// Copyright 2015-2019 Parity Technologies (UK) Ltd. // This file is part of Parity Ethereum. // Parity Ethereum is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity Ethereum is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity Ethereum. If not, see . //! Light client synchronization. //! //! This will synchronize the header chain using PIP messages. //! Dataflow is largely one-directional as headers are pushed into //! the light client queue for import. Where possible, they are batched //! in groups. //! //! This is written assuming that the client and sync service are running //! in the same binary; unlike a full node which might communicate via IPC. //! //! //! Sync strategy: //! - Find a common ancestor with peers. //! - Split the chain up into subchains, which are downloaded in parallel from various peers in rounds. //! - When within a certain distance of the head of the chain, aggressively download all //! announced blocks. //! - On bad block/response, punish peer and reset. use std::{ collections::{HashMap, HashSet}, mem, ops::Deref, sync::Arc, time::{Duration, Instant}, }; use ethereum_types::{H256, U256}; use light::{ client::{AsLightClient, LightChainClient}, net::{ Announcement, BasicContext, Capabilities, Error as NetError, EventContext, Handler, PeerStatus, ReqId, Status, }, request::{self, CompleteHeadersRequest as HeadersRequest}, }; use network::PeerId; use parking_lot::{Mutex, RwLock}; use rand::{OsRng, Rng}; use types::encoded; use self::sync_round::{AbortReason, ResponseContext, SyncRound}; mod response; mod sync_round; #[cfg(test)] mod tests; // Base value for the header request timeout. const REQ_TIMEOUT_BASE: Duration = Duration::from_secs(7); // Additional value for each requested header. // If we request N headers, then the timeout will be: // REQ_TIMEOUT_BASE + N * REQ_TIMEOUT_PER_HEADER const REQ_TIMEOUT_PER_HEADER: Duration = Duration::from_millis(10); /// Peer chain info. #[derive(Debug, Clone, PartialEq, Eq)] struct ChainInfo { head_td: U256, head_hash: H256, head_num: u64, } impl PartialOrd for ChainInfo { fn partial_cmp(&self, other: &Self) -> Option<::std::cmp::Ordering> { self.head_td.partial_cmp(&other.head_td) } } impl Ord for ChainInfo { fn cmp(&self, other: &Self) -> ::std::cmp::Ordering { self.head_td.cmp(&other.head_td) } } struct Peer { status: ChainInfo, } impl Peer { // Create a new peer. fn new(chain_info: ChainInfo) -> Self { Peer { status: chain_info } } } // search for a common ancestor with the best chain. #[derive(Debug)] enum AncestorSearch { Queued(u64), // queued to search for blocks starting from here. Awaiting(ReqId, u64, HeadersRequest), // awaiting response for this request. Prehistoric, // prehistoric block found. TODO: start to roll back CHTs. FoundCommon(u64, H256), // common block found. Genesis, // common ancestor is the genesis. } impl AncestorSearch { fn begin(best_num: u64) -> Self { match best_num { 0 => AncestorSearch::Genesis, _ => AncestorSearch::Queued(best_num), } } fn process_response(self, ctx: &dyn ResponseContext, client: &L) -> AncestorSearch where L: AsLightClient, { let client = client.as_light_client(); let first_num = client.chain_info().first_block_number.unwrap_or(0); match self { AncestorSearch::Awaiting(id, start, req) => { if &id == ctx.req_id() { match response::verify(ctx.data(), &req) { Ok(headers) => { for header in &headers { if client.is_known(&header.hash()) { debug!(target: "sync", "Found common ancestor with best chain"); return AncestorSearch::FoundCommon( header.number(), header.hash(), ); } if header.number() < first_num { debug!