mem(current_mem_size);
let req_mem_size_rounded = (overflowing!(mem_size.overflowing_add(U256::from(31))) >> 5) << 5;
let new_mem_gas = try!(gas_for_mem(U256::from(req_mem_size_rounded)));
let current_mem_gas = try!(gas_for_mem(current_mem_size));
(if req_mem_size_rounded > current_mem_size {
Ok((if req_mem_size_rounded > current_mem_size {
new_mem_gas - current_mem_gas
} else {
U256::zero()
}, req_mem_size_rounded.low_u64() as usize)
}, req_mem_size_rounded.low_u64() as usize))
}
fn mem_max(&self, m_a: RequiredMem, m_b: RequiredMem) -> RequiredMem {
match (m_a, m_b) {
(RequiredMem::Mem(a), RequiredMem::Mem(b)) => {
RequiredMem::Mem(cmp::max(a, b))
},
(RequiredMem::OutOfMemory, _) | (_, RequiredMem::OutOfMemory) => {
RequiredMem::OutOfMemory
}
}
fn mem_needed_const(&self, mem: &U256, add: usize) -> Result<U256, evm::Error> {
Ok(overflowing!(mem.overflowing_add(U256::from(add))))
}
fn mem_needed_const(&self, mem: &U256, add: usize) -> RequiredMem {
match mem.overflowing_add(U256::from(add)) {
(_, true) => RequiredMem::OutOfMemory,
(mem, false) => RequiredMem::Mem(mem)
}
}
fn mem_needed(&self, offset: &U256, size: &U256) -> RequiredMem {
fn mem_needed(&self, offset: &U256, size: &U256) -> Result<U256, ::evm::Error> {
if self.is_zero(size) {
return RequiredMem::Mem(U256::zero());
return Ok(U256::zero());
}
match offset.clone().overflowing_add(size.clone()) {
(_result, true) => RequiredMem::OutOfMemory,
(result, false) => {
RequiredMem::Mem(result)
}
}
Ok(overflowing!(offset.overflowing_add(size.clone())))
}
fn exec_instruction(&self,
@ -646,7 +609,6 @@ impl Interpreter {
return match call_result {
MessageCallResult::Success(gas_left) => {
println!("Unused: {}", gas_left);
stack.push(U256::one());
Ok(InstructionResult::UnusedGas(gas_left))
},
@ -906,41 +868,34 @@ impl Interpreter {
instructions::ADD => {
let a = stack.pop_back();
let b = stack.pop_back();
let (c, _overflow) = a.overflowing_add(b);
stack.push(c);
stack.push(a.overflowing_add(b).0);
},
instructions::MUL => {
let a = stack.pop_back();
let b = stack.pop_back();
let (c, _overflow) = a.overflowing_mul(b);
stack.push(c);
stack.push(a.overflowing_mul(b).0);
},
instructions::SUB => {
let a = stack.pop_back();
let b = stack.pop_back();
let (c, _overflow) = a.overflowing_sub(b);
stack.push(c);
stack.push(a.overflowing_sub(b).0);
},
instructions::DIV => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(match !self.is_zero(&b) {
true => {
let (c, _overflow) = a.overflowing_div(b);
c
},
false => U256::zero()
stack.push(if !self.is_zero(&b) {
a.overflowing_div(b).0
} else {
U256::zero()
});
},
instructions::MOD => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(match !self.is_zero(&b) {
true => {
let (c, _overflow) = a.overflowing_rem(b);
c
},
false => U256::zero()
stack.push(if !self.is_zero(&b) {
a.overflowing_rem(b).0
} else {
U256::zero()
});
},
instructions::SDIV => {
@ -954,7 +909,7 @@ impl Interpreter {
} else if a == min && b == !U256::zero() {
min
} else {
let (c, _overflow) = a.overflowing_div(b);
let c = a.overflowing_div(b).0;
set_sign(c, sign_a ^ sign_b)
});
},
@ -962,10 +917,10 @@ impl Interpreter {
let ua = stack.pop_back();
let ub = stack.pop_back();
let (a, sign_a) = get_and_reset_sign(ua);
let (b, _sign_b) = get_and_reset_sign(ub);
let b = get_and_reset_sign(ub).0;
stack.push(if !self.is_zero(&b) {
let (c, _overflow) = a.overflowing_rem(b);
let c = a.overflowing_rem(b).0;
set_sign(c, sign_a)
} else {
U256::zero()
@ -974,7 +929,7 @@ impl Interpreter {
instructions::EXP => {
let base = stack.pop_back();
let expon = stack.pop_back();
let (res, _overflow) = base.overflowing_pow(expon);
let res = base.overflowing_pow(expon).0;
stack.push(res);
},
instructions::NOT => {
@ -1052,8 +1007,8 @@ impl Interpreter {
stack.push(if !self.is_zero(&c) {
// upcast to 512
let a5 = U512::from(a);
let (res, _overflow) = a5.overflowing_add(U512::from(b));
let (x, _overflow) = res.overflowing_rem(U512::from(c));
let res = a5.overflowing_add(U512::from(b)).0;
let x = res.overflowing_rem(U512::from(c)).0;
U256::from(x)
} else {
U256::zero()
@ -1066,8 +1021,8 @@ impl Interpreter {
stack.push(if !self.is_zero(&c) {
let a5 = U512::from(a);
let (res, _overflow) = a5.overflowing_mul(U512::from(b));
let (x, _overflow) = res.overflowing_rem(U512::from(c));
let res = a5.overflowing_mul(U512::from(b)).0;
let x = res.overflowing_rem(U512::from(c)).0;
U256::from(x)
} else {
U256::zero()
@ -1123,8 +1078,7 @@ fn get_and_reset_sign(value: U256) -> (U256, bool) {
fn set_sign(value: U256, sign: bool) -> U256 {
if sign {
let (val, _overflow) = (!U256::zero() ^ value).overflowing_add(U256::one());
val
(!U256::zero() ^ value).overflowing_add(U256::one()).0
} else {
value
}
@ -1145,6 +1099,23 @@ fn address_to_u256(value: Address) -> U256 {
U256::from(H256::from(value).as_slice())
}
#[test]
fn test_mem_gas_cost() {
// given
let interpreter = Interpreter;
let schedule = evm::Schedule::default();
let current_mem_size = 5;
let mem_size = !U256::zero();
// when
let result = interpreter.mem_gas_cost(&schedule, current_mem_size, &mem_size);
// then
if let Ok(_) = result {
assert!(false, "Should fail with OutOfGas");
}
}
#[cfg(test)]
mod tests {
use common::*;
@ -1173,7 +1144,7 @@ mod tests {
let mem_size = U256::from(5);
// when
let (mem_cost, mem_size) = interpreter.mem_gas_cost(&schedule, current_mem_size, &mem_size);
let (mem_cost, mem_size) = interpreter.mem_gas_cost(&schedule, current_mem_size, &mem_size).unwrap();
// then
assert_eq!(mem_cost, U256::from(3));

