// Copyright 2015, 2016 Ethcore (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! LES Protocol Version 1 implementation. //! //! This uses a "Provider" to answer requests. //! See https://github.com/ethcore/parity/wiki/Light-Ethereum-Subprotocol-(LES) use ethcore::transaction::SignedTransaction; use ethcore::receipt::Receipt; use io::TimerToken; use network::{NetworkProtocolHandler, NetworkContext, NetworkError, PeerId}; use rlp::{RlpStream, Stream, UntrustedRlp, View}; use util::hash::H256; use util::{Bytes, Mutex, RwLock, U256}; use time::SteadyTime; use std::collections::HashMap; use std::sync::atomic::{AtomicUsize, Ordering}; use provider::Provider; use request::{self, Request}; use self::buffer_flow::{Buffer, FlowParams}; use self::context::{IoContext, EventContext, Ctx}; use self::error::{Error, Punishment}; mod buffer_flow; mod context; mod error; mod status; pub use self::status::{Status, Capabilities, Announcement, NetworkId}; const TIMEOUT: TimerToken = 0; const TIMEOUT_INTERVAL_MS: u64 = 1000; // LPV1 const PROTOCOL_VERSION: u32 = 1; // TODO [rob] make configurable. const PROTOCOL_ID: [u8; 3] = *b"les"; // packet ID definitions. mod packet { // the status packet. pub const STATUS: u8 = 0x00; // announcement of new block hashes or capabilities. pub const ANNOUNCE: u8 = 0x01; // request and response for block headers pub const GET_BLOCK_HEADERS: u8 = 0x02; pub const BLOCK_HEADERS: u8 = 0x03; // request and response for block bodies pub const GET_BLOCK_BODIES: u8 = 0x04; pub const BLOCK_BODIES: u8 = 0x05; // request and response for transaction receipts. pub const GET_RECEIPTS: u8 = 0x06; pub const RECEIPTS: u8 = 0x07; // request and response for merkle proofs. pub const GET_PROOFS: u8 = 0x08; pub const PROOFS: u8 = 0x09; // request and response for contract code. pub const GET_CONTRACT_CODES: u8 = 0x0a; pub const CONTRACT_CODES: u8 = 0x0b; // relay transactions to peers. pub const SEND_TRANSACTIONS: u8 = 0x0c; // request and response for header proofs in a CHT. pub const GET_HEADER_PROOFS: u8 = 0x0d; pub const HEADER_PROOFS: u8 = 0x0e; } /// A request id. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct ReqId(usize); // A pending peer: one we've sent our status to but // may not have received one for. struct PendingPeer { sent_head: H256, } // data about each peer. struct Peer { local_buffer: Buffer, // their buffer relative to us remote_buffer: Buffer, // our buffer relative to them status: Status, capabilities: Capabilities, remote_flow: FlowParams, sent_head: H256, // last head we've given them. } impl Peer { // check the maximum cost of a request, returning an error if there's // not enough buffer left. // returns the calculated maximum cost. fn deduct_max(&mut self, flow_params: &FlowParams, kind: request::Kind, max: usize) -> Result { flow_params.recharge(&mut self.local_buffer); let max_cost = flow_params.compute_cost(kind, max); try!(self.local_buffer.deduct_cost(max_cost)); Ok(max_cost) } // refund buffer for a request. returns new buffer amount. fn refund(&mut self, flow_params: &FlowParams, amount: U256) -> U256 { flow_params.refund(&mut self.local_buffer, amount); self.local_buffer.current() } // recharge remote buffer with remote flow params. fn recharge_remote(&mut self) { let flow = &mut self.remote_flow; flow.recharge(&mut self.remote_buffer); } } /// An LES event handler. /// /// Each handler function takes a context which describes the relevant peer /// and gives references to the IO layer and protocol structure so new messages /// can be dispatched immediately. /// /// Request responses are not guaranteed to be complete or valid, but passed IDs will be correct. /// Response handlers are not given a copy of the original request; it is assumed /// that relevant data will be stored by interested handlers. pub trait Handler: Send + Sync { /// Called when a peer connects. fn on_connect(&self, _ctx: &EventContext, _status: &Status, _capabilities: &Capabilities) { } /// Called when a peer disconnects, with a list of unfulfilled request IDs as /// of yet. fn on_disconnect(&self, _ctx: &EventContext, _unfulfilled: &[ReqId]) { } /// Called when a peer makes an announcement. fn on_announcement(&self, _ctx: &EventContext, _announcement: &Announcement) { } /// Called when a peer requests relay of some transactions. fn on_transactions(&self, _ctx: &EventContext, _relay: &[SignedTransaction]) { } /// Called when a peer responds with block bodies. fn on_block_bodies(&self, _ctx: &EventContext, _req_id: ReqId, _bodies: &[Bytes]) { } /// Called when a peer responds with block headers. fn on_block_headers(&self, _ctx: &EventContext, _req_id: ReqId, _headers: &[Bytes]) { } /// Called when a peer responds with block receipts. fn on_receipts(&self, _ctx: &EventContext, _req_id: ReqId, _receipts: &[Vec]) { } /// Called when a peer responds with state proofs. Each proof is a series of trie /// nodes in ascending order by distance from the root. fn on_state_proofs(&self, _ctx: &EventContext, _req_id: ReqId, _proofs: &[Vec]) { } /// Called when a peer responds with contract code. fn on_code(&self, _ctx: &EventContext, _req_id: ReqId, _codes: &[Bytes]) { } /// Called when a peer responds with header proofs. Each proof is a block header coupled /// with a series of trie nodes is ascending order by distance from the root. fn on_header_proofs(&self, _ctx: &EventContext, _req_id: ReqId, _proofs: &[(Bytes, Vec)]) { } } // a request, the peer who it was made to, and the time it was made. struct Requested { request: Request, timestamp: SteadyTime, peer_id: PeerId, } /// Protocol parameters. pub struct Params { /// Genesis hash. pub genesis_hash: H256, /// Network id. pub network_id: NetworkId, /// Buffer flow parameters. pub flow_params: FlowParams, /// Initial capabilities. pub capabilities: Capabilities, } /// This is an implementation of the light ethereum network protocol, abstracted /// over a `Provider` of data and a p2p network. /// /// This is simply designed for request-response purposes. Higher level uses /// of the protocol, such as synchronization, will function as wrappers around /// this system. // // LOCK ORDER: // Locks must be acquired in the order declared, and when holding a read lock // on the peers, only one peer may be held at a time. pub struct LightProtocol { provider: Box, genesis_hash: H256, network_id: NetworkId, pending_peers: RwLock>, peers: RwLock>>, pending_requests: RwLock>, capabilities: RwLock, flow_params: FlowParams, // assumed static and same for every peer. handlers: Vec>, req_id: AtomicUsize, } impl LightProtocol { /// Create a new instance of the protocol manager. pub fn new(provider: Box, params: Params) -> Self { LightProtocol { provider: provider, genesis_hash: params.genesis_hash, network_id: params.network_id, pending_peers: RwLock::new(HashMap::new()), peers: RwLock::new(HashMap::new()), pending_requests: RwLock::new(HashMap::new()), capabilities: RwLock::new(params.capabilities), flow_params: params.flow_params, handlers: Vec::new(), req_id: AtomicUsize::new(0), } } /// Check the maximum amount of requests of a specific type /// which a peer would be able to serve. pub fn max_requests(&self, peer: PeerId, kind: request::Kind) -> Option { self.peers.read().get(&peer).map(|peer| { let mut peer = peer.lock(); peer.recharge_remote(); peer.remote_flow.max_amount(&peer.remote_buffer, kind) }) } /// Make a request to a peer. /// /// Fails on: nonexistent peer, network error, /// insufficient buffer. Does not check capabilities before sending. /// On success, returns a request id which can later be coordinated /// with an event. pub fn request_from(&self, io: &IoContext, peer_id: &PeerId, request: Request) -> Result { let peers = self.peers.read(); let peer = try!