(target: "sync", "Prehistoric common ancestor with best chain."); return AncestorSearch::Prehistoric; } } let probe = start - headers.len() as u64; if probe == 0 { AncestorSearch::Genesis } else { AncestorSearch::Queued(probe) } } Err(e) => { trace!(target: "sync", "Bad headers response from {}: {}", ctx.responder(), e); ctx.punish_responder(); AncestorSearch::Queued(start) } } } else { AncestorSearch::Awaiting(id, start, req) } } other => other, } } fn requests_abandoned(self, req_ids: &[ReqId]) -> AncestorSearch { match self { AncestorSearch::Awaiting(id, start, req) => { if req_ids.iter().find(|&x| x == &id).is_some() { AncestorSearch::Queued(start) } else { AncestorSearch::Awaiting(id, start, req) } } other => other, } } fn dispatch_request(self, mut dispatcher: F) -> AncestorSearch where F: FnMut(HeadersRequest) -> Option, { const BATCH_SIZE: u64 = 64; match self { AncestorSearch::Queued(start) => { let batch_size = ::std::cmp::min(start, BATCH_SIZE); trace!(target: "sync", "Requesting {} reverse headers from {} to find common ancestor", batch_size, start); let req = HeadersRequest { start: start.into(), max: batch_size, skip: 0, reverse: true, }; match dispatcher(req.clone()) { Some(req_id) => AncestorSearch::Awaiting(req_id, start, req), None => AncestorSearch::Queued(start), } } other => other, } } } // synchronization state machine. #[derive(Debug)] enum SyncState { // Idle (waiting for peers) or at chain head. Idle, // searching for common ancestor with best chain. // queue should be cleared at this phase. AncestorSearch(AncestorSearch), // Doing sync rounds. Rounds(SyncRound), } /// A wrapper around the SyncState that makes sure to /// update the giving reference to `is_idle` #[derive(Debug)] struct SyncStateWrapper { state: SyncState, } impl SyncStateWrapper { /// Create a new wrapper for SyncState::Idle pub fn idle() -> Self { SyncStateWrapper { state: SyncState::Idle, } } /// Set the new state's value, making sure `is_idle` gets updated pub fn set(&mut self, state: SyncState, is_idle_handle: &mut bool) { *is_idle_handle = match state { SyncState::Idle => true, _ => false, }; self.state = state; } /// Returns the internal state's value pub fn into_inner(self) -> SyncState { self.state } } impl Deref for SyncStateWrapper { type Target = SyncState; fn deref(&self) -> &SyncState { &self.state } } struct ResponseCtx<'a> { peer: PeerId, req_id: ReqId, ctx: &'a dyn BasicContext, data: &'a [encoded::Header], } impl<'a> ResponseContext for ResponseCtx<'a> { fn responder(&self) -> PeerId { self.peer } fn req_id(&self) -> &ReqId { &self.req_id } fn data(&self) -> &[encoded::Header] { self.data } fn punish_responder(&self) { self.ctx.disable_peer(self.peer) } } /// Light client synchronization manager. See module docs for more details. pub struct LightSync { start_block_number: u64, best_seen: Mutex>, // best seen block on the network. peers: RwLock>>, // peers which are relevant to synchronization. pending_reqs: Mutex>, // requests from this handler client: Arc, rng: Mutex, state: Mutex, // We duplicate this state tracking to avoid deadlocks in `is_major_importing`. is_idle: Mutex, } #[derive(Debug, Clone)] struct PendingReq { started: Instant, timeout: Duration, } impl Handler for LightSync { fn on_connect( &self, ctx: &dyn EventContext, status: &Status, capabilities: &Capabilities, ) -> PeerStatus { use std::cmp; if capabilities.serve_headers { let chain_info = ChainInfo { head_td: status.head_td, head_hash: status.head_hash, head_num: status.head_num, }; { let mut best = self.best_seen.lock(); *best = cmp::max(best.clone(), Some(chain_info.clone())); } self.peers .write() .insert(ctx.peer(), Mutex::new(Peer::new(chain_info))); self.maintain_sync(ctx.as_basic()); PeerStatus::Kept } else { PeerStatus::Unkept } } fn on_disconnect(&self, ctx: &dyn EventContext, unfulfilled: &[ReqId]) { let peer_id = ctx.peer(); let peer = match self.peers.write().remove(&peer_id).map(|p| p.into_inner()) { Some(peer) => peer, None => return, }; trace!