View File

@ -171,7 +171,7 @@ impl<'a> Executive<'a> {
// at first, transfer value to destination
self.state.transfer_balance(&params.sender, &params.address, &params.value);
debug!("Executive::call(params={:?}) self.env_info={:?}", params, self.info);
trace!("Executive::call(params={:?}) self.env_info={:?}", params, self.info);
if self.engine.is_builtin(&params.code_address) {
// if destination is builtin, try to execute it

View File

@ -82,6 +82,7 @@ extern crate heapsize;
extern crate crypto;
extern crate time;
extern crate env_logger;
extern crate num_cpus;
#[cfg(feature = "jit" )]
extern crate evmjit;
#[macro_use]

View File

@ -1,59 +1,245 @@
use std::thread::{JoinHandle, self};
use std::sync::atomic::{AtomicBool, Ordering as AtomicOrdering};
use util::*;
use verification::*;
use error::*;
use engine::Engine;
use sync::*;
use views::*;
use header::*;
/// A queue of blocks. Sits between network or other I/O and the BlockChain.
/// Sorts them ready for blockchain insertion.
pub struct BlockQueue {
engine: Arc<Box<Engine>>,
more_to_verify: Arc<Condvar>,
verification: Arc<Mutex<Verification>>,
verifiers: Vec<JoinHandle<()>>,
deleting: Arc<AtomicBool>,
ready_signal: Arc<QueueSignal>,
processing: HashSet<H256>
}
struct UnVerifiedBlock {
header: Header,
bytes: Bytes,
}
struct VerifyingBlock {
hash: H256,
block: Option<PreVerifiedBlock>,
}
struct QueueSignal {
signalled: AtomicBool,
message_channel: IoChannel<NetSyncMessage>,
}
impl QueueSignal {
fn set(&self) {
if self.signalled.compare_and_swap(false, true, AtomicOrdering::Relaxed) == false {
self.message_channel.send(UserMessage(SyncMessage::BlockVerified)).expect("Error sending BlockVerified message");
}
}
fn reset(&self) {
self.signalled.store(false, AtomicOrdering::Relaxed);
}
}
#[derive(Default)]
struct Verification {
unverified: VecDeque<UnVerifiedBlock>,
verified: VecDeque<PreVerifiedBlock>,
verifying: VecDeque<VerifyingBlock>,
bad: HashSet<H256>,
}
impl BlockQueue {
/// Creates a new queue instance.
pub fn new(engine: Arc<Box<Engine>>, message_channel: IoChannel<NetSyncMessage>) -> BlockQueue {
let verification = Arc::new(Mutex::new(Verification::default()));
let more_to_verify = Arc::new(Condvar::new());
let ready_signal = Arc::new(QueueSignal { signalled: AtomicBool::new(false), message_channel: message_channel });
let deleting = Arc::new(AtomicBool::new(false));
let mut verifiers: Vec<JoinHandle<()>> = Vec::new();
let thread_count = max(::num_cpus::get(), 2) - 1;
for _ in 0..thread_count {
let verification = verification.clone();
let engine = engine.clone();
let more_to_verify = more_to_verify.clone();
let ready_signal = ready_signal.clone();
let deleting = deleting.clone();
verifiers.push(thread::spawn(move || BlockQueue::verify(verification, engine, more_to_verify, ready_signal, deleting)));
}
BlockQueue {
engine: engine,
message_channel: message_channel,
bad: HashSet::new(),
ready_signal: ready_signal.clone(),
more_to_verify: more_to_verify.clone(),
verification: verification.clone(),
verifiers: verifiers,
deleting: deleting.clone(),
processing: HashSet::new(),
}
}
fn verify(verification: Arc<Mutex<Verification>>, engine: Arc<Box<Engine>>, wait: Arc<Condvar>, ready: Arc<QueueSignal>, deleting: Arc<AtomicBool>) {
while !deleting.load(AtomicOrdering::Relaxed) {
{
let mut lock = verification.lock().unwrap();
while lock.unverified.is_empty() && !deleting.load(AtomicOrdering::Relaxed) {
lock = wait.wait(lock).unwrap();
}
if deleting.load(AtomicOrdering::Relaxed) {
return;
}
}
let block = {
let mut v = verification.lock().unwrap();
if v.unverified.is_empty() {
continue;
}
let block = v.unverified.pop_front().unwrap();
v.verifying.push_back(VerifyingBlock{ hash: block.header.hash(), block: None });
block
};
let block_hash = block.header.hash();
match verify_block_unordered(block.header, block.bytes, engine.deref().deref()) {
Ok(verified) => {
let mut v = verification.lock().unwrap();
for e in &mut v.verifying {
if e.hash == block_hash {
e.block = Some(verified);
break;
}
}
if !v.verifying.is_empty() && v.verifying.front().unwrap().hash == block_hash {
// we're next!
let mut vref = v.deref_mut();
BlockQueue::drain_verifying(&mut vref.verifying, &mut vref.verified, &mut vref.bad);