(peers.get(peer_id).ok_or_else(|| Error::UnknownPeer)); let mut peer = peer.lock(); peer.recharge_remote(); let max = peer.remote_flow.compute_cost(request.kind(), request.amount()); try!(peer.remote_buffer.deduct_cost(max)); let req_id = self.req_id.fetch_add(1, Ordering::SeqCst); let packet_data = encode_request(&request, req_id); let packet_id = match request.kind() { request::Kind::Headers => packet::GET_BLOCK_HEADERS, request::Kind::Bodies => packet::GET_BLOCK_BODIES, request::Kind::Receipts => packet::GET_RECEIPTS, request::Kind::StateProofs => packet::GET_PROOFS, request::Kind::Codes => packet::GET_CONTRACT_CODES, request::Kind::HeaderProofs => packet::GET_HEADER_PROOFS, }; io.send(*peer_id, packet_id, packet_data); self.pending_requests.write().insert(req_id, Requested { request: request, timestamp: SteadyTime::now(), peer_id: *peer_id, }); Ok(ReqId(req_id)) } /// Make an announcement of new chain head and capabilities to all peers. /// The announcement is expected to be valid. pub fn make_announcement(&self, io: &IoContext, mut announcement: Announcement) { let mut reorgs_map = HashMap::new(); // update stored capabilities self.capabilities.write().update_from(&announcement); // calculate reorg info and send packets for (peer_id, peer_info) in self.peers.read().iter() { let mut peer_info = peer_info.lock(); let reorg_depth = reorgs_map.entry(peer_info.sent_head) .or_insert_with(|| { match self.provider.reorg_depth(&announcement.head_hash, &peer_info.sent_head) { Some(depth) => depth, None => { // both values will always originate locally -- this means something // has gone really wrong debug!(target: "les", "couldn't compute reorganization depth between {:?} and {:?}", &announcement.head_hash, &peer_info.sent_head); 0 } } }); peer_info.sent_head = announcement.head_hash; announcement.reorg_depth = *reorg_depth; io.send(*peer_id, packet::ANNOUNCE, status::write_announcement(&announcement)); } } /// Add an event handler. /// Ownership will be transferred to the protocol structure, /// and the handler will be kept alive as long as it is. /// These are intended to be added when the protocol structure /// is initialized as a means of customizing its behavior. pub fn add_handler(&mut self, handler: Box) { self.handlers.push(handler); } // Does the common pre-verification of responses before the response itself // is actually decoded: // - check whether peer exists // - check whether request was made // - check whether request kinds match fn pre_verify_response(&self, peer: &PeerId, kind: request::Kind, raw: &UntrustedRlp) -> Result { let req_id: usize = try!(raw.val_at(0)); let cur_buffer: U256 = try!(raw.val_at(1)); trace!(target: "les", "pre-verifying response from peer {}, kind={:?}", peer, kind); match self.pending_requests.write().remove(&req_id) { None => return Err(Error::UnsolicitedResponse), Some(requested) => { if requested.peer_id != *peer || requested.request.kind() != kind { return Err(Error::UnsolicitedResponse) } } } let peers = self.peers.read(); match peers.get(peer) { Some(peer_info) => { let mut peer_info = peer_info.lock(); let actual_buffer = ::std::cmp::min(cur_buffer, *peer_info.remote_flow.limit()); peer_info.remote_buffer.update_to(actual_buffer); Ok(ReqId(req_id)) } None => Err(Error::UnknownPeer), // probably only occurs in a race of some kind. } } // handle a packet using the given io context. fn handle_packet(&self, io: &IoContext, peer: &PeerId, packet_id: u8, data: &[u8]) { let rlp = UntrustedRlp::new(data); // handle the packet let res = match packet_id { packet::STATUS => self.status(peer, io, rlp), packet::ANNOUNCE => self.announcement(peer, io, rlp), packet::GET_BLOCK_HEADERS => self.get_block_headers(peer, io, rlp), packet::BLOCK_HEADERS => self.block_headers(peer, io, rlp), packet::GET_BLOCK_BODIES => self.get_block_bodies(peer, io, rlp), packet::BLOCK_BODIES => self.block_bodies(peer, io, rlp), packet::GET_RECEIPTS => self.get_receipts(peer, io, rlp), packet::RECEIPTS => self.receipts(peer, io, rlp), packet::GET_PROOFS => self.get_proofs(peer, io, rlp), packet::PROOFS => self.proofs(peer, io, rlp), packet::GET_CONTRACT_CODES => self.get_contract_code(peer, io, rlp), packet::CONTRACT_CODES => self.contract_code(peer, io, rlp), packet::GET_HEADER_PROOFS => self.get_header_proofs(peer, io, rlp), packet::HEADER_PROOFS => self.header_proofs(peer, io, rlp), packet::SEND_TRANSACTIONS => self.relay_transactions(peer, io, rlp), other => { Err(Error::UnrecognizedPacket(other)) } }; // if something went wrong, figure out how much to punish the peer. if let Err(e) = res { match e.punishment() { Punishment::None => {} Punishment::Disconnect => { debug!(target: "les", "Disconnecting peer {}: {}", peer, e); io.disconnect_peer(*peer) } Punishment::Disable => { debug!(target: "les", "Disabling peer {}: {}", peer, e); io.disable_peer(*peer) } } } } } impl LightProtocol { // called when a peer connects. fn on_connect(&self, peer: &PeerId, io: &IoContext) { let peer = *peer; match self.send_status(peer, io) { Ok(pending_peer) => { self.pending_peers.write().insert(peer, pending_peer); } Err(e) => { trace!(target: "les", "Error while sending status: {}", e); io.disconnect_peer(peer); } } } // called when a peer disconnects. fn on_disconnect(&self, peer: PeerId, io: &IoContext) { self.pending_peers.write().remove(&peer); if self.peers.write().remove(&peer).is_some() { let unfulfilled: Vec<_> = self.pending_requests.read() .iter() .filter(|&(_, r)| r.peer_id == peer) .map(|(&id, _)| ReqId(id)) .collect(); { let mut pending = self.pending_requests.write(); for &ReqId(ref inner) in &unfulfilled { pending.remove(inner); } } for handler in &self.handlers { handler.on_disconnect(&Ctx { peer: peer, io: io, proto: self, }, &unfulfilled) } } } // send status to a peer. fn send_status(&self, peer: PeerId, io: &IoContext) -> Result { let chain_info = self.provider.chain_info(); // TODO: could update capabilities here. let status = Status { head_td: chain_info.total_difficulty, head_hash: chain_info.best_block_hash, head_num: chain_info.best_block_number, genesis_hash: chain_info.genesis_hash, protocol_version: PROTOCOL_VERSION, network_id: self.network_id, last_head: None, }; let capabilities = self.capabilities.read().clone(); let status_packet = status::write_handshake(&status, &capabilities, &self.flow_params); io.send(peer, packet::STATUS, status_packet); Ok(PendingPeer { sent_head: chain_info.best_block_hash, }) } // Handle status message from peer. fn status(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { let pending = match self.pending_peers.write().remove(peer) { Some(pending) => pending, None => { return Err(Error::UnexpectedHandshake); } }; let (status, capabilities, flow_params) = try!(status::parse_handshake(data)); trace!(target: "les", "Connected peer with chain head {:?}", (status.head_hash, status.head_num)); if (status.network_id, status.genesis_hash) != (self.network_id, self.genesis_hash) { return Err(Error::WrongNetwork); } self.peers.write().insert(*peer, Mutex::new(Peer { local_buffer: self.flow_params.create_buffer(), remote_buffer: flow_params.create_buffer(), status: status.clone(), capabilities: capabilities.clone(), remote_flow: flow_params, sent_head: pending.sent_head, })); for handler in &self.handlers { handler.on_connect(&Ctx { peer: *peer, io: io, proto: self, }, &status, &capabilities) } Ok(()) } // Handle an announcement. fn announcement(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { if !self.peers.read().contains_key(peer) { debug!(target: "les", "Ignoring announcement from unknown peer"); return Ok(()) } let announcement = try!