// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . use std::cmp::{max, min}; use std::io::{self, Read}; use byteorder::{ByteOrder, BigEndian}; use crypto::sha2::Sha256 as Sha256Digest; use crypto::ripemd160::Ripemd160 as Ripemd160Digest; use crypto::digest::Digest; use num::{BigUint, Zero, One}; use util::{U256, H256, Uint, Hashable, BytesRef}; use ethkey::{Signature, recover as ec_recover}; use ethjson; /// Native implementation of a built-in contract. pub trait Impl: Send + Sync { /// execute this built-in on the given input, writing to the given output. fn execute(&self, input: &[u8], output: &mut BytesRef); } /// A gas pricing scheme for built-in contracts. pub trait Pricer: Send + Sync { /// The gas cost of running this built-in for the given input data. fn cost(&self, input: &[u8]) -> U256; } /// A linear pricing model. This computes a price using a base cost and a cost per-word. struct Linear { base: usize, word: usize, } /// A special pricing model for modular exponentiation. struct Modexp { divisor: usize, } impl Pricer for Linear { fn cost(&self, input: &[u8]) -> U256 { U256::from(self.base) + U256::from(self.word) * U256::from((input.len() + 31) / 32) } } impl Pricer for Modexp { fn cost(&self, input: &[u8]) -> U256 { let mut reader = input.chain(io::repeat(0)); let mut buf = [0; 32]; // read lengths as U256 here for accurate gas calculation. let mut read_len = || { reader.read_exact(&mut buf[..]).expect("reading from zero-extended memory cannot fail; qed"); U256::from(H256::from_slice(&buf[..])) }; let base_len = read_len(); let exp_len = read_len(); let mod_len = read_len(); // floor(max(length_of_MODULUS, length_of_BASE) ** 2 * max(length_of_EXPONENT, 1) / GQUADDIVISOR) // TODO: is saturating the best behavior here? let m = max(mod_len, base_len); match m.overflowing_mul(m) { (_, true) => U256::max_value(), (val, _) => { match val.overflowing_mul(max(exp_len, U256::one())) { (_, true) => U256::max_value(), (val, _) => val / (self.divisor as u64).into() } } } } } /// Pricing scheme, execution definition, and activation block for a built-in contract. /// /// Call `cost` to compute cost for the given input, `execute` to execute the contract /// on the given input, and `is_active` to determine whether the contract is active. /// /// Unless `is_active` is true, pub struct Builtin { pricer: Box, native: Box, activate_at: u64, } impl Builtin { /// Simple forwarder for cost. pub fn cost(&self, input: &[u8]) -> U256 { self.pricer.cost(input) } /// Simple forwarder for execute. pub fn execute(&self, input: &[u8], output: &mut BytesRef) { self.native.execute(input, output) } /// Whether the builtin is activated at the given block number. pub fn is_active(&self, at: u64) -> bool { at >= self.activate_at } } impl From for Builtin { fn from(b: ethjson::spec::Builtin) -> Self { let pricer: Box = match b.pricing { ethjson::spec::Pricing::Linear(linear) => { Box::new(Linear { base: linear.base, word: linear.word, }) } ethjson::spec::Pricing::Modexp(exp) => { Box::new(Modexp { divisor: if exp.divisor == 0 { warn!("Zero modexp divisor specified. Falling back to default."); 10 } else { exp.divisor } }) } }; Builtin { pricer: pricer, native: ethereum_builtin(&b.name), activate_at: b.activate_at.map(Into::into).unwrap_or(0), } } } // Ethereum builtin creator. fn ethereum_builtin(name: &str) -> Box { match name { "identity" => Box::new(Identity) as Box, "ecrecover" => Box::new(EcRecover) as Box, "sha256" => Box::new(Sha256) as Box, "ripemd160" => Box::new(Ripemd160) as Box, "modexp" => Box::new(ModexpImpl) as Box, _ => panic!