(target: "sync", "peer {} disconnecting", peer_id); let new_best = { let mut best = self.best_seen.lock(); if best.as_ref().map_or(false, |b| b == &peer.status) { // search for next-best block. let next_best: Option = self .peers .read() .values() .map(|p| p.lock().status.clone()) .map(Some) .fold(None, ::std::cmp::max); *best = next_best; } best.clone() }; { let mut pending_reqs = self.pending_reqs.lock(); for unfulfilled in unfulfilled { pending_reqs.remove(&unfulfilled); } } if new_best.is_none() { debug!(target: "sync", "No peers remain. Reverting to idle"); self.set_state(&mut self.state.lock(), SyncState::Idle); } else { let mut state = self.state.lock(); let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() { SyncState::Idle => SyncState::Idle, SyncState::AncestorSearch(search) => { SyncState::AncestorSearch(search.requests_abandoned(unfulfilled)) } SyncState::Rounds(round) => { SyncState::Rounds(round.requests_abandoned(unfulfilled)) } }; self.set_state(&mut state, next_state); } self.maintain_sync(ctx.as_basic()); } fn on_announcement(&self, ctx: &dyn EventContext, announcement: &Announcement) { let (last_td, chain_info) = { let peers = self.peers.read(); match peers.get(&ctx.peer()) { None => return, Some(peer) => { let mut peer = peer.lock(); let last_td = peer.status.head_td; peer.status = ChainInfo { head_td: announcement.head_td, head_hash: announcement.head_hash, head_num: announcement.head_num, }; (last_td, peer.status.clone()) } } }; trace!(target: "sync", "Announcement from peer {}: new chain head {:?}, reorg depth {}", ctx.peer(), (announcement.head_hash, announcement.head_num), announcement.reorg_depth); if last_td > announcement.head_td { trace!(target: "sync", "Peer {} moved backwards.", ctx.peer()); self.peers.write().remove(&ctx.peer()); ctx.disconnect_peer(ctx.peer()); return; } { let mut best = self.best_seen.lock(); *best = ::std::cmp::max(best.clone(), Some(chain_info)); } self.maintain_sync(ctx.as_basic()); } fn on_responses(&self, ctx: &dyn EventContext, req_id: ReqId, responses: &[request::Response]) { let peer = ctx.peer(); if !self.peers.read().contains_key(&peer) { return; } if self.pending_reqs.lock().remove(&req_id).is_none() { return; } let headers = match responses.get(0) { Some(&request::Response::Headers(ref response)) => &response.headers[..], Some(_) => { trace!("Disabling peer {} for wrong response type.", peer); ctx.disable_peer(peer); &[] } None => &[], }; { let mut state = self.state.lock(); let ctx = ResponseCtx { peer: ctx.peer(), req_id: req_id, ctx: ctx.as_basic(), data: headers, }; let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() { SyncState::Idle => SyncState::Idle, SyncState::AncestorSearch(search) => { SyncState::AncestorSearch(search.process_response(&ctx, &*self.client)) } SyncState::Rounds(round) => SyncState::Rounds(round.process_response(&ctx)), }; self.set_state(&mut state, next_state); } self.maintain_sync(ctx.as_basic()); } fn tick(&self, ctx: &dyn BasicContext) { self.maintain_sync(ctx); } } // private helpers impl LightSync { /// Sets the LightSync's state, and update /// `is_idle` fn set_state(&self, state: &mut SyncStateWrapper, next_state: SyncState) { state.set(next_state, &mut self.is_idle.lock()); } // Begins a search for the common ancestor and our best block. // does not lock state, instead has a mutable reference to it passed. fn begin_search(&self, state: &mut SyncStateWrapper) { if let None = *self.best_seen.lock() { // no peers. self.set_state(state, SyncState::Idle); return; } self.client.as_light_client().flush_queue(); let chain_info = self.client.as_light_client().chain_info(); trace!