(status::parse_announcement(data)); // scope to ensure locks are dropped before moving into handler-space. { let peers = self.peers.read(); let peer_info = match peers.get(peer) { Some(info) => info, None => return Ok(()), }; let mut peer_info = peer_info.lock(); // update status. { // TODO: punish peer if they've moved backwards. let status = &mut peer_info.status; let last_head = status.head_hash; status.head_hash = announcement.head_hash; status.head_td = announcement.head_td; status.head_num = announcement.head_num; status.last_head = Some((last_head, announcement.reorg_depth)); } // update capabilities. peer_info.capabilities.update_from(&announcement); } for handler in &self.handlers { handler.on_announcement(&Ctx { peer: *peer, io: io, proto: self, }, &announcement); } Ok(()) } // Handle a request for block headers. fn get_block_headers(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_HEADERS: usize = 512; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = try!(data.val_at(0)); let block = { let rlp = try!(data.at(1)); (try!(rlp.val_at(0)), try!(rlp.val_at(1))) }; let req = request::Headers { block_num: block.0, block_hash: block.1, max: ::std::cmp::min(MAX_HEADERS, try!(data.val_at(2))), skip: try!(data.val_at(3)), reverse: try!(data.val_at(4)), }; let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::Headers, req.max)); let response = self.provider.block_headers(req); let actual_cost = self.flow_params.compute_cost(request::Kind::Headers, response.len()); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::BLOCK_HEADERS, { let mut stream = RlpStream::new_list(response.len() + 2); stream.append(&req_id).append(&cur_buffer); for header in response { stream.append_raw(&header, 1); } stream.out() }); Ok(()) } // Receive a response for block headers. fn block_headers(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let req_id = try!(self.pre_verify_response(peer, request::Kind::Headers, &raw)); let raw_headers: Vec<_> = raw.iter().skip(2).map(|x| x.as_raw().to_owned()).collect(); for handler in &self.handlers { handler.on_block_headers(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_headers); } Ok(()) } // Handle a request for block bodies. fn get_block_bodies(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_BODIES: usize = 256; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = try!(data.val_at(0)); let req = request::Bodies { block_hashes: try!(data.iter().skip(1).take(MAX_BODIES).map(|x| x.as_val()).collect()) }; let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::Bodies, req.block_hashes.len())); let response = self.provider.block_bodies(req); let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::Bodies, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::BLOCK_BODIES, { let mut stream = RlpStream::new_list(response.len() + 2); stream.append(&req_id).append(&cur_buffer); for body in response { stream.append_raw(&body, 1); } stream.out() }); Ok(()) } // Receive a response for block bodies. fn block_bodies(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let req_id = try!(self.pre_verify_response(peer, request::Kind::Bodies, &raw)); let raw_bodies: Vec = raw.iter().skip(2).map(|x| x.as_raw().to_owned()).collect(); for handler in &self.handlers { handler.on_block_bodies(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_bodies); } Ok(()) } // Handle a request for receipts. fn get_receipts(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_RECEIPTS: usize = 256; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = try!(data.val_at(0)); let req = request::Receipts { block_hashes: try!(data.iter().skip(1).take(MAX_RECEIPTS).map(|x| x.as_val()).collect()) }; let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::Receipts, req.block_hashes.len())); let response = self.provider.receipts(req); let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::Receipts, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::RECEIPTS, { let mut stream = RlpStream::new_list(response.len() + 2); stream.append(&req_id).append(&cur_buffer); for receipts in response { stream.append_raw(&receipts, 1); } stream.out() }); Ok(()) } // Receive a response for receipts. fn receipts(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let req_id = try!