// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Generetes trie root. //! //! This module should be used to generate trie root hash. extern crate elastic_array; extern crate ethereum_types; extern crate keccak_hash as hash; extern crate rlp; use std::collections::BTreeMap; use std::cmp; use elastic_array::{ElasticArray4, ElasticArray8}; use ethereum_types::H256; use hash::keccak; use rlp::RlpStream; fn shared_prefix_len(first: &[T], second: &[T]) -> usize { let len = cmp::min(first.len(), second.len()); (0..len).take_while(|&i| first[i] == second[i]).count() } /// Generates a trie root hash for a vector of values /// /// ```rust /// extern crate triehash; /// use triehash::ordered_trie_root; /// /// fn main() { /// let v = &["doe", "reindeer"]; /// let root = "e766d5d51b89dc39d981b41bda63248d7abce4f0225eefd023792a540bcffee3"; /// assert_eq!(ordered_trie_root(v), root.into()); /// } /// ``` pub fn ordered_trie_root(input: I) -> H256 where I: IntoIterator, A: AsRef<[u8]>, { let gen_input: Vec<_> = input // first put elements into btree to sort them by nibbles // optimize it later .into_iter() .enumerate() .map(|(i, slice)| (rlp::encode(&i), slice)) .collect::>() // then move them to a vector .into_iter() .map(|(k, v)| (as_nibbles(&k), v) ) .collect(); gen_trie_root(&gen_input) } /// Generates a trie root hash for a vector of key-values /// /// ```rust /// extern crate triehash; /// use triehash::trie_root; /// /// fn main() { /// let v = vec![ /// ("doe", "reindeer"), /// ("dog", "puppy"), /// ("dogglesworth", "cat"), /// ]; /// /// let root = "8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3"; /// assert_eq!(trie_root(v), root.into()); /// } /// ``` pub fn trie_root(input: I) -> H256 where I: IntoIterator, A: AsRef<[u8]> + Ord, B: AsRef<[u8]>, { let gen_input: Vec<_> = input // first put elements into btree to sort them and to remove duplicates .into_iter() .collect::>() // then move them to a vector .into_iter() .map(|(k, v)| (as_nibbles(k.as_ref()), v) ) .collect(); gen_trie_root(&gen_input) } /// Generates a key-hashed (secure) trie root hash for a vector of key-values. /// /// ```rust /// extern crate triehash; /// use triehash::sec_trie_root; /// /// fn main() { /// let v = vec![ /// ("doe", "reindeer"), /// ("dog", "puppy"), /// ("dogglesworth", "cat"), /// ]; /// /// let root = "d4cd937e4a4368d7931a9cf51686b7e10abb3dce38a39000fd7902a092b64585"; /// assert_eq!(sec_trie_root(v), root.into()); /// } /// ``` pub fn sec_trie_root(input: I) -> H256 where I: IntoIterator, A: AsRef<[u8]>, B: AsRef<[u8]>, { let gen_input: Vec<_> = input // first put elements into btree to sort them and to remove duplicates .into_iter() .map(|(k, v)| (keccak(k), v)) .collect::>() // then move them to a vector .into_iter() .map(|(k, v)| (as_nibbles(&k), v) ) .collect(); gen_trie_root(&gen_input) } fn gen_trie_root, B: AsRef<[u8]>>(input: &[(A, B)]) -> H256 { let mut stream = RlpStream::new(); hash256rlp(input, 0, &mut stream); keccak(stream.out()) } /// Hex-prefix Notation. First nibble has flags: oddness = 2^0 & termination = 2^1. /// /// The "termination marker" and "leaf-node" specifier are completely equivalent. /// /// Input values are in range `[0, 0xf]`. /// /// ```markdown /// [0,0,1,2,3,4,5] 0x10012345 // 7 > 4 /// [0,1,2,3,4,5] 0x00012345 // 6 > 4 /// [1,2,3,4,5] 0x112345 // 5 > 3 /// [0,0,1,2,3,4] 0x00001234 // 6 > 3 /// [0,1,2,3,4] 0x101234 // 5 > 3 /// [1,2,3,4] 0x001234 // 4 > 3 /// [0,0,1,2,3,4,5,T] 0x30012345 // 7 > 4 /// [0,0,1,2,3,4,T] 0x20001234 // 6 > 4 /// [0,1,2,3,4,5,T] 0x20012345 // 6 > 4 /// [1,2,3,4,5,T] 0x312345 // 5 > 3 /// [1,2,3,4,T] 0x201234 // 4 > 3 /// ``` fn hex_prefix_encode(nibbles: &[u8], leaf: bool) -> ElasticArray4 { let inlen = nibbles.len(); let oddness_factor = inlen % 2; let mut res = ElasticArray4::new(); let first_byte = { let mut bits = ((inlen as u8 & 1) + (2 * leaf as u8)) << 4; if oddness_factor == 1 { bits += nibbles[0]; } bits }; res.push(first_byte); let mut offset = oddness_factor; while offset < inlen { let byte = (nibbles[offset] << 4) + nibbles[offset + 1]; res.push(byte); offset += 2; } res } /// Converts slice of bytes to nibbles. fn as_nibbles(bytes: &[u8]) -> ElasticArray8 { let mut res = ElasticArray8::new(); for i in 0..bytes.len() { let byte = bytes[i]; res.push(byte >> 4); res.push(byte & 