// Copyright 2015, 2016 Ethcore (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . use common::*; use engine::Engine; use executive::Executive; use account_db::*; #[cfg(test)] #[cfg(feature = "json-tests")] use pod_account::*; #[cfg(test)] #[cfg(feature = "json-tests")] use pod_state::PodState; //use state_diff::*; // TODO: uncomment once to_pod() works correctly. /// Result type for the execution ("application") of a transaction. pub type ApplyResult = Result; /// Representation of the entire state of all accounts in the system. pub struct State { db: JournalDB, root: H256, cache: RefCell>>, snapshots: RefCell>>>>, account_start_nonce: U256, } impl State { /// Creates new state with empty state root #[cfg(test)] pub fn new(mut db: JournalDB, account_start_nonce: U256) -> State { let mut root = H256::new(); { // init trie and reset root too null let _ = SecTrieDBMut::new(&mut db, &mut root); } State { db: db, root: root, cache: RefCell::new(HashMap::new()), snapshots: RefCell::new(Vec::new()), account_start_nonce: account_start_nonce, } } /// Creates new state with existing state root pub fn from_existing(db: JournalDB, root: H256, account_start_nonce: U256) -> State { { // trie should panic! if root does not exist let _ = SecTrieDB::new(&db, &root); } State { db: db, root: root, cache: RefCell::new(HashMap::new()), snapshots: RefCell::new(Vec::new()), account_start_nonce: account_start_nonce, } } /// Create a recoverable snaphot of this state pub fn snapshot(&mut self) { self.snapshots.borrow_mut().push(HashMap::new()); } /// Merge last snapshot with previous pub fn clear_snapshot(&mut self) { // merge with previous snapshot let last = self.snapshots.borrow_mut().pop(); if let Some(mut snapshot) = last { if let Some(ref mut prev) = self.snapshots.borrow_mut().last_mut() { for (k, v) in snapshot.drain() { prev.entry(k).or_insert(v); } } } } /// Revert to snapshot pub fn revert_snapshot(&mut self) { if let Some(mut snapshot) = self.snapshots.borrow_mut().pop() { for (k, v) in snapshot.drain() { match v { Some(v) => { self.cache.borrow_mut().insert(k, v); }, None => { self.cache.borrow_mut().remove(&k); } } } } } fn insert_cache(&self, address: &Address, account: Option) { if let Some(ref mut snapshot) = self.snapshots.borrow_mut().last_mut() { if !snapshot.contains_key(&address) { snapshot.insert(address.clone(), self.cache.borrow_mut().insert(address.clone(), account)); return; } } self.cache.borrow_mut().insert(address.clone(), account); } fn note_cache(&self, address: &Address) { if let Some(ref mut snapshot) = self.snapshots.borrow_mut().last_mut() { if !snapshot.contains_key(&address) { snapshot.insert(address.clone(), self.cache.borrow().get(address).cloned()); } } } /// Destroy the current object and return root and database. pub fn drop(self) -> (H256, JournalDB) { (self.root, self.db) } /// Return reference to root pub fn root(&self) -> &H256 { &self.root } /// Create a new contract at address `contract`. If there is already an account at the address /// it will have its code reset, ready for `init_code()`. pub fn new_contract(&mut self, contract: &Address, balance: U256) { self.insert_cache(&contract, Some(Account::new_contract(balance))); } /// Remove an existing account. pub fn kill_account(&mut self, account: &Address) { self.insert_cache(account, None); } /// Determine whether an account exists. pub fn exists(&self, a: &Address) -> bool { self.cache.borrow().get(&a).unwrap_or(&None).is_some() || SecTrieDB::new(&self.db, &self.root).contains(&a) } /// Get the balance of account `a`. pub fn balance(&self, a: &Address) -> U256 { self.get(a, false).as_ref().map_or(U256::zero(), |account| *account.balance()) } /// Get the nonce of account `a`. pub fn nonce(&self, a: &Address) -> U256 { self.get(a, false).as_ref().map_or(U256::zero(), |account| *account.nonce()) } /// Mutate storage of account `address` so that it is `value` for `key`. pub fn storage_at(&self, address: &Address, key: &H256) -> H256 { self.get(address, false).as_ref().map_or(H256::new(), |a|a.storage_at(&AccountDB::new(&self.db, address), key)) } /// Mutate storage of account `a` so that it is `value` for `key`. pub fn code(&self, a: &Address) -> Option { self.get(a, true).as_ref().map_or(None, |a|a.code().map(|x|x.to_vec())) } /// Add `incr` to the balance of account `a`. pub fn add_balance(&mut self, a: &Address, incr: &U256) { let old = self.balance(a); self.require(a, false).add_balance(incr); trace!