("invalid builtin name: {}", name), } } // Ethereum builtins: // // - The identity function // - ec recovery // - sha256 // - ripemd160 // - modexp (EIP198) #[derive(Debug)] struct Identity; #[derive(Debug)] struct EcRecover; #[derive(Debug)] struct Sha256; #[derive(Debug)] struct Ripemd160; #[derive(Debug)] struct ModexpImpl; impl Impl for Identity { fn execute(&self, input: &[u8], output: &mut BytesRef) { output.write(0, input); } } impl Impl for EcRecover { fn execute(&self, i: &[u8], output: &mut BytesRef) { let len = min(i.len(), 128); let mut input = [0; 128]; input[..len].copy_from_slice(&i[..len]); let hash = H256::from_slice(&input[0..32]); let v = H256::from_slice(&input[32..64]); let r = H256::from_slice(&input[64..96]); let s = H256::from_slice(&input[96..128]); let bit = match v[31] { 27 | 28 if &v.0[..31] == &[0; 31] => v[31] - 27, _ => return, }; let s = Signature::from_rsv(&r, &s, bit); if s.is_valid() { if let Ok(p) = ec_recover(&s, &hash) { let r = p.sha3(); output.write(0, &[0; 12]); output.write(12, &r[12..r.len()]); } } } } impl Impl for Sha256 { fn execute(&self, input: &[u8], output: &mut BytesRef) { let mut sha = Sha256Digest::new(); sha.input(input); let mut out = [0; 32]; sha.result(&mut out); output.write(0, &out); } } impl Impl for Ripemd160 { fn execute(&self, input: &[u8], output: &mut BytesRef) { let mut sha = Ripemd160Digest::new(); sha.input(input); let mut out = [0; 32]; sha.result(&mut out[12..32]); output.write(0, &out); } } impl Impl for ModexpImpl { fn execute(&self, input: &[u8], output: &mut BytesRef) { let mut reader = input.chain(io::repeat(0)); let mut buf = [0; 32]; // read lengths as usize. // ignoring the first 24 bytes might technically lead us to fall out of consensus, // but so would running out of addressable memory! let mut read_len = |reader: &mut io::Chain<&[u8], io::Repeat>| { reader.read_exact(&mut buf[..]).expect("reading from zero-extended memory cannot fail; qed"); BigEndian::read_u64(&buf[24..]) as usize }; let base_len = read_len(&mut reader); let exp_len = read_len(&mut reader); let mod_len = read_len(&mut reader); // read the numbers themselves. let mut buf = vec![0; max(mod_len, max(base_len, exp_len))]; let mut read_num = |len| { reader.read_exact(&mut buf[..len]).expect("reading from zero-extended memory cannot fail; qed"); BigUint::from_bytes_be(&buf[..len]) }; let base = read_num(base_len); let exp = read_num(exp_len); let modulus = read_num(mod_len); // calculate modexp: exponentiation by squaring. fn modexp(mut base: BigUint, mut exp: BigUint, modulus: BigUint) -> BigUint { match (base == BigUint::zero(), exp == BigUint::zero()) { (_, true) => return BigUint::one(), // n^0 % m (true, false) => return BigUint::zero(), // 0^n % m, n>0 (false, false) if modulus <= BigUint::one() => return BigUint::zero(), // a^b % 1 = 0. _ => {} } let mut result = BigUint::one(); base = base % &modulus; // fast path for base divisible by modulus. if base == BigUint::zero() { return result } while exp != BigUint::zero() { // exp has to be on the right here to avoid move. if BigUint::one() & &exp == BigUint::one() { result = (result * &base) % &modulus; } exp = exp >> 1; base = (base.clone() * base) % &modulus; } result } // write output to given memory, left padded and same length as the modulus. let bytes = modexp(base, exp, modulus).to_bytes_be(); // always true except in the case of zero-length modulus, which leads to // output of length and value 1. if bytes.len() <= mod_len { let res_start = mod_len - bytes.len(); output.write(res_start, &bytes); } } } #[cfg(test)] mod tests { use super::{Builtin, Linear, ethereum_builtin, Pricer, Modexp}; use ethjson; use util::{U256, BytesRef}; #[test] fn identity() { let f = ethereum_builtin("identity"); let i = [0u8, 1, 2, 3]; let mut o2 = [255u8; 2]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o2[..])); assert_eq!(i[0..2], o2); let mut o4 = [255u8; 4]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o4[..])); assert_eq!(i, o4); let mut o8 = [255u8; 8]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o8[..])); assert_eq!(i, o8[..4]); assert_eq!