// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see .
use byteorder::{ByteOrder, LittleEndian};
use ethereum_types::{Address, H256, U256};
use std::{collections::HashMap, sync::Arc};
use super::WasmInterpreter;
use vm::{
self,
tests::{FakeCall, FakeCallType, FakeExt},
ActionParams, ActionValue, CreateContractAddress, Exec, GasLeft,
};
macro_rules! load_sample {
($name: expr) => {
include_bytes!(concat!("../../res/wasm-tests/compiled/", $name)).to_vec()
};
}
macro_rules! reqrep_test {
($name: expr, $input: expr) => {
reqrep_test!($name, $input, vm::EnvInfo::default(), HashMap::new())
};
($name: expr, $input: expr, $info: expr, $block_hashes: expr) => {{
let _ = ::env_logger::try_init();
let code = load_sample!($name);
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
params.data = Some($input);
let mut fake_ext = FakeExt::new().with_wasm();
fake_ext.info = $info;
fake_ext.blockhashes = $block_hashes;
let interpreter = wasm_interpreter(params);
interpreter
.exec(&mut fake_ext)
.ok()
.unwrap()
.map(|result| match result {
GasLeft::Known(_) => {
panic!("Test is expected to return payload to check");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
})
}};
}
fn test_finalize(res: Result) -> Result {
match res {
Ok(GasLeft::Known(gas)) => Ok(gas),
Ok(GasLeft::NeedsReturn { .. }) => unimplemented!(), // since ret is unimplemented.
Err(e) => Err(e),
}
}
fn wasm_interpreter(params: ActionParams) -> Box {
Box::new(WasmInterpreter::new(params))
}
/// Empty contract does almost nothing except producing 1 (one) local node debug log message
#[test]
fn empty() {
let code = load_sample!("empty.wasm");
let address: Address = "0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6".parse().unwrap();
let mut params = ActionParams::default();
params.address = address.clone();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
let mut ext = FakeExt::new().with_wasm();
let gas_left = {
let interpreter = wasm_interpreter(params);
test_finalize(interpreter.exec(&mut ext).ok().unwrap()).unwrap()
};
assert_eq!(gas_left, U256::from(96_926));
}
// This test checks if the contract deserializes payload header properly.
// Contract is provided with receiver(address), sender, origin and transaction value
// logger.wasm writes all these provided fixed header fields to some arbitrary storage keys.
#[test]
fn logger() {
let _ = ::env_logger::try_init();
let code = load_sample!("logger.wasm");
let address: Address = "0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6".parse().unwrap();
let sender: Address = "0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d".parse().unwrap();
let origin: Address = "0102030405060708090a0b0c0d0e0f1011121314".parse().unwrap();
let mut params = ActionParams::default();
params.address = address.clone();
params.sender = sender.clone();
params.origin = origin.clone();
params.gas = U256::from(100_000);
params.value = ActionValue::transfer(1_000_000_000);
params.code = Some(Arc::new(code));
let mut ext = FakeExt::new().with_wasm();
let gas_left = {
let interpreter = wasm_interpreter(params);
test_finalize(interpreter.exec(&mut ext).ok().unwrap()).unwrap()
};
let address_val: H256 = address.into();
assert_eq!(
ext.store
.get(
&"0100000000000000000000000000000000000000000000000000000000000000"
.parse()
.unwrap()
)
.expect("storage key to exist"),
&address_val,
"Logger sets 0x01 key to the provided address"
);
let sender_val: H256 = sender.into();
assert_eq!(
ext.store
.get(
&"0200000000000000000000000000000000000000000000000000000000000000"
.parse()
.unwrap()
)
.expect("storage key to exist"),
&sender_val,
"Logger sets 0x02 key to the provided sender"
);
let origin_val: H256 = origin.into();
assert_eq!(
ext.store
.get(
&"0300000000000000000000000000000000000000000000000000000000000000"
.parse()
.unwrap()
)
.expect("storage key to exist"),
&origin_val,
"Logger sets 0x03 key to the provided origin"
);
assert_eq!(
U256::from(
ext.store
.get(
&"0400000000000000000000000000000000000000000000000000000000000000"
.parse()
.unwrap()
)
.expect("storage key to exist")
),
U256::from(1_000_000_000),
"Logger sets 0x04 key to the trasferred value"
);
assert_eq!(gas_left, U256::from(17_716));
}
// This test checks if the contract can allocate memory and pass pointer to the result stream properly.
