// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
use compute::Light;
use either::Either;
use keccak::{H256, keccak_512};
use memmap::MmapMut;
use parking_lot::Mutex;
use seed_compute::SeedHashCompute;
use shared::{ETHASH_CACHE_ROUNDS, NODE_BYTES, NODE_DWORDS, Node, epoch, get_cache_size, to_hex};
use std::borrow::Cow;
use std::fs;
use std::io::{self, Read, Write};
use std::path::{Path, PathBuf};
use std::slice;
use std::sync::Arc;
type Cache = Either, MmapMut>;
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub enum OptimizeFor {
Cpu,
Memory,
}
impl Default for OptimizeFor {
fn default() -> Self {
OptimizeFor::Cpu
}
}
fn byte_size(cache: &Cache) -> usize {
use self::Either::{Left, Right};
match *cache {
Left(ref vec) => vec.len() * NODE_BYTES,
Right(ref mmap) => mmap.len(),
}
}
fn new_buffer(path: &Path, num_nodes: usize, ident: &H256, optimize_for: OptimizeFor) -> Cache {
let memmap = match optimize_for {
OptimizeFor::Cpu => None,
OptimizeFor::Memory => make_memmapped_cache(path, num_nodes, ident).ok(),
};
memmap.map(Either::Right).unwrap_or_else(|| {
Either::Left(make_memory_cache(num_nodes, ident))
})
}
#[derive(Clone)]
pub struct NodeCacheBuilder {
// TODO: Remove this locking and just use an `Rc`?
seedhash: Arc>,
optimize_for: OptimizeFor,
}
// TODO: Abstract the "optimize for" logic
pub struct NodeCache {
builder: NodeCacheBuilder,
cache_dir: Cow<'static, Path>,
cache_path: PathBuf,
epoch: u64,
cache: Cache,
}
impl NodeCacheBuilder {
pub fn light(&self, cache_dir: &Path, block_number: u64) -> Light {
Light::new_with_builder(self, cache_dir, block_number)
}
pub fn light_from_file(&self, cache_dir: &Path, block_number: u64) -> io::Result {
Light::from_file_with_builder(self, cache_dir, block_number)
}
pub fn new>>(optimize_for: T) -> Self {
NodeCacheBuilder {
seedhash: Arc::new(Mutex::new(SeedHashCompute::new())),
optimize_for: optimize_for.into().unwrap_or_default(),
}
}
fn block_number_to_ident(&self, block_number: u64) -> H256 {
self.seedhash.lock().hash_block_number(block_number)
}
fn epoch_to_ident(&self, epoch: u64) -> H256 {
self.seedhash.lock().hash_epoch(epoch)
}
pub fn from_file>>(
&self,
cache_dir: P,
block_number: u64,
) -> io::Result {
let cache_dir = cache_dir.into();
let ident = self.block_number_to_ident(block_number);
let path = cache_path(cache_dir.as_ref(), &ident);
let cache = cache_from_path(&path, self.optimize_for)?;
let expected_cache_size = get_cache_size(block_number);
if byte_size(&cache) == expected_cache_size {
Ok(NodeCache {
builder: self.clone(),
epoch: epoch(block_number),
cache_dir: cache_dir,
cache_path: path,
cache: cache,
})
} else {
Err(io::Error::new(
io::ErrorKind::InvalidData,
"Node cache is of incorrect size",
))
}
}
pub fn new_cache>>(
&self,
cache_dir: P,
block_number: u64,
) -> NodeCache {
let cache_dir = cache_dir.into();
let ident = self.block_number_to_ident(block_number);
let cache_size = get_cache_size(block_number);
// We use `debug_assert` since it is impossible for `get_cache_size` to return an unaligned
// value with the current implementation. If the implementation changes, CI will catch it.