("state: add_balance({}, {}): {} -> {}\n", a, incr, old, self.balance(a)); } /// Subtract `decr` from the balance of account `a`. pub fn sub_balance(&mut self, a: &Address, decr: &U256) { let old = self.balance(a); self.require(a, false).sub_balance(decr); trace!("state: sub_balance({}, {}): {} -> {}\n", a, decr, old, self.balance(a)); } /// Subtracts `by` from the balance of `from` and adds it to that of `to`. pub fn transfer_balance(&mut self, from: &Address, to: &Address, by: &U256) { self.sub_balance(from, by); self.add_balance(to, by); } /// Increment the nonce of account `a` by 1. pub fn inc_nonce(&mut self, a: &Address) { self.require(a, false).inc_nonce() } /// Mutate storage of account `a` so that it is `value` for `key`. pub fn set_storage(&mut self, a: &Address, key: H256, value: H256) { self.require(a, false).set_storage(key, value) } /// Initialise the code of account `a` so that it is `value` for `key`. /// NOTE: Account should have been created with `new_contract`. pub fn init_code(&mut self, a: &Address, code: Bytes) { self.require_or_from(a, true, || Account::new_contract(U256::from(0u8)), |_|{}).init_code(code); } /// Execute a given transaction. /// This will change the state accordingly. pub fn apply(&mut self, env_info: &EnvInfo, engine: &Engine, t: &SignedTransaction) -> ApplyResult { // let old = self.to_pod(); let e = try!(Executive::new(self, env_info, engine).transact(t)); // TODO uncomment once to_pod() works correctly. // trace!("Applied transaction. Diff:\n{}\n", StateDiff::diff_pod(&old, &self.to_pod())); self.commit(); let receipt = Receipt::new(self.root().clone(), e.cumulative_gas_used, e.logs); // trace!("Transaction receipt: {:?}", receipt); Ok(receipt) } /// Commit accounts to SecTrieDBMut. This is similar to cpp-ethereum's dev::eth::commit. /// `accounts` is mutable because we may need to commit the code or storage and record that. #[cfg_attr(feature="dev", allow(match_ref_pats))] pub fn commit_into(db: &mut HashDB, root: &mut H256, accounts: &mut HashMap>) { // first, commit the sub trees. // TODO: is this necessary or can we dispense with the `ref mut a` for just `a`? for (address, ref mut a) in accounts.iter_mut() { match a { &mut&mut Some(ref mut account) => { let mut account_db = AccountDBMut::new(db, address); account.commit_storage(&mut account_db); account.commit_code(&mut account_db); } &mut&mut None => {} } } { let mut trie = SecTrieDBMut::from_existing(db, root); for (address, ref a) in accounts.iter() { match **a { Some(ref account) => trie.insert(address, &account.rlp()), None => trie.remove(address), } } } } /// Commits our cached account changes into the trie. pub fn commit(&mut self) { assert!(self.snapshots.borrow().is_empty()); Self::commit_into(&mut self.db, &mut self.root, self.cache.borrow_mut().deref_mut()); } #[cfg(test)] #[cfg(feature = "json-tests")] /// Populate the state from `accounts`. pub fn populate_from(&mut self, accounts: PodState) { assert!(self.snapshots.borrow().is_empty()); for (add, acc) in accounts.drain().into_iter() { self.cache.borrow_mut().insert(add, Some(Account::from_pod(acc))); } } #[cfg(test)] #[cfg(feature = "json-tests")] /// Populate a PodAccount map from this state. pub fn to_pod(&self) -> PodState { assert!