ready.set();
}
},
Err(err) => {
let mut v = verification.lock().unwrap();
warn!(target: "client", "Stage 2 block verification failed for {}\nError: {:?}", block_hash, err);
v.bad.insert(block_hash.clone());
v.verifying.retain(|e| e.hash != block_hash);
let mut vref = v.deref_mut();
BlockQueue::drain_verifying(&mut vref.verifying, &mut vref.verified, &mut vref.bad);
ready.set();
}
}
}
}
fn drain_verifying(verifying: &mut VecDeque<VerifyingBlock>, verified: &mut VecDeque<PreVerifiedBlock>, bad: &mut HashSet<H256>) {
while !verifying.is_empty() && verifying.front().unwrap().block.is_some() {
let block = verifying.pop_front().unwrap().block.unwrap();
if bad.contains(&block.header.parent_hash) {
bad.insert(block.header.hash());
}
else {
verified.push_back(block);
}
}
}
/// Clear the queue and stop verification activity.
pub fn clear(&mut self) {
let mut verification = self.verification.lock().unwrap();
verification.unverified.clear();
verification.verifying.clear();
}
/// Add a block to the queue.
pub fn import_block(&mut self, bytes: &[u8]) -> ImportResult {
let header = BlockView::new(bytes).header();
if self.bad.contains(&header.hash()) {
pub fn import_block(&mut self, bytes: Bytes) -> ImportResult {
let header = BlockView::new(&bytes).header();
if self.processing.contains(&header.hash()) {
return Err(ImportError::AlreadyQueued);
}
{
let mut verification = self.verification.lock().unwrap();
if verification.bad.contains(&header.hash()) {
return Err(ImportError::Bad(None));
}
if self.bad.contains(&header.parent_hash) {
self.bad.insert(header.hash());
if verification.bad.contains(&header.parent_hash) {
verification.bad.insert(header.hash());
return Err(ImportError::Bad(None));
}
}
try!(verify_block_basic(&header, bytes, self.engine.deref().deref()).map_err(|e| {
warn!(target: "client", "Stage 1 block verification failed for {}\nError: {:?}", BlockView::new(&bytes).header_view().sha3(), e);
e
}));
try!(verify_block_unordered(&header, bytes, self.engine.deref().deref()).map_err(|e| {
warn!(target: "client", "Stage 2 block verification failed for {}\nError: {:?}", BlockView::new(&bytes).header_view().sha3(), e);
e
}));
try!(self.message_channel.send(UserMessage(SyncMessage::BlockVerified(bytes.to_vec()))).map_err(|e| Error::from(e)));
match verify_block_basic(&header, &bytes, self.engine.deref().deref()) {
Ok(()) => {
self.processing.insert(header.hash());
self.verification.lock().unwrap().unverified.push_back(UnVerifiedBlock { header: header, bytes: bytes });
self.more_to_verify.notify_all();
},
Err(err) => {
warn!(target: "client", "Stage 1 block verification failed for {}\nError: {:?}", BlockView::new(&bytes).header_view().sha3(), err);
self.verification.lock().unwrap().bad.insert(header.hash());
}
}
Ok(())
}
/// Mark given block and all its children as bad. Stops verification.
pub fn mark_as_bad(&mut self, hash: &H256) {
self.bad.insert(hash.clone());
//TODO: walk the queue
let mut verification_lock = self.verification.lock().unwrap();
let mut verification = verification_lock.deref_mut();
verification.bad.insert(hash.clone());
let mut new_verified = VecDeque::new();
for block in verification.verified.drain(..) {
if verification.bad.contains(&block.header.parent_hash) {
verification.bad.insert(block.header.hash());
}
else {
new_verified.push_back(block);
}
}
verification.verified = new_verified;
}
pub fn drain(&mut self, max: usize) -> Vec<PreVerifiedBlock> {
let mut verification = self.verification.lock().unwrap();
let count = min(max, verification.verified.len());
let mut result = Vec::with_capacity(count);
for _ in 0..count {
let block = verification.verified.pop_front().unwrap();
self.processing.remove(&block.header.hash());
result.push(block);
}
self.ready_signal.reset();
result
}
}
impl Drop for BlockQueue {
fn drop(&mut self) {
self.clear();
self.deleting.store(true, AtomicOrdering::Relaxed);
self.more_to_verify.notify_all();
for t in self.verifiers.drain(..) {
t.join().unwrap();
}
}
}
#[cfg(test)]
mod tests {
use util::*;
use spec::*;
use queue::*;
#[test]
fn test_block_queue() {
// TODO better test
let spec = Spec::new_test();
let engine = spec.to_engine().unwrap();
let _ = BlockQueue::new(Arc::new(engine), IoChannel::disconnected());
}
}