// 1. Contract is being provided with the call descriptor ptr
// 2. Descriptor ptr is 16 byte length
// 3. The last 8 bytes of call descriptor is the space for the contract to fill [result_ptr[4], result_len[4]]
// if it has any result.
#[test]
fn identity() {
let _ = ::env_logger::try_init();
let code = load_sample!("identity.wasm");
let sender: Address = "01030507090b0d0f11131517191b1d1f21232527".parse().unwrap();
let mut params = ActionParams::default();
params.sender = sender.clone();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("Identity contract should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(
Address::from_slice(&result),
sender,
"Idenity test contract does not return the sender passed"
);
assert_eq!(gas_left, U256::from(98_419));
}
// Dispersion test sends byte array and expect the contract to 'disperse' the original elements with
// their modulo 19 dopant.
// The result is always twice as long as the input.
// This also tests byte-perfect memory allocation and in/out ptr lifecycle.
#[test]
fn dispersion() {
let _ = ::env_logger::try_init();
let code = load_sample!("dispersion.wasm");
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
params.data = Some(vec![0u8, 125, 197, 255, 19]);
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("Dispersion routine should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(result, vec![0u8, 0, 125, 11, 197, 7, 255, 8, 19, 0]);
assert_eq!(gas_left, U256::from(92_377));
}
#[test]
fn suicide_not() {
let code = load_sample!("suicidal.wasm");
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
params.data = Some(vec![0u8]);
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!(
"Suicidal contract should return payload when had not actualy killed himself"
);
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(result, vec![0u8]);
assert_eq!(gas_left, U256::from(93_378));
}
#[test]
fn suicide() {
let _ = ::env_logger::try_init();
let code = load_sample!("suicidal.wasm");
let refund: Address = "01030507090b0d0f11131517191b1d1f21232527".parse().unwrap();
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
let mut args = vec![127u8];
args.extend(refund.to_vec());
params.data = Some(args);
let mut ext = FakeExt::new().with_wasm();
let gas_left = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(gas) => gas,
GasLeft::NeedsReturn { .. } => {
panic!("Suicidal contract should not return anything when had killed itself");
}
}
};
assert!(ext.suicides.contains(&refund));
assert_eq!(gas_left, U256::from(93_346));
}
#[test]
fn create() {
let _ = ::env_logger::try_init();
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(load_sample!("creator.wasm")));
params.data = Some(vec![0u8, 2, 4, 8, 16, 32, 64, 128]);
params.value = ActionValue::transfer(1_000_000_000);
let mut ext = FakeExt::new().with_wasm();
ext.schedule.wasm.as_mut().unwrap().have_create2 = true;
let gas_left = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("Create contract always return 40 bytes of the creation address, or in the case where it fails, return 40 bytes of zero.");
}
GasLeft::NeedsReturn {
gas_left,
data,
apply_state,
} => {
assert!(apply_state);
assert_eq!(data.as_ref(), [0u8; 40].as_ref()); // FakeExt never succeeds in create.