(self.snapshots.borrow().is_empty()); // TODO: handle database rather than just the cache. PodState::from(self.cache.borrow().iter().fold(BTreeMap::new(), |mut m, (add, opt)| { if let Some(ref acc) = *opt { m.insert(add.clone(), PodAccount::from_account(acc)); } m })) } /// Pull account `a` in our cache from the trie DB and return it. /// `require_code` requires that the code be cached, too. fn get<'a>(&'a self, a: &Address, require_code: bool) -> &'a Option { let have_key = self.cache.borrow().contains_key(a); if !have_key { self.insert_cache(a, SecTrieDB::new(&self.db, &self.root).get(&a).map(Account::from_rlp)) } if require_code { if let Some(ref mut account) = self.cache.borrow_mut().get_mut(a).unwrap().as_mut() { account.cache_code(&AccountDB::new(&self.db, a)); } } unsafe { ::std::mem::transmute(self.cache.borrow().get(a).unwrap()) } } /// Pull account `a` in our cache from the trie DB. `require_code` requires that the code be cached, too. fn require<'a>(&'a self, a: &Address, require_code: bool) -> &'a mut Account { self.require_or_from(a, require_code, || Account::new_basic(U256::from(0u8), self.account_start_nonce), |_|{}) } /// Pull account `a` in our cache from the trie DB. `require_code` requires that the code be cached, too. /// If it doesn't exist, make account equal the evaluation of `default`. fn require_or_from<'a, F: FnOnce() -> Account, G: FnOnce(&mut Account)>(&self, a: &Address, require_code: bool, default: F, not_default: G) -> &'a mut Account { let have_key = self.cache.borrow().contains_key(a); if !have_key { self.insert_cache(a, SecTrieDB::new(&self.db, &self.root).get(&a).map(Account::from_rlp)) } else { self.note_cache(a); } let preexists = self.cache.borrow().get(a).unwrap().is_none(); if preexists { self.cache.borrow_mut().insert(a.clone(), Some(default())); } else { not_default(self.cache.borrow_mut().get_mut(a).unwrap().as_mut().unwrap()); } unsafe { ::std::mem::transmute(self.cache.borrow_mut().get_mut(a).unwrap().as_mut().map(|account| { if require_code { account.cache_code(&AccountDB::new(&self.db, a)); } account }).unwrap()) } } } impl fmt::Debug for State { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}", self.cache.borrow()) } } #[cfg(test)] mod tests { use super::*; use util::hash::*; use util::trie::*; use util::rlp::*; use util::uint::*; use account::*; use tests::helpers::*; #[test] fn code_from_database() { let a = Address::zero(); let temp = RandomTempPath::new(); let (root, db) = { let mut state = get_temp_state_in(temp.as_path()); state.require_or_from(&a, false, ||Account::new_contract(U256::from(42u32)), |_|{}); state.init_code(&a, vec![1, 2, 3]); assert_eq!(state.code(&a), Some([1u8, 2, 3].to_vec())); state.commit(); assert_eq!(state.code(&a), Some([1u8, 2, 3].to_vec())); state.drop() }; let state = State::from_existing(db, root, U256::from(0u8)); assert_eq!(state.code(&a), Some([1u8, 2, 3].to_vec())); } #[test] fn storage_at_from_database() { let a = Address::zero(); let temp = RandomTempPath::new(); let (root, db) = { let mut state = get_temp_state_in(temp.as_path()); state.set_storage(&a, H256::from(&U256::from(01u64)), H256::from(&U256::from(69u64))); state.commit(); state.drop() }; let s = State::from_existing(db, root, U256::from(0u8)); assert_eq!(s.storage_at(&a, &H256::from(&U256::from(01u64))), H256::from(&U256::from(69u64))); } #[test] fn get_from_database() { let a = Address::zero(); let temp = RandomTempPath::new(); let (root, db) = { let mut state = get_temp_state_in(temp.as_path()); state.inc_nonce(&a); state.add_balance(&a, &U256::from(69u64)); state.commit(); assert_eq!(state.balance(&a), U256::from(69u64)); state.drop() }; let state = State::from_existing(db, root, U256::from(0u8)); assert_eq!(state.balance(&a), U256::from(69u64)); assert_eq!(state.nonce(&a), U256::from(1u64)); } #[test] fn remove() { let a = Address::zero(); let mut state_result = get_temp_state(); let mut state = state_result.reference_mut(); assert_eq!(state.exists(&a), false); state.inc_nonce(&a); assert_eq!(state.exists(&a), true); assert_eq!