View File

@ -54,8 +54,8 @@ impl IoHandler<NetSyncMessage> for ClientIoHandler {
#[allow(match_ref_pats)]
fn message<'s>(&'s mut self, _io: &mut IoContext<'s, NetSyncMessage>, net_message: &'s mut NetSyncMessage) {
if let &mut UserMessage(ref mut message) = net_message {
if let &mut SyncMessage::BlockVerified(ref mut bytes) = message {
self.client.write().unwrap().import_verified_block(mem::replace(bytes, Bytes::new()));
if let &mut SyncMessage::BlockVerified= message {
self.client.write().unwrap().import_verified_blocks();
}
}
}

View File

@ -150,10 +150,10 @@ impl State {
let e = try!(Executive::new(self, env_info, engine).transact(t));
//println!("Executed: {:?}", e);
debug!("Applied transaction. Diff:\n{}\n", StateDiff::diff_pod(&old, &self.to_pod()));
trace!("Applied transaction. Diff:\n{}\n", StateDiff::diff_pod(&old, &self.to_pod()));
self.commit();
let receipt = Receipt::new(self.root().clone(), e.cumulative_gas_used, e.logs);
debug!("Transaction receipt: {:?}", receipt);
trace!("Transaction receipt: {:?}", receipt);
Ok(receipt)
}

View File

@ -401,7 +401,7 @@ impl ChainSync {
let header_view = HeaderView::new(header_rlp.as_raw());
// TODO: Decompose block and add to self.headers and self.bodies instead
if header_view.number() == From::from(self.last_imported_block + 1) {
match io.chain().import_block(block_rlp.as_raw()) {
match io.chain().import_block(block_rlp.as_raw().to_vec()) {
Err(ImportError::AlreadyInChain) => {
trace!(target: "sync", "New block already in chain {:?}", h);
},
@ -655,7 +655,7 @@ impl ChainSync {
block_rlp.append_raw(body.at(0).as_raw(), 1);
block_rlp.append_raw(body.at(1).as_raw(), 1);
let h = &headers.1[i].hash;
match io.chain().import_block(&block_rlp.out()) {
match io.chain().import_block(block_rlp.out()) {
Err(ImportError::AlreadyInChain) => {
trace!(target: "sync", "Block already in chain {:?}", h);
self.last_imported_block = headers.0 + i as BlockNumber;

View File

@ -43,7 +43,7 @@ pub enum SyncMessage {
/// New block has been imported into the blockchain
NewChainBlock(Bytes),
/// A block is ready
BlockVerified(Bytes),
BlockVerified,
}
pub type NetSyncMessage = NetworkIoMessage<SyncMessage>;

View File

@ -43,7 +43,7 @@ impl TestBlockChainClient {
rlp.append(&header);
rlp.append_raw(&rlp::NULL_RLP, 1);
rlp.append_raw(uncles.as_raw(), 1);
self.import_block(rlp.as_raw()).unwrap();
self.import_block(rlp.as_raw().to_vec()).unwrap();
}
}
}
@ -110,7 +110,7 @@ impl BlockChainClient for TestBlockChainClient {
None
}
fn import_block(&mut self, b: &[u8]) -> ImportResult {
fn import_block(&mut self, b: Bytes) -> ImportResult {
let header = Rlp::new(&b).val_at::<BlockHeader>(0);
let number: usize = header.number as usize;
if number > self.blocks.len() {
@ -132,7 +132,7 @@ impl BlockChainClient for TestBlockChainClient {
if number == self.numbers.len() {
self.difficulty = self.difficulty + header.difficulty;
self.last_hash = header.hash();
self.blocks.insert(header.hash(), b.to_vec());
self.blocks.insert(header.hash(), b);
self.numbers.insert(number, header.hash());
let mut parent_hash = header.parent_hash;
if number > 0 {