gas_left
}
}
};
trace!(target: "wasm", "fake_calls: {:?}", &ext.calls);
assert!(ext.calls.contains(&FakeCall {
call_type: FakeCallType::Create,
create_scheme: Some(CreateContractAddress::FromSenderAndCodeHash),
gas: U256::from(49_674),
sender_address: None,
receive_address: None,
value: Some((1_000_000_000 / 2).into()),
data: vec![0u8, 2, 4, 8, 16, 32, 64, 128],
code_address: None,
}));
assert!(ext.calls.contains(&FakeCall {
call_type: FakeCallType::Create,
create_scheme: Some(CreateContractAddress::FromSenderSaltAndCodeHash(
H256::from([5u8].as_ref())
)),
gas: U256::from(6039),
sender_address: None,
receive_address: None,
value: Some((1_000_000_000 / 2).into()),
data: vec![0u8, 2, 4, 8, 16, 32, 64, 128],
code_address: None,
}));
assert_eq!(gas_left, U256::from(5974));
}
#[test]
fn call_msg() {
let _ = ::env_logger::try_init();
let sender: Address = "01030507090b0d0f11131517191b1d1f21232527".parse().unwrap();
let receiver: Address = "0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6".parse().unwrap();
let contract_address: Address = "0d461d4174b4ae35775c4a342f1e5e1e4e6c4db5".parse().unwrap();
let mut params = ActionParams::default();
params.sender = sender.clone();
params.address = receiver.clone();
params.code_address = contract_address.clone();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(load_sample!("call.wasm")));
params.data = Some(Vec::new());
let mut ext = FakeExt::new().with_wasm();
ext.balances
.insert(receiver.clone(), U256::from(10000000000u64));
let gas_left = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(gas_left) => gas_left,
GasLeft::NeedsReturn { .. } => {
panic!("Call test should not return payload");
}
}
};
trace!(target: "wasm", "fake_calls: {:?}", &ext.calls);
assert!(ext.calls.contains(&FakeCall {
call_type: FakeCallType::Call,
create_scheme: None,
gas: U256::from(33_000),
sender_address: Some(receiver),
receive_address: Some(Address::from([
99, 88, 77, 66, 55, 44, 33, 22, 11, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 0
])),
value: Some(1000000000.into()),
data: vec![129u8, 123, 113, 107, 101, 97],
code_address: Some(Address::from([
99, 88, 77, 66, 55, 44, 33, 22, 11, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 0
])),
}));
assert_eq!(gas_left, U256::from(91_672));
}
// The same as `call_msg`, but send a `pwasm_ethereum::gasleft`
// value as `gas` argument to the inner pwasm_ethereum::call
#[test]
fn call_msg_gasleft() {
let _ = ::env_logger::try_init();
let sender: Address = "01030507090b0d0f11131517191b1d1f21232527".parse().unwrap();
let receiver: Address = "0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6".parse().unwrap();
let contract_address: Address = "0d461d4174b4ae35775c4a342f1e5e1e4e6c4db5".parse().unwrap();
let mut params = ActionParams::default();
params.sender = sender.clone();
params.address = receiver.clone();
params.code_address = contract_address.clone();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(load_sample!("call_gasleft.wasm")));
params.data = Some(Vec::new());
let mut ext = FakeExt::new().with_wasm();
ext.schedule.wasm.as_mut().unwrap().have_gasleft = true;
ext.balances
.insert(receiver.clone(), U256::from(10000000000u64));
let gas_left = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(gas_left) => gas_left,
GasLeft::NeedsReturn { .. } => {
panic!("Call test should not return payload");
}
}
};
trace!(target: "wasm", "fake_calls: {:?}", &ext.calls);
assert!(ext.calls.contains(&FakeCall {
call_type: FakeCallType::Call,
create_scheme: None,
gas: U256::from(91_165),
sender_address: Some(receiver),
receive_address: Some(Address::from([
99, 88, 77, 66, 55, 44, 33, 22, 11, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 0
])),
value: Some(1000000000.into()),
data: vec![129u8, 123, 113, 107, 101, 97],
code_address: Some(Address::from([
