// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . use std::collections::{BTreeSet, BTreeMap}; use std::sync::Arc; use parking_lot::Mutex; use ethkey::{self, Secret, Public, Signature}; use key_server_cluster::{Error, AclStorage, EncryptedData, NodeId, SessionId}; use key_server_cluster::cluster::Cluster; use key_server_cluster::math; use key_server_cluster::message::{Message, InitializeDecryptionSession, ConfirmDecryptionInitialization, RequestPartialDecryption, PartialDecryption}; /// Distributed decryption session. /// Based on "ECDKG: A Distributed Key Generation Protocol Based on Elliptic Curve Discrete Logarithm" paper: /// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.4128&rep=rep1&type=pdf /// Brief overview: /// 1) initialization: master node (which has received request for decrypting the secret) requests all other nodes to decrypt the secret /// 2) ACL check: all nodes which have received the request are querying ACL-contract to check if requestor has access to the document /// 3) partial decryption: every node which has succussfully checked access for the requestor do a partial decryption /// 4) decryption: master node receives all partial decryptions of the secret and restores the secret pub struct Session { /// Encryption session id. id: SessionId, /// Decryption session access key. access_key: Secret, /// Public identifier of this node. self_node_id: NodeId, /// Encrypted data. encrypted_data: EncryptedData, /// ACL storate to check access to the resource. acl_storage: Arc, /// Cluster which allows this node to send messages to other nodes in the cluster. cluster: Arc, /// Mutable session data. data: Mutex, } /// Session creation parameters pub struct SessionParams { /// Session identifier. pub id: SessionId, /// Session access key. pub access_key: Secret, /// Id of node, on which this session is running. pub self_node_id: Public, /// Encrypted data (result of running encryption_session::Session). pub encrypted_data: EncryptedData, /// ACL storage. pub acl_storage: Arc, /// Cluster pub cluster: Arc, } #[derive(Debug)] /// Mutable data of encryption (distributed key generation) session. struct SessionData { /// Current state of the session. state: SessionState, // === Values, filled when session initialization just starts === /// Reference to the node, which has started this session. master: Option, /// Public key of requestor. requestor: Option, // === Values, filled during session initialization === /// Nodes, which have been requested for decryption initialization. requested_nodes: BTreeSet, /// Nodes, which have responded with reject to initialization request. rejected_nodes: BTreeSet, /// Nodes, which have responded with confirm to initialization request. confirmed_nodes: BTreeSet, // === Values, filled during partial decryption === /// Shadow points, received from nodes as a response to partial decryption request. shadow_points: BTreeMap, /// === Values, filled during final decryption === /// Decrypted secret decrypted_secret: Option, } #[derive(Debug)] struct NodeData { /// Node-generated shadow point. shadow_point: Option, } #[derive(Debug, Clone, PartialEq)] pub enum SessionState { /// Every node starts in this state. WaitingForInitialization, /// Master node waits for other nodes to confirm decryption. WaitingForInitializationConfirm, /// Waiting for partial decrypion request. WaitingForPartialDecryptionRequest, /// Waiting for partial decryption responses. WaitingForPartialDecryption, /// Decryption session is finished for this node. Finished, /// Decryption session is failed for this node. Failed, } impl Session { /// Create new decryption session. pub fn new(params: SessionParams) -> Result { check_encrypted_data(¶ms.self_node_id, ¶ms.encrypted_data)?; Ok(Session { id: params.id, access_key: params.access_key, self_node_id: params.self_node_id, encrypted_data: params.encrypted_data, acl_storage: params.acl_storage, cluster: params.cluster, data: Mutex::new(SessionData { state: SessionState::WaitingForInitialization, master: None, requestor: None, requested_nodes: BTreeSet::new(), rejected_nodes: BTreeSet::new(), confirmed_nodes: BTreeSet::new(), shadow_points: BTreeMap::new(), decrypted_secret: None, }) }) } /// Get this node Id. pub fn node(&self) -> &NodeId { &self.self_node_id } /// Get this session access key. pub fn access_key(&self) -> &Secret { &self.access_key } /// Get current session state. pub fn state(&self) -> SessionState { self.data.lock().state.clone() } /// Get decrypted secret pub fn decrypted_secret(&self) -> Option { self.data.lock().decrypted_secret.clone() } /// Initialize decryption session. pub fn initialize(&self, requestor_signature: Signature) -> Result<(), Error> { let mut data = self.data.lock(); // check state if data.state != SessionState::WaitingForInitialization { return Err(Error::InvalidStateForRequest); } // recover requestor signature let requestor_public = ethkey::recover(&requestor_signature, &self.id)?; // update state data.master = Some(self.node().clone()); data.state = SessionState::WaitingForInitializationConfirm; data.requestor = Some(requestor_public.clone()); data.requested_nodes.extend(self.encrypted_data.id_numbers.keys().cloned()); // ..and finally check access on our's own let is_requestor_allowed_to_read = self.acl_storage.check(&requestor_public, &self.id).unwrap_or(false); process_initialization_response(&self.encrypted_data, &mut *data, self.node(), is_requestor_allowed_to_read)?; // check if we have enough nodes to decrypt data match data.state { // not enough nodes => pass initialization message to all other nodes SessionState::WaitingForInitializationConfirm => { for node in self.encrypted_data.id_numbers.keys().filter(|n| *n != self.node()) { self.cluster.send(node, Message::InitializeDecryptionSession(InitializeDecryptionSession { session: self.id.clone(), sub_session: self.access_key.clone(), requestor_signature: requestor_signature.clone(), }))?; } }, // we can decrypt data on our own SessionState::WaitingForPartialDecryption => unimplemented!(), // we can not decrypt data SessionState::Failed => (), // cannot reach other states _ => unreachable!("process_initialization_response can change state to WaitingForPartialDecryption or Failed; checked that we are in WaitingForInitializationConfirm state above; qed"), } Ok(()) } /// When session initialization message is received. pub fn on_initialize_session(&self, sender: NodeId, message: InitializeDecryptionSession) -> Result<(), Error> { debug_assert!(self.id == message.session); debug_assert!(self.access_key == message.sub_session); debug_assert!(&sender != self.node()); let mut data = self.data.lock(); // check state if data.state != SessionState::WaitingForInitialization { return Err(Error::InvalidStateForRequest); } // recover requestor signature let requestor_public = ethkey::recover(&message.requestor_signature, &self.id)?; // check access let is_requestor_allowed_to_read = self.acl_storage.check(&requestor_public, &self.id).unwrap_or(false); data.state = if is_requestor_allowed_to_read { SessionState::WaitingForPartialDecryptionRequest } else { SessionState::Failed }; data.requestor = Some(requestor_public); // respond to master node data.master = Some(sender.clone()); self.cluster.send(&sender, Message::ConfirmDecryptionInitialization(ConfirmDecryptionInitialization { session: self.id.clone(), sub_session: self.access_key.clone(), is_confirmed: is_requestor_allowed_to_read, })) } /// When session initialization confirmation message is reeived. pub fn on_confirm_initialization(&self, sender: NodeId, message: ConfirmDecryptionInitialization) -> Result<(), Error> { debug_assert!(self.id == message.session); debug_assert!(self.access_key == message.sub_session); debug_assert!