View File

@ -9,6 +9,16 @@ use common::*;
use engine::Engine;
use blockchain::*;
/// Preprocessed block data gathered in `verify_block_unordered` call
pub struct PreVerifiedBlock {
/// Populated block header
pub header: Header,
/// Populated block transactions
pub transactions: Vec<Transaction>,
/// Block bytes
pub bytes: Bytes,
}
/// Phase 1 quick block verification. Only does checks that are cheap. Operates on a single block
pub fn verify_block_basic(header: &Header, bytes: &[u8], engine: &Engine) -> Result<(), Error> {
try!(verify_header(&header, engine));
@ -29,19 +39,26 @@ pub fn verify_block_basic(header: &Header, bytes: &[u8], engine: &Engine) -> Res
/// Phase 2 verification. Perform costly checks such as transaction signatures and block nonce for ethash.
/// Still operates on a individual block
/// TODO: return cached transactions, header hash.
pub fn verify_block_unordered(header: &Header, bytes: &[u8], engine: &Engine) -> Result<(), Error> {
try!(engine.verify_block_unordered(&header, Some(bytes)));
for u in Rlp::new(bytes).at(2).iter().map(|rlp| rlp.as_val::<Header>()) {
/// Returns a PreVerifiedBlock structure populated with transactions
pub fn verify_block_unordered(header: Header, bytes: Bytes, engine: &Engine) -> Result<PreVerifiedBlock, Error> {
try!(engine.verify_block_unordered(&header, Some(&bytes)));
for u in Rlp::new(&bytes).at(2).iter().map(|rlp| rlp.as_val::<Header>()) {
try!(engine.verify_block_unordered(&u, None));
}
// Verify transactions.
// TODO: pass in pre-recovered transactions - maybe verify_transaction wants to call `sender()`.
let v = BlockView::new(bytes);
let mut transactions = Vec::new();
{
let v = BlockView::new(&bytes);
for t in v.transactions() {
try!(engine.verify_transaction(&t, &header));
transactions.push(t);
}
Ok(())
}
Ok(PreVerifiedBlock {
header: header,
transactions: transactions,
bytes: bytes,
})
}
/// Phase 3 verification. Check block information against parent and uncles.

View File

@ -61,6 +61,44 @@ impl<'a> Hashable for TransactionView<'a> {
}
}
/// View onto transaction rlp.
pub struct AccountView<'a> {
rlp: Rlp<'a>
}
impl<'a> AccountView<'a> {
/// Creates new view onto block from raw bytes.
pub fn new(bytes: &'a [u8]) -> AccountView<'a> {
AccountView {
rlp: Rlp::new(bytes)
}
}
/// Creates new view onto block from rlp.
pub fn new_from_rlp(rlp: Rlp<'a>) -> AccountView<'a> {
AccountView {
rlp: rlp
}
}
/// Return reference to underlaying rlp.
pub fn rlp(&self) -> &Rlp<'a> {
&self.rlp
}
/// Get the nonce field of the transaction.
pub fn nonce(&self) -> U256 { self.rlp.val_at(0) }
/// Get the gas_price field of the transaction.
pub fn balance(&self) -> U256 { self.rlp.val_at(1) }
/// Get the gas field of the transaction.
pub fn storage_root(&self) -> H256 { self.rlp.val_at(2) }
/// Get the value field of the transaction.
pub fn code_hash(&self) -> H256 { self.rlp.val_at(3) }
}
/// View onto block rlp.
pub struct BlockView<'a> {
rlp: Rlp<'a>
@ -97,13 +135,13 @@ impl<'a> BlockView<'a> {
}
/// Return List of transactions in given block.
pub fn transaction_views(&self) -> Vec<TransactionView> {
self.rlp.at(1).iter().map(TransactionView::new_from_rlp).collect()
pub fn transactions(&self) -> Vec<Transaction> {
self.rlp.val_at(1)
}
/// Return List of transactions in given block.
pub fn transactions(&self) -> Vec<Transaction> {
self.rlp.val_at(1)
pub fn transaction_views(&self) -> Vec<TransactionView> {
self.rlp.at(1).iter().map(TransactionView::new_from_rlp).collect()
}
/// Return transaction hashes.
@ -116,6 +154,11 @@ impl<'a> BlockView<'a> {
self.rlp.val_at(2)
}
/// Return List of transactions in given block.
pub fn uncle_views(&self) -> Vec<HeaderView> {
self.rlp.at(2).iter().map(|rlp| HeaderView::new_from_rlp(rlp)).collect()
}
/// Return list of uncle hashes of given block.
pub fn uncle_hashes(&self) -> Vec<H256> {
self.rlp.at(2).iter().map(|rlp| rlp.as_raw().sha3()).collect()

View File

@ -5,10 +5,6 @@ license = "GPL-3.0"
name = "ethcore-util"
version = "0.1.0"
authors = ["Ethcore <admin@ethcore.io>"]
build = "build.rs"
[build-dependencies]
gcc = "0.3"
[dependencies]
log = "0.3"
@ -27,6 +23,7 @@ elastic-array = "0.4"
heapsize = "0.2"
itertools = "0.4"
slab = { git = "https://github.com/arkpar/slab.git" }
sha3 = { path = "sha3" }
[dev-dependencies]
json-tests = { path = "json-tests" }