99, 88, 77, 66, 55, 44, 33, 22, 11, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 0
])),
}));
assert_eq!(gas_left, U256::from(91_671));
}
#[test]
fn call_code() {
let _ = ::env_logger::try_init();
let sender: Address = "01030507090b0d0f11131517191b1d1f21232527".parse().unwrap();
let receiver: Address = "0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6".parse().unwrap();
let mut params = ActionParams::default();
params.sender = sender.clone();
params.address = receiver.clone();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(load_sample!("call_code.wasm")));
params.data = Some(Vec::new());
params.value = ActionValue::transfer(1_000_000_000);
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("Call test should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
trace!(target: "wasm", "fake_calls: {:?}", &ext.calls);
assert!(ext.calls.contains(&FakeCall {
call_type: FakeCallType::Call,
create_scheme: None,
gas: U256::from(20_000),
sender_address: Some(sender),
receive_address: Some(receiver),
value: None,
data: vec![1u8, 2, 3, 5, 7, 11],
code_address: Some("0d13710000000000000000000000000000000000".parse().unwrap()),
}));
// siphash result
let res = LittleEndian::read_u32(&result[..]);
assert_eq!(res, 4198595614);
assert_eq!(gas_left, U256::from(90_037));
}
#[test]
fn call_static() {
let _ = ::env_logger::try_init();
let sender: Address = "0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6".parse().unwrap();
let receiver: Address = "01030507090b0d0f11131517191b1d1f21232527".parse().unwrap();
let contract_address: Address = "0d461d4174b4ae35775c4a342f1e5e1e4e6c4db5".parse().unwrap();
let mut params = ActionParams::default();
params.sender = sender.clone();
params.address = receiver.clone();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(load_sample!("call_static.wasm")));
params.data = Some(Vec::new());
params.value = ActionValue::transfer(1_000_000_000);
params.code_address = contract_address.clone();
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("Static call test should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
trace!(target: "wasm", "fake_calls: {:?}", &ext.calls);
assert!(ext.calls.contains(&FakeCall {
call_type: FakeCallType::Call,
create_scheme: None,
gas: U256::from(20_000),
sender_address: Some(receiver),
receive_address: Some("13077bfb00000000000000000000000000000000".parse().unwrap()),
value: None,
data: vec![1u8, 2, 3, 5, 7, 11],
code_address: Some("13077bfb00000000000000000000000000000000".parse().unwrap()),
}));
// siphash result
let res = LittleEndian::read_u32(&result[..]);
assert_eq!(res, 317632590);
assert_eq!(gas_left, U256::from(90_042));
}
// Realloc test
#[test]
fn realloc() {
let code = load_sample!("realloc.wasm");
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
params.data = Some(vec![0u8]);
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("Realloc should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(result, vec![0u8; 2]);
assert_eq!(gas_left, U256::from(92_848));
}
#[test]
fn alloc() {
let code = load_sample!("alloc.wasm");
let mut params = ActionParams::default();
params.gas = U256::from(10_000_000);
params.code = Some(Arc::new(code));
params.data = Some(vec![0u8]);
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("alloc test should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(result, vec![5u8; 1024 * 400]);
assert_eq!(gas_left, U256::from(6_893_881));
}
// Tests that contract's ability to read from a storage
// Test prepopulates address into storage, than executes a contract which read that address from storage and write this address into result
#[test]
fn storage_read() {
let _ = ::env_logger::try_init();
let code = load_sample!("storage_read.wasm");
let address: Address = "0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6".parse().unwrap();
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