(self.pre_verify_response(peer, request::Kind::Receipts, &raw)); let raw_receipts: Vec> = try!(raw .iter() .skip(2) .map(|x| x.as_val()) .collect()); for handler in &self.handlers { handler.on_receipts(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_receipts); } Ok(()) } // Handle a request for proofs. fn get_proofs(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_PROOFS: usize = 128; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = try!(data.val_at(0)); let req = { let requests: Result, Error> = data.iter().skip(1).take(MAX_PROOFS).map(|x| { Ok(request::StateProof { block: try!(x.val_at(0)), key1: try!(x.val_at(1)), key2: if try!(x.at(2)).is_empty() { None } else { Some(try!(x.val_at(2))) }, from_level: try!(x.val_at(3)), }) }).collect(); request::StateProofs { requests: try!(requests), } }; let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::StateProofs, req.requests.len())); let response = self.provider.proofs(req); let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::StateProofs, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::PROOFS, { let mut stream = RlpStream::new_list(response.len() + 2); stream.append(&req_id).append(&cur_buffer); for proof in response { stream.append_raw(&proof, 1); } stream.out() }); Ok(()) } // Receive a response for proofs. fn proofs(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let req_id = try!(self.pre_verify_response(peer, request::Kind::StateProofs, &raw)); let raw_proofs: Vec> = raw.iter() .skip(2) .map(|x| x.iter().map(|node| node.as_raw().to_owned()).collect()) .collect(); for handler in &self.handlers { handler.on_state_proofs(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_proofs); } Ok(()) } // Handle a request for contract code. fn get_contract_code(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_CODES: usize = 256; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = try!(data.val_at(0)); let req = { let requests: Result, Error> = data.iter().skip(1).take(MAX_CODES).map(|x| { Ok(request::ContractCode { block_hash: try!(x.val_at(0)), account_key: try!(x.val_at(1)), }) }).collect(); request::ContractCodes { code_requests: try!(requests), } }; let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::Codes, req.code_requests.len())); let response = self.provider.contract_code(req); let response_len = response.iter().filter(|x| !x.is_empty()).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::Codes, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::CONTRACT_CODES, { let mut stream = RlpStream::new_list(response.len() + 2); stream.append(&req_id).append(&cur_buffer); for code in response { stream.append_raw(&code, 1); } stream.out() }); Ok(()) } // Receive a response for contract code. fn contract_code(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let req_id = try!(self.pre_verify_response(peer, request::Kind::Codes, &raw)); let raw_code: Vec = try!(raw.iter().skip(2).map(|x| x.as_val()).collect()); for handler in &self.handlers { handler.on_code(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_code); } Ok(()) } // Handle a request for header proofs fn get_header_proofs(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_PROOFS: usize = 256; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = try!(data.val_at(0)); let req = { let requests: Result, Error> = data.iter().skip(1).take(MAX_PROOFS).map(|x| { Ok(request::HeaderProof { cht_number: try!(x.val_at(0)), block_number: try!(x.val_at(1)), from_level: try!(x.val_at(2)), }) }).collect(); request::HeaderProofs { requests: try!(requests), } }; let max_cost = try!(peer.deduct_max(&self.flow_params, request::Kind::HeaderProofs, req.requests.len())); let response = self.provider.header_proofs(req); let response_len = response.iter().filter(|x| &x[..] != ::rlp::EMPTY_LIST_RLP).