11
util/sha3/Cargo.toml Normal file
View File

@ -0,0 +1,11 @@
[package]
description = "Rust bindings for tinykeccak C library"
homepage = "http://ethcore.io"
license = "GPL-3.0"
name = "sha3"
version = "0.1.0"
authors = ["Ethcore <admin@ethcore.io>"]
build = "build.rs"
[build-dependencies]
gcc = "0.3"

4
util/sha3/src/lib.rs Normal file
View File

@ -0,0 +1,4 @@
extern {
pub fn sha3_256(out: *mut u8, outlen: usize, input: *const u8, inputlen: usize) -> i32;
pub fn sha3_512(out: *mut u8, outlen: usize, input: *const u8, inputlen: usize) -> i32;
}

View File

@ -215,10 +215,14 @@ macro_rules! impl_hash {
}
impl fmt::Display for $from {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for i in self.0[0..3].iter() {
for i in self.0[0..2].iter() {
try!(write!(f, "{:02x}", i));
}
write!(f, "…{:02x}", self.0.last().unwrap())
try!(write!(f, ""));
for i in self.0[$size - 4..$size].iter() {
try!(write!(f, "{:02x}", i));
}
Ok(())
}
}
@ -544,7 +548,7 @@ mod tests {
fn hash() {
let h = H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
assert_eq!(H64::from_str("0123456789abcdef").unwrap(), h);
assert_eq!(format!("{}", h), "012345…ef");
assert_eq!(format!("{}", h), "012389abcdef");
assert_eq!(format!("{:?}", h), "0123456789abcdef");
assert_eq!(h.hex(), "0123456789abcdef");
assert!(h == h);

View File

@ -151,14 +151,22 @@ impl<Message> Handler for IoManager<Message> where Message: Send + 'static {
/// Allows sending messages into the event loop. All the IO handlers will get the message
/// in the `message` callback.
pub struct IoChannel<Message> where Message: Send {
channel: Sender<IoMessage<Message>>
channel: Option<Sender<IoMessage<Message>>>
}
impl<Message> IoChannel<Message> where Message: Send {
pub fn send(&mut self, message: Message) -> Result<(), IoError> {
try!(self.channel.send(IoMessage::UserMessage(message)));
/// Send a msessage through the channel
pub fn send(&self, message: Message) -> Result<(), IoError> {
if let Some(ref channel) = self.channel {
try!(channel.send(IoMessage::UserMessage(message)));
}
Ok(())
}
/// Create a new channel to connected to event loop.
pub fn disconnected() -> IoChannel<Message> {
IoChannel { channel: None }
}
}
/// General IO Service. Starts an event loop and dispatches IO requests.
@ -198,7 +206,7 @@ impl<Message> IoService<Message> where Message: Send + 'static {
/// Create a new message channel
pub fn channel(&mut self) -> IoChannel<Message> {
IoChannel { channel: self.host_channel.clone() }
IoChannel { channel: Some(self.host_channel.clone()) }
}
}

View File

@ -561,13 +561,13 @@ impl<Message> IoHandler<NetworkIoMessage<Message>> for Host<Message> where Messa
let port = self.info.config.listen_address.port();
self.info.listen_port = port;
// self.add_node("enode://a9a921de2ff09a9a4d38b623c67b2d6b477a8e654ae95d874750cbbcb31b33296496a7b4421934e2629269e180823e52c15c2b19fc59592ec51ffe4f2de76ed7@127.0.0.1:30303");
// GO bootnodes
self.add_node("enode://a9a921de2ff09a9a4d38b623c67b2d6b477a8e654ae95d874750cbbcb31b33296496a7b4421934e2629269e180823e52c15c2b19fc59592ec51ffe4f2de76ed7@127.0.0.1:30303");
/* // GO bootnodes
self.add_node("enode://a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968de0e3bec910127f134779fbcb0cb6d3331163c@52.16.188.185:30303"); // IE
self.add_node("enode://de471bccee3d042261d52e9bff31458daecc406142b401d4cd848f677479f73104b9fdeb090af9583d3391b7f10cb2ba9e26865dd5fca4fcdc0fb1e3b723c786@54.94.239.50:30303"); // BR
self.add_node("enode://1118980bf48b0a3640bdba04e0fe78b1add18e1cd99bf22d53daac1fd9972ad650df52176e7c7d89d1114cfef2bc23a2959aa54998a46afcf7d91809f0855082@52.74.57.123:30303"); // SG
// ETH/DEV cpp-ethereum (poc-9.ethdev.com)
self.add_node("enode://979b7fa28feeb35a4741660a16076f1943202cb72b6af70d327f053e248bab9ba81760f39d0701ef1d8f89cc1fbd2cacba0710a12cd5314d5e0c9021aa3637f9@5.1.83.226:30303");
self.add_node("enode://979b7fa28feeb35a4741660a16076f1943202cb72b6af70d327f053e248bab9ba81760f39d0701ef1d8f89cc1fbd2cacba0710a12cd5314d5e0c9021aa3637f9@5.1.83.226:30303");*/
}
fn stream_hup<'s>(&'s mut self, io: &mut IoContext<'s, NetworkIoMessage<Message>>, stream: StreamToken) {