let mut ext = FakeExt::new().with_wasm();
ext.store.insert(
"0100000000000000000000000000000000000000000000000000000000000000".into(),
address.into(),
);
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("storage_read should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(Address::from(&result[12..32]), address);
assert_eq!(gas_left, U256::from(98_369));
}
// Tests keccak calculation
// keccak.wasm runs wasm-std::keccak function on data param and returns hash
#[test]
fn keccak() {
let _ = ::env_logger::try_init();
let code = load_sample!("keccak.wasm");
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
params.data = Some(b"something".to_vec());
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("keccak should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(
H256::from_slice(&result),
H256::from("68371d7e884c168ae2022c82bd837d51837718a7f7dfb7aa3f753074a35e1d87")
);
assert_eq!(gas_left, U256::from(85_949));
}
// math_* tests check the ability of wasm contract to perform big integer operations
// - addition
// - multiplication
// - substraction
// - division
// addition
#[test]
fn math_add() {
let (gas_left, result) = reqrep_test!("math.wasm", {
let mut args = [0u8; 65];
let arg_a = U256::from_dec_str("999999999999999999999999999999").unwrap();
let arg_b = U256::from_dec_str("888888888888888888888888888888").unwrap();
arg_a.to_big_endian(&mut args[1..33]);
arg_b.to_big_endian(&mut args[33..65]);
args.to_vec()
})
.expect("Interpreter to execute without any errors");
assert_eq!(
U256::from_dec_str("1888888888888888888888888888887").unwrap(),
(&result[..]).into()
);
assert_eq!(gas_left, U256::from(92_072));
}
// multiplication
#[test]
fn math_mul() {
let (gas_left, result) = reqrep_test!("math.wasm", {
let mut args = [1u8; 65];
let arg_a = U256::from_dec_str("888888888888888888888888888888").unwrap();
let arg_b = U256::from_dec_str("999999999999999999999999999999").unwrap();
arg_a.to_big_endian(&mut args[1..33]);
arg_b.to_big_endian(&mut args[33..65]);
args.to_vec()
})
.expect("Interpreter to execute without any errors");
assert_eq!(
U256::from_dec_str("888888888888888888888888888887111111111111111111111111111112").unwrap(),
(&result[..]).into()
);
assert_eq!(gas_left, U256::from(91_400));
}
// subtraction
#[test]
fn math_sub() {
let (gas_left, result) = reqrep_test!("math.wasm", {
let mut args = [2u8; 65];
let arg_a = U256::from_dec_str("999999999999999999999999999999").unwrap();
let arg_b = U256::from_dec_str("888888888888888888888888888888").unwrap();
arg_a.to_big_endian(&mut args[1..33]);
arg_b.to_big_endian(&mut args[33..65]);
args.to_vec()
})
.expect("Interpreter to execute without any errors");
assert_eq!(
U256::from_dec_str("111111111111111111111111111111").unwrap(),
(&result[..]).into()
);
assert_eq!(gas_left, U256::from(92_072));
}
// subtraction with overflow
#[test]
fn math_sub_with_overflow() {
let result = reqrep_test!("math.wasm", {
let mut args = [2u8; 65];
let arg_a = U256::from_dec_str("888888888888888888888888888888").unwrap();
let arg_b = U256::from_dec_str("999999999999999999999999999999").unwrap();
arg_a.to_big_endian(&mut args[1..33]);
arg_b.to_big_endian(&mut args[33..65]);
args.to_vec()
});
match result {
Err(vm::Error::Wasm(_)) => {}
_ => panic!("Unexpected result {:?}", result),
}
}
#[test]
fn math_div() {
let (gas_left, result) = reqrep_test!("math.wasm", {
let mut args = [3u8; 65];
let arg_a = U256::from_dec_str("999999999999999999999999999999").unwrap();
let arg_b = U256::from_dec_str("888888888888888888888888").unwrap();
arg_a.to_big_endian(&mut args[1..33]);
arg_b.to_big_endian(&mut args[33..65]);
args.to_vec()
})
.expect("Interpreter to execute without any errors");
assert_eq!(U256::from_dec_str("1125000").unwrap(), (&result[..]).into());
assert_eq!(gas_left, U256::from(85_700));
}
#[test]
fn storage_metering() {