(target: "sync", "Beginning search for common ancestor from {:?}", (chain_info.best_block_number, chain_info.best_block_hash)); let next_state = SyncState::AncestorSearch(AncestorSearch::begin(chain_info.best_block_number)); self.set_state(state, next_state); } // handles request dispatch, block import, state machine transitions, and timeouts. fn maintain_sync(&self, ctx: &dyn BasicContext) { use ethcore::error::{ Error as EthcoreError, ErrorKind as EthcoreErrorKind, ImportErrorKind, }; const DRAIN_AMOUNT: usize = 128; let client = self.client.as_light_client(); let chain_info = client.chain_info(); let mut state = self.state.lock(); debug!(target: "sync", "Maintaining sync ({:?})", **state); // drain any pending blocks into the queue. { let mut sink = Vec::with_capacity(DRAIN_AMOUNT); 'a: loop { if client.queue_info().is_full() { break; } let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() { SyncState::Rounds(round) => { SyncState::Rounds(round.drain(&mut sink, Some(DRAIN_AMOUNT))) } other => other, }; self.set_state(&mut state, next_state); if sink.is_empty() { break; } trace!(target: "sync", "Drained {} headers to import", sink.len()); for header in sink.drain(..) { match client.queue_header(header) { Ok(_) => {} Err(EthcoreError( EthcoreErrorKind::Import(ImportErrorKind::AlreadyInChain), _, )) => { trace!(target: "sync", "Block already in chain. Continuing."); } Err(EthcoreError( EthcoreErrorKind::Import(ImportErrorKind::AlreadyQueued), _, )) => { trace!(target: "sync", "Block already queued. Continuing."); } Err(e) => { debug!(target: "sync", "Found bad header ({:?}). Reset to search state.", e); self.begin_search(&mut state); break 'a; } } } } } // handle state transitions. { let best_td = chain_info.pending_total_difficulty; let sync_target = match *self.best_seen.lock() { Some(ref target) if target.head_td > best_td => (target.head_num, target.head_hash), ref other => { let network_score = other.as_ref().map(|target| target.head_td); trace!(target: "sync", "No target to sync to. Network score: {:?}, Local score: {:?}", network_score, best_td); self.set_state(&mut state, SyncState::Idle); return; } }; match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() { SyncState::Rounds(SyncRound::Abort(reason, remaining)) => { if remaining.len() > 0 { self.set_state( &mut state, SyncState::Rounds(SyncRound::Abort(reason, remaining)), ); return; } match reason { AbortReason::BadScaffold(bad_peers) => { debug!(target: "sync", "Disabling peers responsible for bad scaffold"); for peer in bad_peers { ctx.disable_peer(peer); } } AbortReason::NoResponses => {} AbortReason::TargetReached => { debug!(target: "sync", "Sync target reached. Going idle"); self.set_state(&mut state, SyncState::Idle); return; } } debug!(target: "sync", "Beginning search after aborted sync round"); self.begin_search(&mut state); } SyncState::AncestorSearch(AncestorSearch::FoundCommon(num, hash)) => { self.set_state( &mut state, SyncState::Rounds(SyncRound::begin((num, hash), sync_target)), ); } SyncState::AncestorSearch(AncestorSearch::Genesis) => { // Same here. let g_hash = chain_info.genesis_hash; self.set_state( &mut state, SyncState::Rounds(SyncRound::begin((0, g_hash), sync_target)), ); } SyncState::Idle => self.begin_search(&mut state), other => self.set_state(&mut state, other), // restore displaced state. } } // handle requests timeouts { let mut pending_reqs = self.pending_reqs.lock(); let mut unfulfilled = Vec::new(); for (req_id, info) in pending_reqs.iter() { if info.started.elapsed() >= info.timeout { debug!