// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Reference-counted memory-based `HashDB` implementation. extern crate heapsize; extern crate ethcore_bigint as bigint; extern crate rlp; extern crate hash as keccak; extern crate hashdb; use std::mem; use std::collections::HashMap; use std::collections::hash_map::Entry; use heapsize::HeapSizeOf; use bigint::hash::{H256FastMap, H256}; use rlp::NULL_RLP; use keccak::{KECCAK_NULL_RLP, keccak}; use hashdb::*; /// Reference-counted memory-based `HashDB` implementation. /// /// Use `new()` to create a new database. Insert items with `insert()`, remove items /// with `remove()`, check for existence with `contains()` and lookup a hash to derive /// the data with `get()`. Clear with `clear()` and purge the portions of the data /// that have no references with `purge()`. /// /// # Example /// ```rust /// extern crate hashdb; /// extern crate memorydb; /// use hashdb::*; /// use memorydb::*; /// fn main() { /// let mut m = MemoryDB::new(); /// let d = "Hello world!".as_bytes(); /// /// let k = m.insert(d); /// assert!(m.contains(&k)); /// assert_eq!(m.get(&k).unwrap(), d); /// /// m.insert(d); /// assert!(m.contains(&k)); /// /// m.remove(&k); /// assert!(m.contains(&k)); /// /// m.remove(&k); /// assert!(!m.contains(&k)); /// /// m.remove(&k); /// assert!(!m.contains(&k)); /// /// m.insert(d); /// assert!(!m.contains(&k)); /// m.insert(d); /// assert!(m.contains(&k)); /// assert_eq!(m.get(&k).unwrap(), d); /// /// m.remove(&k); /// assert!(!m.contains(&k)); /// } /// ``` #[derive(Default, Clone, PartialEq)] pub struct MemoryDB { data: H256FastMap<(DBValue, i32)>, } impl MemoryDB { /// Create a new instance of the memory DB. pub fn new() -> MemoryDB { MemoryDB { data: H256FastMap::default(), } } /// Clear all data from the database. /// /// # Examples /// ```rust /// extern crate hashdb; /// extern crate memorydb; /// use hashdb::*; /// use memorydb::*; /// fn main() { /// let mut m = MemoryDB::new(); /// let hello_bytes = "Hello world!".as_bytes(); /// let hash = m.insert(hello_bytes); /// assert!(m.contains(&hash)); /// m.clear(); /// assert!(!m.contains(&hash)); /// } /// ``` pub fn clear(&mut self) { self.data.clear(); } /// Purge all zero-referenced data from the database. pub fn purge(&mut self) { self.data.retain(|_, &mut (_, rc)| rc != 0); } /// Return the internal map of hashes to data, clearing the current state. pub fn drain(&mut self) -> H256FastMap<(DBValue, i32)> { mem::replace(&mut self.data, H256FastMap::default()) } /// Grab the raw information associated with a key. Returns None if the key /// doesn't exist. /// /// Even when Some is returned, the data is only guaranteed to be useful /// when the refs > 0. pub fn raw(&self, key: &H256) -> Option<(DBValue, i32)> { if key == &KECCAK_NULL_RLP { return Some((DBValue::from_slice(&NULL_RLP), 1)); } self.data.get(key).cloned() } /// Returns the size of allocated heap memory pub fn mem_used(&self) -> usize { self.data.heap_size_of_children() } /// Remove an element and delete it from storage if reference count reaches zero. /// If the value was purged, return the old value. pub fn remove_and_purge(&mut self, key: &H256) -> Option { if key == &KECCAK_NULL_RLP { return None; } match self.data.entry(key.clone()) { Entry::Occupied(mut entry) => if entry.get().1 == 1 { Some(entry.remove().0) } else { entry.get_mut().1 -= 1; None }, Entry::Vacant(entry) => { entry.insert((DBValue::new(), -1)); None } } } /// Consolidate