([255u8; 4], o8[4..]); } #[test] fn sha256() { use rustc_serialize::hex::FromHex; let f = ethereum_builtin("sha256"); let i = [0u8; 0]; let mut o = [255u8; 32]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855").unwrap())[..]); let mut o8 = [255u8; 8]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o8[..])); assert_eq!(&o8[..], &(FromHex::from_hex("e3b0c44298fc1c14").unwrap())[..]); let mut o34 = [255u8; 34]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o34[..])); assert_eq!(&o34[..], &(FromHex::from_hex("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855ffff").unwrap())[..]); let mut ov = vec![]; f.execute(&i[..], &mut BytesRef::Flexible(&mut ov)); assert_eq!(&ov[..], &(FromHex::from_hex("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855").unwrap())[..]); } #[test] fn ripemd160() { use rustc_serialize::hex::FromHex; let f = ethereum_builtin("ripemd160"); let i = [0u8; 0]; let mut o = [255u8; 32]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("0000000000000000000000009c1185a5c5e9fc54612808977ee8f548b2258d31").unwrap())[..]); let mut o8 = [255u8; 8]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o8[..])); assert_eq!(&o8[..], &(FromHex::from_hex("0000000000000000").unwrap())[..]); let mut o34 = [255u8; 34]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o34[..])); assert_eq!(&o34[..], &(FromHex::from_hex("0000000000000000000000009c1185a5c5e9fc54612808977ee8f548b2258d31ffff").unwrap())[..]); } #[test] fn ecrecover() { use rustc_serialize::hex::FromHex; /*let k = KeyPair::from_secret(b"test".sha3()).unwrap(); let a: Address = From::from(k.public().sha3()); println!("Address: {}", a); let m = b"hello world".sha3(); println!("Message: {}", m); let s = k.sign(&m).unwrap(); println!("Signed: {}", s);*/ let f = ethereum_builtin("ecrecover"); let i = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03").unwrap(); let mut o = [255u8; 32]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("000000000000000000000000c08b5542d177ac6686946920409741463a15dddb").unwrap())[..]); let mut o8 = [255u8; 8]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o8[..])); assert_eq!(&o8[..], &(FromHex::from_hex("0000000000000000").unwrap())[..]); let mut o34 = [255u8; 34]; f.execute(&i[..], &mut BytesRef::Fixed(&mut o34[..])); assert_eq!(&o34[..], &(FromHex::from_hex("000000000000000000000000c08b5542d177ac6686946920409741463a15dddbffff").unwrap())[..]); let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001a650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03").unwrap(); let mut o = [255u8; 32]; f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]); let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b000000000000000000000000000000000000000000000000000000000000001b0000000000000000000000000000000000000000000000000000000000000000").unwrap(); let mut o = [255u8; 32]; f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]); let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001b").unwrap(); let mut o = [255u8; 32]; f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]); let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001bffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000000000000000000000000001b").unwrap(); let mut o = [255u8; 32]; f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]); let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b000000000000000000000000000000000000000000000000000000000000001bffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap(); let mut o = [255u8; 32]; f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]); // TODO: Should this (corrupted version of the above) fail rather than returning some address? /* let i_bad = FromHex::from_hex("48173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03").unwrap(); let mut o = [255u8; 32]; f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]);*/ } #[test] fn modexp() { use rustc_serialize::hex::FromHex; let f = Builtin { pricer: Box::new(Modexp { divisor: 20 }), native: ethereum_builtin("modexp"), activate_at: 0, }; // fermat's