debug_assert!(cache_size % NODE_BYTES == 0, "Unaligned cache size");
let num_nodes = cache_size / NODE_BYTES;
let path = cache_path(cache_dir.as_ref(), &ident);
let nodes = new_buffer(&path, num_nodes, &ident, self.optimize_for);
NodeCache {
builder: self.clone(),
epoch: epoch(block_number),
cache_dir: cache_dir.into(),
cache_path: path,
cache: nodes,
}
}
}
impl NodeCache {
pub fn cache_path(&self) -> &Path {
&self.cache_path
}
pub fn flush(&mut self) -> io::Result<()> {
if let Some(last) = self.epoch.checked_sub(2).map(|ep| {
cache_path(self.cache_dir.as_ref(), &self.builder.epoch_to_ident(ep))
})
{
fs::remove_file(last).unwrap_or_else(|error| match error.kind() {
io::ErrorKind::NotFound => (),
_ => warn!("Error removing stale DAG cache: {:?}", error),
});
}
consume_cache(&mut self.cache, &self.cache_path)
}
}
fn make_memmapped_cache(path: &Path, num_nodes: usize, ident: &H256) -> io::Result {
use std::fs::OpenOptions;
let file = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.open(&path)?;
file.set_len((num_nodes * NODE_BYTES) as _)?;
let mut memmap = unsafe { MmapMut::map_mut(&file)? };
unsafe { initialize_memory(memmap.as_mut_ptr() as *mut Node, num_nodes, ident) };
Ok(memmap)
}
fn make_memory_cache(num_nodes: usize, ident: &H256) -> Vec {
let mut nodes: Vec = Vec::with_capacity(num_nodes);
// Use uninit instead of unnecessarily writing `size_of::() * num_nodes` 0s
unsafe {
initialize_memory(nodes.as_mut_ptr(), num_nodes, ident);
nodes.set_len(num_nodes);
}
nodes
}
fn cache_path<'a, P: Into>>(path: P, ident: &H256) -> PathBuf {
let mut buf = path.into().into_owned();
buf.push(to_hex(ident));
buf
}
fn consume_cache(cache: &mut Cache, path: &Path) -> io::Result<()> {
use std::fs::OpenOptions;
match *cache {
Either::Left(ref mut vec) => {
let mut file = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.open(&path)?;
let buf = unsafe {
slice::from_raw_parts_mut(vec.as_mut_ptr() as *mut u8, vec.len() * NODE_BYTES)
};
file.write_all(buf).map(|_| ())
}
Either::Right(ref mmap) => {
mmap.flush()
}
}
}
fn cache_from_path(path: &Path, optimize_for: OptimizeFor) -> io::Result {
let memmap = match optimize_for {
OptimizeFor::Cpu => None,
OptimizeFor::Memory => {
let file = fs::OpenOptions::new().read(true).write(true).create(true).open(path)?;
unsafe { MmapMut::map_mut(&file).ok() }
},
};
memmap.map(Either::Right).ok_or(()).or_else(|_| {
read_from_path(path).map(Either::Left)
})
}
fn read_from_path(path: &Path) -> io::Result> {
use std::fs::File;
use std::mem;
let mut file = File::open(path)?;
let mut nodes: Vec = Vec::with_capacity(file.metadata().map(|m| m.len() as _).unwrap_or(
NODE_BYTES * 1_000_000,
));
file.read_to_end(&mut nodes)?;
nodes.shrink_to_fit();
if nodes.len() % NODE_BYTES != 0 || nodes.capacity() % NODE_BYTES != 0 {
return Err(io::Error::new(
io::ErrorKind::Other,
"Node cache is not a multiple of node size",
));
}
let out: Vec = unsafe {
Vec::from_raw_parts(
nodes.as_mut_ptr() as *mut _,
nodes.len() / NODE_BYTES,
nodes.capacity() / NODE_BYTES,
)
};
mem::forget(nodes);
Ok(out)
}
impl AsRef<[Node]> for NodeCache {
fn as_ref(&self) -> &[Node] {
match self.cache {
Either::Left(ref vec) => vec,
Either::Right(ref mmap) => unsafe {
let bytes = mmap.as_ptr();
// This isn't a safety issue, so we can keep this a debug lint. We don't care about
// people manually messing with the files unless it can cause unsafety, but if we're
// generating incorrect files then we want to catch that in CI.
debug_assert_eq!(mmap.len() % NODE_BYTES, 0);
slice::from_raw_parts(bytes as _, mmap.len() / NODE_BYTES)
},
}
}
}
// This takes a raw pointer and a counter because `memory` may be uninitialized. `memory` _must_ be
// a pointer to the beginning of an allocated but possibly-uninitialized block of
// `num_nodes * NODE_BYTES` bytes
//
// We have to use raw pointers to read/write uninit, using "normal" indexing causes LLVM to freak
// out. It counts as a read and causes all writes afterwards to be elided. Yes, really. I know, I
// want to refactor this to use less `unsafe` as much as the next rustacean.
unsafe fn initialize_memory(memory: *mut Node, num_nodes: usize, ident: &H256) {
let dst = memory as *mut u8;
debug_assert_eq!(ident.len(), 32);
keccak_512::unchecked(dst, NODE_BYTES, ident.as_ptr(), ident.len());
for i in 1..num_nodes {
// We use raw pointers here, see above
let dst = memory.offset(i as _) as *mut u8;
let src = memory.offset(i as isize - 1) as *mut u8;
keccak_512::unchecked(dst, NODE_BYTES, src, NODE_BYTES);
}
// Now this is initialized, we can treat it as a slice.
let nodes: &mut [Node] = slice::from_raw_parts_mut(memory, num_nodes);
// For `unroll!`, see below. If the literal in `unroll!` is not the same as the RHS here then
// these have got out of sync! Don't let this happen!
debug_assert_eq!(NODE_DWORDS, 8);
// This _should_ get unrolled by the compiler, since it's not using the loop variable.
for _ in 0..ETHASH_CACHE_ROUNDS {
for i in 0..num_nodes {
let data_idx = (num_nodes - 1 + i) % num_nodes;
let idx = nodes.get_unchecked_mut(i).as_words()[0] as usize % num_nodes;
let data = {
let mut data: Node = nodes.get_unchecked(data_idx).clone();
let rhs: &Node = nodes.get_unchecked(idx);
unroll! {
for w in 0..8 {
*data.as_dwords_mut().get_unchecked_mut(w) ^=
*rhs.as_dwords().get_unchecked(w);
}
}
data
};
keccak_512::write(&data.bytes, &mut nodes.get_unchecked_mut(i).bytes);
}
}
}