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::HeaderProofs, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::HEADER_PROOFS, { let mut stream = RlpStream::new_list(response.len() + 2); stream.append(&req_id).append(&cur_buffer); for proof in response { stream.append_raw(&proof, 1); } stream.out() }); Ok(()) } // Receive a response for header proofs fn header_proofs(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { fn decode_res(raw: UntrustedRlp) -> Result<(Bytes, Vec), ::rlp::DecoderError> { Ok(( try!(raw.val_at(0)), try!(raw.at(1)).iter().map(|x| x.as_raw().to_owned()).collect(), )) } let req_id = try!(self.pre_verify_response(peer, request::Kind::HeaderProofs, &raw)); let raw_proofs: Vec<_> = try!(raw.iter().skip(2).map(decode_res).collect()); for handler in &self.handlers { handler.on_header_proofs(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_proofs); } Ok(()) } // Receive a set of transactions to relay. fn relay_transactions(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_TRANSACTIONS: usize = 256; let txs: Vec<_> = try!(data.iter().take(MAX_TRANSACTIONS).map(|x| x.as_val::()).collect()); debug!(target: "les", "Received {} transactions to relay from peer {}", txs.len(), peer); for handler in &self.handlers { handler.on_transactions(&Ctx { peer: *peer, io: io, proto: self, }, &txs); } Ok(()) } } impl NetworkProtocolHandler for LightProtocol { fn initialize(&self, io: &NetworkContext) { io.register_timer(TIMEOUT, TIMEOUT_INTERVAL_MS).expect("Error registering sync timer."); } fn read(&self, io: &NetworkContext, peer: &PeerId, packet_id: u8, data: &[u8]) { self.handle_packet(io, peer, packet_id, data); } fn connected(&self, io: &NetworkContext, peer: &PeerId) { self.on_connect(peer, io); } fn disconnected(&self, io: &NetworkContext, peer: &PeerId) { self.on_disconnect(*peer, io); } fn timeout(&self, _io: &NetworkContext, timer: TimerToken) { match timer { TIMEOUT => { // broadcast transactions to peers. } _ => warn!(target: "les", "received timeout on unknown token {}", timer), } } } // Helper for encoding the request to RLP with the given ID. fn encode_request(req: &Request, req_id: usize) -> Vec { match *req { Request::Headers(ref headers) => { let mut stream = RlpStream::new_list(5); stream .append(&req_id) .begin_list(2) .append(&headers.block_num) .append(&headers.block_hash) .append(&headers.max) .append(&headers.skip) .append(&headers.reverse); stream.out() } Request::Bodies(ref request) => { let mut stream = RlpStream::new_list(request.block_hashes.len() + 1); stream.append(&req_id); for hash in &request.block_hashes { stream.append(hash); } stream.out() } Request::Receipts(ref request) => { let mut stream = RlpStream::new_list(request.block_hashes.len() + 1); stream.append(&req_id); for hash in &request.block_hashes { stream.append(hash); } stream.out() } Request::StateProofs(ref request) => { let mut stream = RlpStream::new_list(request.requests.len() + 1); stream.append(&req_id); for proof_req in &request.requests { stream.begin_list(4) .append(&proof_req.block) .append(&proof_req.key1); match proof_req.key2 { Some(ref key2) => stream.append(key2), None => stream.append_empty_data(), }; stream.append(&proof_req.from_level); } stream.out() } Request::Codes(ref request) => { let mut stream = RlpStream::new_list(request.code_requests.len() + 1); stream.append(&req_id); for code_req in &request.code_requests { stream.begin_list(2) .append(&code_req.block_hash) .append(&code_req.account_key); } stream.out() } Request::HeaderProofs(ref request) => { let mut stream = RlpStream::new_list(request.requests.len() + 1); stream.append(&req_id); for proof_req in &request.requests { stream.begin_list(3) .append(&proof_req.cht_number) .append(&proof_req.block_number) .append(&proof_req.from_level); } stream.out() } } }