little theorem example. { let input = FromHex::from_hex("\ 0000000000000000000000000000000000000000000000000000000000000001\ 0000000000000000000000000000000000000000000000000000000000000020\ 0000000000000000000000000000000000000000000000000000000000000020\ 03\ fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e\ fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f" ).unwrap(); let mut output = vec![0u8; 32]; let expected = FromHex::from_hex("0000000000000000000000000000000000000000000000000000000000000001").unwrap(); let expected_cost = 1638; f.execute(&input[..], &mut BytesRef::Fixed(&mut output[..])); assert_eq!(output, expected); assert_eq!(f.cost(&input[..]), expected_cost.into()); } // second example from EIP: zero base. { let input = FromHex::from_hex("\ 0000000000000000000000000000000000000000000000000000000000000000\ 0000000000000000000000000000000000000000000000000000000000000020\ 0000000000000000000000000000000000000000000000000000000000000020\ fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e\ fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f" ).unwrap(); let mut output = vec![0u8; 32]; let expected = FromHex::from_hex("0000000000000000000000000000000000000000000000000000000000000000").unwrap(); let expected_cost = 1638; f.execute(&input[..], &mut BytesRef::Fixed(&mut output[..])); assert_eq!(output, expected); assert_eq!(f.cost(&input[..]), expected_cost.into()); } // another example from EIP: zero-padding { let input = FromHex::from_hex("\ 0000000000000000000000000000000000000000000000000000000000000001\ 0000000000000000000000000000000000000000000000000000000000000002\ 0000000000000000000000000000000000000000000000000000000000000020\ 03\ ffff\ 80" ).unwrap(); let mut output = vec![0u8; 32]; let expected = FromHex::from_hex("3b01b01ac41f2d6e917c6d6a221ce793802469026d9ab7578fa2e79e4da6aaab").unwrap(); let expected_cost = 102; f.execute(&input[..], &mut BytesRef::Fixed(&mut output[..])); assert_eq!(output, expected); assert_eq!(f.cost(&input[..]), expected_cost.into()); } // zero-length modulus. { let input = FromHex::from_hex("\ 0000000000000000000000000000000000000000000000000000000000000001\ 0000000000000000000000000000000000000000000000000000000000000002\ 0000000000000000000000000000000000000000000000000000000000000000\ 03\ ffff" ).unwrap(); let mut output = vec![]; let expected_cost = 0; f.execute(&input[..], &mut BytesRef::Flexible(&mut output)); assert_eq!(output.len(), 0); // shouldn't have written any output. assert_eq!(f.cost(&input[..]), expected_cost.into()); } } #[test] #[should_panic] fn from_unknown_linear() { let _ = ethereum_builtin("foo"); } #[test] fn is_active() { let pricer = Box::new(Linear { base: 10, word: 20} ); let b = Builtin { pricer: pricer as Box, native: ethereum_builtin("identity"), activate_at: 100_000, }; assert!(!b.is_active(99_999)); assert!(b.is_active(100_000)); assert!(b.is_active(100_001)); } #[test] fn from_named_linear() { let pricer = Box::new(Linear { base: 10, word: 20 }); let b = Builtin { pricer: pricer as Box, native: ethereum_builtin("identity"), activate_at: 1, }; assert_eq!(b.cost(&[0; 0]), U256::from(10)); assert_eq!(b.cost(&[0; 1]), U256::from(30)); assert_eq!(b.cost(&[0; 32]), U256::from(30)); assert_eq!(b.cost(&[0; 33]), U256::from(50)); let i = [0u8, 1, 2, 3]; let mut o = [255u8; 4]; b.execute(&i[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(i, o); } #[test] fn from_json() { let b = Builtin::from(ethjson::spec::Builtin { name: "identity".to_owned(), pricing: ethjson::spec::Pricing::Linear(ethjson::spec::Linear { base: 10, word: 20, }), activate_at: None, }); assert_eq!(b.cost(&[0; 0]), U256::from(10)); assert_eq!(b.cost(&[0; 1]), U256::from(30)); assert_eq!(b.cost(&[0; 32]), U256::from(30)); assert_eq!(b.cost(&[0; 33]), U256::from(50)); let i = [0u8, 1, 2, 3]; let mut o = [255u8; 4]; b.execute(&i[..], &mut BytesRef::Fixed(&mut o[..])); assert_eq!(i, o); } }