View File

@ -34,6 +34,22 @@ pub struct NibbleSlice<'a> {
offset_encode_suffix: usize,
}
pub struct NibbleSliceIterator<'a> {
p: &'a NibbleSlice<'a>,
i: usize,
}
impl<'a> Iterator for NibbleSliceIterator<'a> {
type Item = u8;
fn next(&mut self) -> Option<u8> {
self.i += 1;
match self.i <= self.p.len() {
true => Some(self.p.at(self.i - 1)),
false => None,
}
}
}
impl<'a, 'view> NibbleSlice<'a> where 'a: 'view {
/// Create a new nibble slice with the given byte-slice.
pub fn new(data: &[u8]) -> NibbleSlice { NibbleSlice::new_offset(data, 0) }
@ -41,7 +57,7 @@ impl<'a, 'view> NibbleSlice<'a> where 'a: 'view {
/// Create a new nibble slice with the given byte-slice with a nibble offset.
pub fn new_offset(data: &'a [u8], offset: usize) -> NibbleSlice { NibbleSlice{data: data, offset: offset, data_encode_suffix: &b""[..], offset_encode_suffix: 0} }
///
/// Create a composed nibble slice; one followed by the other.
pub fn new_composed(a: &'a NibbleSlice, b: &'a NibbleSlice) -> NibbleSlice<'a> { NibbleSlice{data: a.data, offset: a.offset, data_encode_suffix: b.data, offset_encode_suffix: b.offset} }
/*pub fn new_composed_bytes_offset(a: &NibbleSlice, b: &NibbleSlice) -> (Bytes, usize) {
@ -60,6 +76,10 @@ impl<'a, 'view> NibbleSlice<'a> where 'a: 'view {
(r, a.len() + b.len())
}*/
pub fn iter(&'a self) -> NibbleSliceIterator<'a> {
NibbleSliceIterator { p: self, i: 0 }
}
/// Create a new nibble slice from the given HPE encoded data (e.g. output of `encoded()`).
pub fn from_encoded(data: &'a [u8]) -> (NibbleSlice, bool) {
(Self::new_offset(data, if data[0] & 16 == 16 {1} else {2}), data[0] & 32 == 32)
@ -189,6 +209,14 @@ mod tests {
}
}
#[test]
fn iterator() {
let n = NibbleSlice::new(D);
let mut nibbles: Vec<u8> = vec![];
nibbles.extend(n.iter());
assert_eq!(nibbles, (0u8..6).collect::<Vec<_>>())
}
#[test]
fn mid() {
let n = NibbleSlice::new(D);

View File

@ -70,7 +70,9 @@ impl OverlayDB {
let mut ret = 0u32;
for i in self.overlay.drain().into_iter() {
let (key, (value, rc)) = i;
if rc != 0 {
// until we figure out state trie pruning, only commit stuff when it has a strictly positive delkta of RCs -
// this prevents RCs being reduced to 0 where the DB would pretent that the node had been removed.
if rc > 0 {
match self.payload(&key) {
Some(x) => {
let (back_value, back_rc) = x;

View File

@ -1,14 +1,13 @@
//! Wrapper around tiny-keccak crate.
extern crate sha3 as sha3_ext;
use std::mem::uninitialized;
use bytes::{BytesConvertable, Populatable};
use hash::{H256, FixedHash};
use self::sha3_ext::*;
pub const SHA3_EMPTY: H256 = H256( [0xc5, 0xd2, 0x46, 0x01, 0x86, 0xf7, 0x23, 0x3c, 0x92, 0x7e, 0x7d, 0xb2, 0xdc, 0xc7, 0x03, 0xc0, 0xe5, 0x00, 0xb6, 0x53, 0xca, 0x82, 0x27, 0x3b, 0x7b, 0xfa, 0xd8, 0x04, 0x5d, 0x85, 0xa4, 0x70] );
extern {
fn sha3_256(out: *mut u8, outlen: usize, input: *const u8, inputlen: usize) -> i32;
}
/// Types implementing this trait are sha3able.
///

View File

@ -5,7 +5,7 @@ use rlp::*;
use super::journal::*;
/// Type of node in the trie and essential information thereof.
#[derive(Eq, PartialEq, Debug)]
#[derive(Clone, Eq, PartialEq, Debug)]
pub enum Node<'a> {
Empty,
Leaf(NibbleSlice<'a>, &'a[u8]),