let _ = ::env_logger::try_init();
// #1
let mut ext = FakeExt::new().with_wasm();
let code = Arc::new(load_sample!("setter.wasm"));
let address: Address = "0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6".parse().unwrap();
let mut params = ActionParams::default();
params.address = address.clone();
params.gas = U256::from(100_000);
params.code = Some(code.clone());
params.data = Some(vec![
0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d,
0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d,
0x9d, 0x9d, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b,
0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b,
0x7b, 0x7b, 0x7b, 0x7b,
]);
let gas_left = {
let interpreter = wasm_interpreter(params);
test_finalize(interpreter.exec(&mut ext).ok().unwrap()).unwrap()
};
// 0 -> not 0
assert_eq!(gas_left, U256::from(72_164));
// #2
let mut params = ActionParams::default();
params.address = address.clone();
params.gas = U256::from(100_000);
params.code = Some(code.clone());
params.data = Some(vec![
0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d,
0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d,
0x9d, 0x9d, 0x6b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b,
0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b,
0x7b, 0x7b, 0x7b, 0x7b,
]);
let gas_left = {
let interpreter = wasm_interpreter(params);
test_finalize(interpreter.exec(&mut ext).ok().unwrap()).unwrap()
};
// not 0 -> not 0
assert_eq!(gas_left, U256::from(87_164));
}
// This test checks the ability of wasm contract to invoke
// varios blockchain runtime methods
#[test]
fn externs() {
let (gas_left, result) = reqrep_test!(
"externs.wasm",
Vec::new(),
vm::EnvInfo {
number: 0x9999999999u64.into(),
author: "efefefefefefefefefefefefefefefefefefefef".parse().unwrap(),
timestamp: 0x8888888888u64.into(),
difficulty: H256::from(
"0f1f2f3f4f5f6f7f8f9fafbfcfdfefff0d1d2d3d4d5d6d7d8d9dadbdcdddedfd"
)
.into(),
gas_limit: 0x777777777777u64.into(),
last_hashes: Default::default(),
gas_used: 0.into(),
},
{
let mut hashes = HashMap::new();
hashes.insert(
U256::from(0),
H256::from("9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d9d"),
);
hashes.insert(
U256::from(1),
H256::from("7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b"),
);
hashes
}
)
.expect("Interpreter to execute without any errors");
assert_eq!(
&result[0..64].to_vec(),
&vec![
0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d,
0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d, 0x9d,
0x9d, 0x9d, 0x9d, 0x9d, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b,
0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b,
0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b, 0x7b,
],
"Block hashes requested and returned do not match"
);
assert_eq!(
&result[64..84].to_vec(),
&vec![
0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef,
0xef, 0xef, 0xef, 0xef, 0xef, 0xef,
],
"Coinbase requested and returned does not match"
);
assert_eq!(
&result[84..92].to_vec(),
&vec![0x88, 0x88, 0x88, 0x88, 0x88, 0x00, 0x00, 0x00],
"Timestamp requested and returned does not match"
);
assert_eq!(
&result[92..100].to_vec(),
&vec![0x99, 0x99, 0x99, 0x99, 0x99, 0x00, 0x00, 0x00],
"Block number requested and returned does not match"
);
assert_eq!(
&result[100..132].to_vec(),
&vec![
0x0f, 0x1f, 0x2f, 0x3f, 0x4f, 0x5f, 0x6f, 0x7f, 0x8f, 0x9f, 0xaf, 0xbf, 0xcf, 0xdf,
0xef, 0xff, 0x0d, 0x1d, 0x2d, 0x3d, 0x4d, 0x5d, 0x6d, 0x7d, 0x8d, 0x9d, 0xad, 0xbd,
0xcd, 0xdd, 0xed, 0xfd,
],
"Difficulty requested and returned does not match"
);
assert_eq!(
&result[132..164].to_vec(),
&vec![
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x77, 0x77,
0x77, 0x77, 0x77, 0x77,
],
"Gas limit requested and returned does not match"
);
assert_eq!(gas_left, U256::from(90_428));
}
// This test checks the ability of wasm contract to invoke gasleft
#[test]
fn gasleft() {