(state.nonce(&a), U256::from(1u64)); state.kill_account(&a); assert_eq!(state.exists(&a), false); assert_eq!(state.nonce(&a), U256::from(0u64)); } #[test] fn remove_from_database() { let a = Address::zero(); let temp = RandomTempPath::new(); let (root, db) = { let mut state = get_temp_state_in(temp.as_path()); state.inc_nonce(&a); state.commit(); assert_eq!(state.exists(&a), true); assert_eq!(state.nonce(&a), U256::from(1u64)); state.drop() }; let (root, db) = { let mut state = State::from_existing(db, root, U256::from(0u8)); assert_eq!(state.exists(&a), true); assert_eq!(state.nonce(&a), U256::from(1u64)); state.kill_account(&a); state.commit(); assert_eq!(state.exists(&a), false); assert_eq!(state.nonce(&a), U256::from(0u64)); state.drop() }; let state = State::from_existing(db, root, U256::from(0u8)); assert_eq!(state.exists(&a), false); assert_eq!(state.nonce(&a), U256::from(0u64)); } #[test] fn alter_balance() { let mut state_result = get_temp_state(); let mut state = state_result.reference_mut(); let a = Address::zero(); let b = address_from_u64(1u64); state.add_balance(&a, &U256::from(69u64)); assert_eq!(state.balance(&a), U256::from(69u64)); state.commit(); assert_eq!(state.balance(&a), U256::from(69u64)); state.sub_balance(&a, &U256::from(42u64)); assert_eq!(state.balance(&a), U256::from(27u64)); state.commit(); assert_eq!(state.balance(&a), U256::from(27u64)); state.transfer_balance(&a, &b, &U256::from(18u64)); assert_eq!(state.balance(&a), U256::from(9u64)); assert_eq!(state.balance(&b), U256::from(18u64)); state.commit(); assert_eq!(state.balance(&a), U256::from(9u64)); assert_eq!(state.balance(&b), U256::from(18u64)); } #[test] fn alter_nonce() { let mut state_result = get_temp_state(); let mut state = state_result.reference_mut(); let a = Address::zero(); state.inc_nonce(&a); assert_eq!(state.nonce(&a), U256::from(1u64)); state.inc_nonce(&a); assert_eq!(state.nonce(&a), U256::from(2u64)); state.commit(); assert_eq!(state.nonce(&a), U256::from(2u64)); state.inc_nonce(&a); assert_eq!(state.nonce(&a), U256::from(3u64)); state.commit(); assert_eq!(state.nonce(&a), U256::from(3u64)); } #[test] fn balance_nonce() { let mut state_result = get_temp_state(); let mut state = state_result.reference_mut(); let a = Address::zero(); assert_eq!(state.balance(&a), U256::from(0u64)); assert_eq!(state.nonce(&a), U256::from(0u64)); state.commit(); assert_eq!(state.balance(&a), U256::from(0u64)); assert_eq!(state.nonce(&a), U256::from(0u64)); } #[test] fn ensure_cached() { let mut state_result = get_temp_state(); let mut state = state_result.reference_mut(); let a = Address::zero(); state.require(&a, false); state.commit(); assert_eq!(state.root().hex(), "0ce23f3c809de377b008a4a3ee94a0834aac8bec1f86e28ffe4fdb5a15b0c785"); } #[test] fn snapshot_basic() { let mut state_result = get_temp_state(); let mut state = state_result.reference_mut(); let a = Address::zero(); state.snapshot(); state.add_balance(&a, &U256::from(69u64)); assert_eq!(state.balance(&a), U256::from(69u64)); state.clear_snapshot(); assert_eq!(state.balance(&a), U256::from(69u64)); state.snapshot(); state.add_balance(&a, &U256::from(1u64)); assert_eq!(state.balance(&a), U256::from(70u64)); state.revert_snapshot(); assert_eq!(state.balance(&a), U256::from(69u64)); } #[test] fn snapshot_nested() { let mut state_result = get_temp_state(); let mut state = state_result.reference_mut(); let a = Address::zero(); state.snapshot(); state.snapshot(); state.add_balance(&a, &U256::from(69u64)); assert_eq!(state.balance(&a), U256::from(69u64)); state.clear_snapshot(); assert_eq!(state.balance(&a), U256::from(69u64)); state.revert_snapshot(); assert_eq!(state.balance(&a), U256::from(0)); } #[test] fn create_empty() { let mut state_result = get_temp_state(); let mut state = state_result.reference_mut(); state.commit(); assert_eq!(state.root().hex(), "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421"); } }