(target: "sync", "{} timed out", req_id); unfulfilled.push(req_id.clone()); } } if !unfulfilled.is_empty() { for unfulfilled in unfulfilled.iter() { pending_reqs.remove(unfulfilled); } drop(pending_reqs); let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() { SyncState::Idle => SyncState::Idle, SyncState::AncestorSearch(search) => { SyncState::AncestorSearch(search.requests_abandoned(&unfulfilled)) } SyncState::Rounds(round) => { SyncState::Rounds(round.requests_abandoned(&unfulfilled)) } }; self.set_state(&mut state, next_state); } } // allow dispatching of requests. { let peers = self.peers.read(); let mut peer_ids: Vec<_> = peers .iter() .filter_map(|(id, p)| { if p.lock().status.head_td > chain_info.pending_total_difficulty { Some(*id) } else { None } }) .collect(); let mut rng = self.rng.lock(); let mut requested_from = HashSet::new(); // naive request dispatcher: just give to any peer which says it will // give us responses. but only one request per peer per state transition. let dispatcher = move |req: HeadersRequest| { rng.shuffle(&mut peer_ids); let request = { let mut builder = request::Builder::default(); builder.push(request::Request::Headers(request::IncompleteHeadersRequest { start: req.start.into(), skip: req.skip, max: req.max, reverse: req.reverse, })).expect("request provided fully complete with no unresolved back-references; qed"); builder.build() }; for peer in &peer_ids { if requested_from.contains(peer) { continue; } match ctx.request_from(*peer, request.clone()) { Ok(id) => { assert!( req.max <= u32::max_value() as u64, "requesting more than 2^32 headers at a time would overflow" ); let timeout = REQ_TIMEOUT_BASE + REQ_TIMEOUT_PER_HEADER * req.max as u32; self.pending_reqs.lock().insert( id.clone(), PendingReq { started: Instant::now(), timeout, }, ); requested_from.insert(peer.clone()); return Some(id); } Err(NetError::NoCredits) => {} Err(e) => { trace!(target: "sync", "Error requesting headers from viable peer: {}", e) } } } None }; let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() { SyncState::Rounds(round) => SyncState::Rounds(round.dispatch_requests(dispatcher)), SyncState::AncestorSearch(search) => { SyncState::AncestorSearch(search.dispatch_request(dispatcher)) } other => other, }; self.set_state(&mut state, next_state); } } } // public API impl LightSync { /// Create a new instance of `LightSync`. /// /// This won't do anything until registered as a handler /// so it can act on events. pub fn new(client: Arc) -> Result { Ok(LightSync { start_block_number: client.as_light_client().chain_info().best_block_number, best_seen: Mutex::new(None), peers: RwLock::new(HashMap::new()), pending_reqs: Mutex::new(HashMap::new()), client: client, rng: Mutex::new(OsRng::new()?), state: Mutex::new(SyncStateWrapper::idle()), is_idle: Mutex::new(true), }) } } /// Trait for erasing the type of a light sync object and exposing read-only methods. pub trait SyncInfo { /// Get the highest block advertised on the network. fn highest_block(&self) -> Option; /// Get the block number at the time of sync start. fn start_block(&self) -> u64; /// Whether major sync is underway. fn is_major_importing(&self) -> bool; } impl SyncInfo for LightSync { fn highest_block(&self) -> Option { self.best_seen.lock().as_ref().map(|x| x.head_num) } fn start_block(&self) -> u64 { self.start_block_number } fn is_major_importing(&self) -> bool { const EMPTY_QUEUE: usize = 3; let queue_info = self.client.as_light_client().queue_info(); let is_verifying = queue_info.unverified_queue_size + queue_info.verified_queue_size > EMPTY_QUEUE; let is_syncing = !*self.is_idle.lock(); is_verifying || is_syncing } }