View File

@ -42,7 +42,7 @@ impl<'db> TrieDB<'db> {
/// Panics, if `root` does not exist
pub fn new(db: &'db HashDB, root: &'db H256) -> Self {
if !db.exists(root) {
flush(format!("Trie root not found {}", root));
flushln!("TrieDB::new({}): Trie root not found!", root);
panic!("Trie root not found!");
}
TrieDB {
@ -109,7 +109,12 @@ impl<'db> TrieDB<'db> {
/// Get the root node's RLP.
fn root_node(&self) -> Node {
Node::decoded(self.db.lookup(&self.root).expect("Trie root not found!"))
Node::decoded(self.root_data())
}
/// Get the data of the root node.
fn root_data(&self) -> &[u8] {
self.db.lookup(&self.root).expect("Trie root not found!")
}
/// Get the root node as a `Node`.
@ -198,6 +203,122 @@ impl<'db> TrieDB<'db> {
}
}
#[derive(Clone, Eq, PartialEq)]
enum Status {
Entering,
At,
AtChild(usize),
Exiting,
}
#[derive(Clone, Eq, PartialEq)]
struct Crumb<'a> {
node: Node<'a>,
// key: &'a[u8],
status: Status,
}
impl<'a> Crumb<'a> {
/// Move on to next status in the node's sequence.
fn increment(&mut self) {
self.status = match (&self.status, &self.node) {
(_, &Node::Empty) => Status::Exiting,
(&Status::Entering, _) => Status::At,
(&Status::At, &Node::Branch(_, _)) => Status::AtChild(0),
(&Status::AtChild(x), &Node::Branch(_, _)) if x < 15 => Status::AtChild(x + 1),
_ => Status::Exiting,
}
}
}
/// Iterator for going through all values in the trie.
#[derive(Clone)]
pub struct TrieDBIterator<'a> {
db: &'a TrieDB<'a>,
trail: Vec<Crumb<'a>>,
key_nibbles: Bytes,
}
impl<'a> TrieDBIterator<'a> {
/// Create a new iterator.
fn new(db: &'a TrieDB) -> TrieDBIterator<'a> {
let mut r = TrieDBIterator {
db: db,
trail: vec![],
key_nibbles: Vec::new(),
};
r.descend(db.root_data());
r
}
/// Descend into a payload.
fn descend(&mut self, d: &'a [u8]) {
self.trail.push(Crumb {
status: Status::Entering,
node: self.db.get_node(d)
});
match self.trail.last().unwrap().node {
Node::Leaf(n, _) | Node::Extension(n, _) => { self.key_nibbles.extend(n.iter()); },
_ => {}
}
}
/// Descend into a payload and get the next item.
fn descend_next(&mut self, d: &'a [u8]) -> Option<(Bytes, &'a [u8])> { self.descend(d); self.next() }
/// The present key.
fn key(&self) -> Bytes {
// collapse the key_nibbles down to bytes.
self.key_nibbles.iter().step(2).zip(self.key_nibbles.iter().skip(1).step(2)).map(|(h, l)| h * 16 + l).collect()
}
}
impl<'a> Iterator for TrieDBIterator<'a> {
type Item = (Bytes, &'a [u8]);
fn next(&mut self) -> Option<Self::Item> {
let b = match self.trail.last_mut() {
Some(ref mut b) => { b.increment(); b.clone() },
None => return None
};
match (b.status, b.node) {
(Status::Exiting, n) => {
match n {
Node::Leaf(n, _) | Node::Extension(n, _) => {
let l = self.key_nibbles.len();
self.key_nibbles.truncate(l - n.len());
},
Node::Branch(_, _) => { self.key_nibbles.pop(); },
_ => {}
}
self.trail.pop();
self.next()
},
(Status::At, Node::Leaf(_, v)) => Some((self.key(), v)),
(Status::At, Node::Extension(_, d)) => self.descend_next(d),
(Status::At, Node::Branch(_, Some(v))) => Some((self.key(), v)),
(Status::At, Node::Branch(_, _)) => self.next(),
(Status::AtChild(i), Node::Branch(children, _)) if children[i].len() > 0 => {
match i {
0 => self.key_nibbles.push(0),
i => *self.key_nibbles.last_mut().unwrap() = i as u8,
}
self.descend_next(children[i])
},
(Status::AtChild(i), Node::Branch(_, _)) => {
if i == 0 { self.key_nibbles.push(0); }
self.next()
},
_ => panic!() // Should never see Entering or AtChild without a Branch here.
}
}
}
impl<'db> TrieDB<'db> {
/// Get all keys/values stored in the trie.
pub fn iter(&self) -> TrieDBIterator { TrieDBIterator::new(self) }
}
impl<'db> Trie for TrieDB<'db> {
fn root(&self) -> &H256 { &self.root }
@ -218,3 +339,22 @@ impl<'db> fmt::Debug for TrieDB<'db> {
writeln!(f, "]")
}
}
#[test]
fn iterator() {
use memorydb::*;
use super::triedbmut::*;
let d = vec![ &b"A"[..], &b"AA"[..], &b"AB"[..], &b"B"[..] ];
let mut memdb = MemoryDB::new();
let mut root = H256::new();
{
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for x in &d {
t.insert(&x, &x);
}
}
assert_eq!(d.iter().map(|i|i.to_vec()).collect::<Vec<_>>(), TrieDB::new(&memdb, &root).iter().map(|x|x.0).collect::<Vec<_>>());
assert_eq!(d, TrieDB::new(&memdb, &root).iter().map(|x|x.1).collect::<Vec<_>>());
}

View File

@ -65,8 +65,9 @@ impl<'db> TrieDBMut<'db> {
r
}
/// Create a new trie with the backing database `db` and `root`
/// Panics, if `root` does not exist
/// Create a new trie with the backing database `db` and `root`.
/// Panics, if `root` does not exist.
// TODO: return Result<Self, TrieError>
pub fn from_existing(db: &'db mut HashDB, root: &'db mut H256) -> Self {
if !db.exists(root) {
flush(format!("Trie root not found {}", root));