let _ = ::env_logger::try_init();
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(load_sample!("gasleft.wasm")));
let mut ext = FakeExt::new().with_wasm();
ext.schedule.wasm.as_mut().unwrap().have_gasleft = true;
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {}
GasLeft::NeedsReturn { gas_left, data, .. } => {
let gas = LittleEndian::read_u64(data.as_ref());
assert_eq!(gas, 93_423);
assert_eq!(gas_left, U256::from(93_349));
}
}
}
// This test should fail because
// ext.schedule.wasm.as_mut().unwrap().have_gasleft = false;
#[test]
fn gasleft_fail() {
let _ = ::env_logger::try_init();
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(load_sample!("gasleft.wasm")));
let mut ext = FakeExt::new().with_wasm();
let interpreter = wasm_interpreter(params);
match interpreter.exec(&mut ext).ok().unwrap() {
Err(_) => {}
Ok(_) => {
panic!("interpreter.exec should return Err if ext.schedule.wasm.have_gasleft = false")
}
}
}
#[test]
fn embedded_keccak() {
let _ = ::env_logger::try_init();
let mut code = load_sample!("keccak.wasm");
code.extend_from_slice(b"something");
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
params.params_type = vm::ParamsType::Embedded;
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("keccak should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(
H256::from_slice(&result),
H256::from("68371d7e884c168ae2022c82bd837d51837718a7f7dfb7aa3f753074a35e1d87")
);
assert_eq!(gas_left, U256::from(85_949));
}
/// This test checks the correctness of log extern
/// Target test puts one event with two topic [keccak(input), reverse(keccak(input))]
/// and reversed input as a data
#[test]
fn events() {
let _ = ::env_logger::try_init();
let code = load_sample!("events.wasm");
let mut params = ActionParams::default();
params.gas = U256::from(100_000);
params.code = Some(Arc::new(code));
params.data = Some(b"something".to_vec());
let mut ext = FakeExt::new().with_wasm();
let (gas_left, result) = {
let interpreter = wasm_interpreter(params);
let result = interpreter
.exec(&mut ext)
.ok()
.unwrap()
.expect("Interpreter to execute without any errors");
match result {
GasLeft::Known(_) => {
panic!("events should return payload");
}
GasLeft::NeedsReturn {
gas_left: gas,
data: result,
apply_state: _apply,
} => (gas, result.to_vec()),
}
};
assert_eq!(ext.logs.len(), 1);
let log_entry = &ext.logs[0];
assert_eq!(log_entry.topics.len(), 2);
assert_eq!(
&log_entry.topics[0],
&H256::from("68371d7e884c168ae2022c82bd837d51837718a7f7dfb7aa3f753074a35e1d87")
);
assert_eq!(
&log_entry.topics[1],
&H256::from("871d5ea37430753faab7dff7a7187783517d83bd822c02e28a164c887e1d3768")
);
assert_eq!(&log_entry.data, b"gnihtemos");
assert_eq!(&result, b"gnihtemos");
assert_eq!(gas_left, U256::from(83_161));
}
#[test]
fn recursive() {
let _ = ::env_logger::try_init();
let code = load_sample!("recursive.wasm");
let mut params = ActionParams::default();
params.gas = U256::from(100_000_000);
params.code = Some(Arc::new(code));
params.data = Some({
// `recursive` expects only one 32-bit word in LE that
// represents an iteration count.
//
// We pick a relative big number to definitely hit stack overflow.
use byteorder::WriteBytesExt;
let mut data = vec![];
data.write_u32::(100000).unwrap();
data
});
let mut ext = FakeExt::new().with_wasm();
let interpreter = wasm_interpreter(params);
let result = interpreter.exec(&mut ext).ok().unwrap();
// We expect that stack overflow will occur and it should be generated by
// deterministic stack metering. Exceeding deterministic stack height limit
// always ends with a trap generated by `unreachable` instruction.
match result {
Err(trap) => {
let err_description = trap.to_string();
assert!(
err_description.contains("Unreachable"),
"err_description: {} should contain 'Unreachable'",
err_description
);
}
_ => panic!("this test should trap"),
}
}