all the entries of `other` into `self`. pub fn consolidate(&mut self, mut other: Self) { for (key, (value, rc)) in other.drain() { match self.data.entry(key) { Entry::Occupied(mut entry) => { if entry.get().1 < 0 { entry.get_mut().0 = value; } entry.get_mut().1 += rc; } Entry::Vacant(entry) => { entry.insert((value, rc)); } } } } } impl HashDB for MemoryDB { fn get(&self, key: &H256) -> Option { if key == &KECCAK_NULL_RLP { return Some(DBValue::from_slice(&NULL_RLP)); } match self.data.get(key) { Some(&(ref d, rc)) if rc > 0 => Some(d.clone()), _ => None } } fn keys(&self) -> HashMap { self.data.iter() .filter_map(|(k, v)| if v.1 != 0 { Some((*k, v.1)) } else { None }) .collect() } fn contains(&self, key: &H256) -> bool { if key == &KECCAK_NULL_RLP { return true; } match self.data.get(key) { Some(&(_, x)) if x > 0 => true, _ => false } } fn insert(&mut self, value: &[u8]) -> H256 { if value == &NULL_RLP { return KECCAK_NULL_RLP.clone(); } let key = keccak(value); match self.data.entry(key) { Entry::Occupied(mut entry) => { let &mut (ref mut old_value, ref mut rc) = entry.get_mut(); if *rc >= -0x80000000i32 && *rc <= 0 { *old_value = DBValue::from_slice(value); } *rc += 1; }, Entry::Vacant(entry) => { entry.insert((DBValue::from_slice(value), 1)); }, } key } fn emplace(&mut self, key: H256, value: DBValue) { if &*value == &NULL_RLP { return; } match self.data.entry(key) { Entry::Occupied(mut entry) => { let &mut (ref mut old_value, ref mut rc) = entry.get_mut(); if *rc >= -0x80000000i32 && *rc <= 0 { *old_value = value; } *rc += 1; }, Entry::Vacant(entry) => { entry.insert((value, 1)); }, } } fn remove(&mut self, key: &H256) { if key == &KECCAK_NULL_RLP { return; } match self.data.entry(*key) { Entry::Occupied(mut entry) => { let &mut (_, ref mut rc) = entry.get_mut(); *rc -= 1; }, Entry::Vacant(entry) => { entry.insert((DBValue::new(), -1)); }, } } } #[cfg(test)] mod tests { use keccak::keccak; use super::*; #[test] fn memorydb_remove_and_purge() { let hello_bytes = b"Hello world!"; let hello_key = keccak(hello_bytes); let mut m = MemoryDB::new(); m.remove(&hello_key); assert_eq!(m.raw(&hello_key).unwrap().1, -1); m.purge(); assert_eq!(m.raw(&hello_key).unwrap().1, -1); m.insert(hello_bytes); assert_eq!(m.raw(&hello_key).unwrap().1, 0); m.purge(); assert_eq!(m.raw(&hello_key), None); let mut m = MemoryDB::new(); assert!(m.remove_and_purge(&hello_key).is_none()); assert_eq!(m.raw(&hello_key).unwrap().1, -1); m.insert(hello_bytes); m.insert(hello_bytes); assert_eq!(m.raw(&hello_key).unwrap().1, 1); assert_eq!(&*m.remove_and_purge(&hello_key).unwrap(), hello_bytes); assert_eq!(m.raw(&hello_key), None); assert!(m.remove_and_purge(&hello_key).is_none()); } #[test] fn consolidate() { let mut main = MemoryDB::new(); let mut other = MemoryDB::new(); let remove_key = other.insert(b"doggo"); main.remove(&remove_key); let insert_key = other.insert(b"arf"); main.emplace(insert_key, DBValue::from_slice(b"arf")); let negative_remove_key = other.insert(b"negative"); other.remove(&negative_remove_key); // ref cnt: 0 other.remove(&negative_remove_key); // ref cnt: -1 main.remove(&negative_remove_key); // ref cnt: -1 main.consolidate(other); let overlay = main.drain(); assert_eq!(overlay.get(&remove_key).unwrap(), &(DBValue::from_slice(b"doggo"), 0)); assert_eq!(overlay.get(&insert_key).unwrap(), &(DBValue::from_slice(b"arf"), 2)); assert_eq!(overlay.get(&negative_remove_key).unwrap(), &(DBValue::from_slice(b"negative"), -2)); } }