0b1111); } res } fn hash256rlp, B: AsRef<[u8]>>(input: &[(A, B)], pre_len: usize, stream: &mut RlpStream) { let inlen = input.len(); // in case of empty slice, just append empty data if inlen == 0 { stream.append_empty_data(); return; } // take slices let key: &[u8] = &input[0].0.as_ref(); let value: &[u8] = &input[0].1.as_ref(); // if the slice contains just one item, append the suffix of the key // and then append value if inlen == 1 { stream.begin_list(2); stream.append(&&*hex_prefix_encode(&key[pre_len..], true)); stream.append(&value); return; } // get length of the longest shared prefix in slice keys let shared_prefix = input.iter() // skip first element .skip(1) // get minimum number of shared nibbles between first and each successive .fold(key.len(), | acc, &(ref k, _) | { cmp::min(shared_prefix_len(key, k.as_ref()), acc) }); // if shared prefix is higher than current prefix append its // new part of the key to the stream // then recursively append suffixes of all items who had this key if shared_prefix > pre_len { stream.begin_list(2); stream.append(&&*hex_prefix_encode(&key[pre_len..shared_prefix], false)); hash256aux(input, shared_prefix, stream); return; } // an item for every possible nibble/suffix // + 1 for data stream.begin_list(17); // if first key len is equal to prefix_len, move to next element let mut begin = match pre_len == key.len() { true => 1, false => 0 }; // iterate over all possible nibbles for i in 0..16 { // cout how many successive elements have same next nibble let len = match begin < input.len() { true => input[begin..].iter() .take_while(| pair | pair.0.as_ref()[pre_len] == i ) .count(), false => 0 }; // if at least 1 successive element has the same nibble // append their suffixes match len { 0 => { stream.append_empty_data(); }, _ => hash256aux(&input[begin..(begin + len)], pre_len + 1, stream) } begin += len; } // if fist key len is equal prefix, append its value match pre_len == key.len() { true => { stream.append(&value); }, false => { stream.append_empty_data(); } }; } fn hash256aux, B: AsRef<[u8]>>(input: &[(A, B)], pre_len: usize, stream: &mut RlpStream) { let mut s = RlpStream::new(); hash256rlp(input, pre_len, &mut s); let out = s.out(); match out.len() { 0...31 => stream.append_raw(&out, 1), _ => stream.append(&keccak(out)) }; } #[test] fn test_nibbles() { let v = vec![0x31, 0x23, 0x45]; let e = vec![3, 1, 2, 3, 4, 5]; assert_eq!(as_nibbles(&v), e); // A => 65 => 0x41 => [4, 1] let v: Vec = From::from("A"); let e = vec![4, 1]; assert_eq!(as_nibbles(&v), e); } #[cfg(test)] mod tests { use super::{trie_root, shared_prefix_len, hex_prefix_encode}; #[test] fn test_hex_prefix_encode() { let v = vec![0, 0, 1, 2, 3, 4, 5]; let e = vec![0x10, 0x01, 0x23, 0x45]; let h = hex_prefix_encode(&v, false); assert_eq!(h, e); let v = vec![0, 1, 2, 3, 4, 5]; let e = vec![0x00, 0x01, 0x23, 0x45]; let h = hex_prefix_encode(&v, false); assert_eq!(h, e); let v = vec![0, 1, 2, 3, 4, 5]; let e = vec![0x20, 0x01, 0x23, 0x45]; let h = hex_prefix_encode(&v, true); assert_eq!(h, e); let v = vec![1, 2, 3, 4, 5]; let e = vec![0x31, 0x23, 0x45]; let h = hex_prefix_encode(&v, true); assert_eq!(h, e); let v = vec![1, 2, 3, 4]; let e = vec![0x00, 0x12, 0x34]; let h = hex_prefix_encode(&v, false); assert_eq!(h, e); let v = vec![4, 1]; let e = vec![0x20, 0x41]; let h = hex_prefix_encode(&v, true); assert_eq!(h, e); } #[test] fn simple_test() { assert_eq!(trie_root(vec![ (b"A", b"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" as &[u8]) ]), "d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab".into()); } #[test] fn test_triehash_out_of_order() { assert!(trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]), (vec![0x81u8, 0x23], vec![0x81u8, 0x23]), (vec![0xf1u8, 0x23], vec![0xf1u8, 0x23]), ]) == trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]), (vec![0xf1u8, 0x23], vec![0xf1u8, 0x23]), (vec![0x81u8, 0x23], vec![0x81u8, 0x23]), ])); } #[test] fn test_shared_prefix() { let a = vec![1,2,3,4,5,6]; let b = vec![4,2,3,4,5,6]; assert_eq!(shared_prefix_len(&a, &b), 0); } #[test] fn test_shared_prefix2() { let a = vec![1,2,3,3,5]; let b = vec![1,2,3]; assert_eq!(shared_prefix_len(&a, &b), 3); } #[test] fn test_shared_prefix3() { let a = vec![1,2,3,4,5,6]; let b = vec![1,2,3,4,5,6]; assert_eq!(shared_prefix_len(&a, &b), 6); } }