// Copyright 2015-2019 Parity Technologies (UK) Ltd. // This file is part of Parity Ethereum. // Parity Ethereum is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity Ethereum is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity Ethereum. If not, see . //! Evm interface. use std::{ops, cmp, fmt}; use ethereum_types::{U128, U256, U512}; use vm::{Ext, Result, ReturnData, GasLeft, Error}; /// Finalization result. Gas Left: either it is a known value, or it needs to be computed by processing /// a return instruction. #[derive(Debug)] pub struct FinalizationResult { /// Final amount of gas left. pub gas_left: U256, /// Apply execution state changes or revert them. pub apply_state: bool, /// Return data buffer. pub return_data: ReturnData, } /// Types that can be "finalized" using an EVM. /// /// In practice, this is just used to define an inherent impl on /// `Reult>`. pub trait Finalize { /// Consume the externalities, call return if necessary, and produce call result. fn finalize(self, ext: E) -> Result; } impl Finalize for Result { fn finalize(self, ext: E) -> Result { match self { Ok(GasLeft::Known(gas_left)) => { Ok(FinalizationResult { gas_left, apply_state: true, return_data: ReturnData::empty() }) }, Ok(GasLeft::NeedsReturn { gas_left, data, apply_state }) => { ext.ret(&gas_left, &data, apply_state).map(|gas_left| FinalizationResult { gas_left, apply_state, return_data: data } ) }, Err(err) => Err(err), } } } impl Finalize for Error { fn finalize(self, _ext: E) -> Result { Err(self) } } /// Cost calculation type. For low-gas usage we calculate costs using usize instead of U256 pub trait CostType: Sized + From + Copy + Send + ops::Mul + ops::Div + ops::Add + ops::Sub + ops::Shr + ops::Shl + cmp::Ord + fmt::Debug { /// Converts this cost into `U256` fn as_u256(&self) -> U256; /// Tries to fit `U256` into this `Cost` type fn from_u256(val: U256) -> Result; /// Convert to usize (may panic) fn as_usize(&self) -> usize; /// Add with overflow fn overflow_add(self, other: Self) -> (Self, bool); /// Multiple with overflow fn overflow_mul(self, other: Self) -> (Self, bool); /// Single-step full multiplication and shift: `(self*other) >> shr` /// Should not overflow on intermediate steps fn overflow_mul_shr(self, other: Self, shr: usize) -> (Self, bool); } impl CostType for U256 { fn as_u256(&self) -> U256 { *self } fn from_u256(val: U256) -> Result { Ok(val) } fn as_usize(&self) -> usize { self.as_u64() as usize } fn overflow_add(self, other: Self) -> (Self, bool) { self.overflowing_add(other) } fn overflow_mul(self, other: Self) -> (Self, bool) { self.overflowing_mul(other) } fn overflow_mul_shr(self, other: Self, shr: usize) -> (Self, bool) { let x = self.full_mul(other); let U512(parts) = x; let overflow = (parts[4] | parts[5] | parts[6] | parts[7]) > 0; let U512(parts) = x >> shr; ( U256([parts[0], parts[1], parts[2], parts[3]]), overflow ) } } impl CostType for usize { fn as_u256(&self) -> U256 { U256::from(*self) } fn from_u256(val: U256) -> Result { let res = val.low_u64() as usize; // validate if value fits into usize if U256::from(res) != val { return Err(Error::OutOfGas); } Ok(res) } fn as_usize(&self) -> usize { *self } fn overflow_add(self, other: Self) -> (Self, bool) { self.overflowing_add(other) } fn overflow_mul(self, other: Self) -> (Self, bool) { self.overflowing_mul(other) } fn overflow_mul_shr(self, other: Self, shr: usize) -> (Self, bool) { let (c, o) = U128::from(self).overflowing_mul(U128::from(other)); let U128(parts) = c; let overflow = o | (parts[1] > 0); let U128(parts) = c >> shr; let result = parts[0] as usize; let overflow = overflow | (parts[0] > result as u64); (result, overflow) } } #[cfg(test)] mod tests { use ethereum_types::U256; use super::CostType; #[test] fn should_calculate_overflow_mul_shr_without_overflow() { // given let num = 1048576; // when let (res1, o1) = U256::from(num).overflow_mul_shr(U256::from(num), 20); let (res2, o2) = num.overflow_mul_shr(num, 20); // then assert_eq!(res1, U256::from(num)); assert!(!o1); assert_eq!(res2, num); assert!(!o2); } #[test] fn should_calculate_overflow_mul_shr_with_overflow() { // given let max = u64::max_value(); let num1 = U256([max, max, max, max]); let num2 = usize::max_value(); // when let (res1, o1) = num1.overflow_mul_shr(num1, 256); let (res2, o2) = num2.overflow_mul_shr(num2, 64); // then assert_eq!(res2, num2 - 1); assert!(o2); assert_eq!(res1, !U256::zero() - U256::one()); assert!(o1); } #[test] fn should_validate_u256_to_usize_conversion() { // given let v = U256::from(usize::max_value()) + U256::from(1); // when let res = usize::from_u256(v); // then assert!(res.is_err()); } }