(&sender != self.node()); let mut data = self.data.lock(); // check state if data.state != SessionState::WaitingForInitializationConfirm { // if there were enough confirmations/rejections before this message // we have already moved to the next state return Ok(()); } // update state process_initialization_response(&self.encrypted_data, &mut *data, &sender, message.is_confirmed)?; // check if we have enough nodes to decrypt data match data.state { // we do not yet have enough nodes for decryption SessionState::WaitingForInitializationConfirm => Ok(()), // we have enough nodes for decryption SessionState::WaitingForPartialDecryption => { let confirmed_nodes: BTreeSet<_> = data.confirmed_nodes.clone(); for node in data.confirmed_nodes.iter().filter(|n| n != &self.node()) { self.cluster.send(node, Message::RequestPartialDecryption(RequestPartialDecryption { session: self.id.clone(), sub_session: self.access_key.clone(), nodes: confirmed_nodes.clone(), }))?; } assert!(data.confirmed_nodes.remove(self.node())); let shadow_point = { let requestor = data.requestor.as_ref().expect("requestor public is filled during initialization; WaitingForPartialDecryption follows initialization; qed"); do_partial_decryption(self.node(), &requestor, &data.confirmed_nodes, &self.access_key, &self.encrypted_data)? }; data.shadow_points.insert(self.node().clone(), shadow_point); Ok(()) }, // we can not have enough nodes for decryption SessionState::Failed => Ok(()), // cannot reach other states _ => unreachable!("process_initialization_response can change state to WaitingForPartialDecryption or Failed; checked that we are in WaitingForInitializationConfirm state above; qed"), } } /// When partial decryption is requested. pub fn on_partial_decryption_requested(&self, sender: NodeId, message: RequestPartialDecryption) -> Result<(), Error> { debug_assert!(self.id == message.session); debug_assert!(self.access_key == message.sub_session); debug_assert!(&sender != self.node()); // check message if message.nodes.len() != self.encrypted_data.threshold + 1 { return Err(Error::InvalidMessage); } let mut data = self.data.lock(); // check state if data.master != Some(sender) { return Err(Error::InvalidMessage); } if data.state != SessionState::WaitingForPartialDecryptionRequest { return Err(Error::InvalidStateForRequest); } // calculate shadow point let shadow_point = { let requestor = data.requestor.as_ref().expect("requestor public is filled during initialization; WaitingForPartialDecryptionRequest follows initialization; qed"); do_partial_decryption(self.node(), &requestor, &message.nodes, &self.access_key, &self.encrypted_data)? }; self.cluster.send(&sender, Message::PartialDecryption(PartialDecryption { session: self.id.clone(), sub_session: self.access_key.clone(), shadow_point: shadow_point, }))?; // update sate data.state = SessionState::Finished; Ok(()) } /// When partial decryption is received. pub fn on_partial_decryption(&self, sender: NodeId, message: PartialDecryption) -> Result<(), Error> { debug_assert!(self.id == message.session); debug_assert!(self.access_key == message.sub_session); debug_assert!(&sender != self.node()); let mut data = self.data.lock(); // check state if data.state != SessionState::WaitingForPartialDecryption { return Err(Error::InvalidStateForRequest); } if !data.confirmed_nodes.remove(&sender) { return Err(Error::InvalidStateForRequest); } data.shadow_points.insert(sender, message.shadow_point); // check if we have enough shadow points to decrypt the secret if data.shadow_points.len() != self.encrypted_data.threshold + 1 { return Ok(()); } // decrypt the secret using shadow points let joint_shadow_point = math::compute_joint_shadow_point(data.shadow_points.values())?; let decrypted_secret = math::decrypt_with_joint_shadow(&self.access_key, &self.encrypted_data.encrypted_point, &joint_shadow_point)?; data.decrypted_secret = Some(decrypted_secret); data.state = SessionState::Finished; Ok(()) } } fn check_encrypted_data(self_node_id: &Public, encrypted_data: &EncryptedData) -> Result<(), Error> { use key_server_cluster::encryption_session::{check_cluster_nodes, check_threshold}; let nodes = encrypted_data.id_numbers.keys().cloned().collect(); check_cluster_nodes(self_node_id, &nodes)?; check_threshold(encrypted_data.threshold, &nodes)?; Ok(()) } fn process_initialization_response(encrypted_data: &EncryptedData, data: &mut SessionData, node: &NodeId, check_result: bool) -> Result<(), Error> { if !data.requested_nodes.remove(node) { return Err(Error::InvalidMessage); } match check_result { true => { data.confirmed_nodes.insert(node.clone()); // check if we have enough nodes to do a decryption? if data.confirmed_nodes.len() == encrypted_data.threshold + 1 { data.state = SessionState::WaitingForPartialDecryption; } }, false => { data.rejected_nodes.insert(node.clone()); // check if we still can receive enough confirmations to do a decryption? if encrypted_data.id_numbers.len() - data.rejected_nodes.len() < encrypted_data.threshold + 1 { data.state = SessionState::Failed; } }, } Ok(()) } fn do_partial_decryption(node: &NodeId, _requestor_public: &Public, participants: &BTreeSet, access_key: &Secret, encrypted_data: &EncryptedData) -> Result { let node_id_number = &encrypted_data.id_numbers[node]; let node_secret_share = &encrypted_data.secret_share; let other_id_numbers = participants.iter() .filter(|id| *id != node) .map(|id| &encrypted_data.id_numbers[id]); // TODO: commutative encryption using _requestor_public let node_shadow = math::compute_node_shadow(node_id_number, node_secret_share, other_id_numbers)?; math::compute_node_shadow_point(access_key, &encrypted_data.common_point, &node_shadow) } #[cfg(test)] mod tests { use std::sync::Arc; use std::str::FromStr; use std::collections::BTreeMap; use super::super::super::acl_storage::DummyAclStorage; use ethkey::{self, Random, Generator, Public, Secret}; use key_server_cluster::{NodeId, EncryptedData, SessionId, Error}; use key_server_cluster::cluster::tests::DummyCluster; use key_server_cluster::decryption_session::{Session, SessionParams, SessionState}; use key_server_cluster::message::{self, Message}; const SECRET_PLAIN: &'static str = "d2b57ae7619e070af0af6bc8c703c0cd27814c54d5d6a999cacac0da34ede279ca0d9216e85991029e54e2f0c92ee0bd30237725fa765cbdbfc4529489864c5f"; fn prepare_decryption_sessions() -> (Vec>, Vec>, Vec) { // prepare encrypted data + cluster configuration for scheme 4-of-5 let session_id = SessionId::default(); let access_key = Random.generate().unwrap().secret().clone(); let secret_shares = vec![ Secret::from_str("834cb736f02d9c968dfaf0c37658a1d86ff140554fc8b59c9fdad5a8cf810eec").unwrap(), Secret::from_str("5a3c1d90fafafa66bb808bcc464354a98b05e6b2c95b5f609d4511cdd1b17a0b").unwrap(), Secret::from_str("71bf61e7848e08e3a8486c308ce521bdacfebcf9116a0151447eb301f3a2d0e9").unwrap(), Secret::from_str("80c0e5e2bea66fa9b2e07f7ce09630a9563e8242446d5ee63221feb09c4338f4").unwrap(), Secret::from_str("c06546b5669877ba579ca437a5602e89425c53808c708d44ccd6afcaa4610fad").unwrap(), ]; let id_numbers: Vec<(NodeId, Secret)> = vec![ ("b486d3840218837b035c66196ecb15e6b067ca20101e11bd5e626288ab6806ecc70b8307012626bd512bad1559112d11d21025cef48cc7a1d2f3976da08f36c8".into(), Secret::from_str("281b6bf43cb86d0dc7b98e1b7def4a80f3ce16d28d2308f934f116767306f06c").unwrap()), ("1395568277679f7f583ab7c0992da35f26cde57149ee70e524e49bdae62db3e18eb96122501e7cbb798b784395d7bb5a499edead0706638ad056d886e56cf8fb".into(), Secret::from_str("00125d85a05e5e63e214cb60fe63f132eec8a103aa29266b7e6e6c5b7597230b").unwrap()), ("99e82b163b062d55a64085bacfd407bb55f194ba5fb7a1af9c34b84435455520f1372e0e650a4f91aed0058cb823f62146ccb5599c8d13372c300dea866b69fc".into(), Secret::from_str("f43ac0fba42a5b6ed95707d2244659e89ba877b1c9b82c0d0a9dcf834e80fc62").unwrap()), ("7e05df9dd077ec21ed4bc45c9fe9e0a43d65fa4be540630de615ced5e95cf5c3003035eb713317237d7667feeeb64335525158f5f7411f67aca9645169ea554c".into(), Secret::from_str("5a324938dfb2516800487d25ab7289ba8ec38811f77c3df602e4e65e3c9acd9f").unwrap()), ("321977760d1d8e15b047a309e4c7fe6f355c10bb5a06c68472b676926427f69f229024fa2692c10da167d14cdc77eb95d0fce68af0a0f704f0d3db36baa83bb2".into(), Secret::from_str("12cf422d50002d04e52bd4906fd7f5f235f051ca36abfe37e061f8da248008d8").unwrap()), ]; let common_point: Public = "6962be696e1bcbba8e64cc7fddf140f854835354b5804f3bb95ae5a2799130371b589a131bd39699ac7174ccb35fc4342dab05331202209582fc8f3a40916ab0".into(); let encrypted_point: Public = "b07031982bde9890e12eff154765f03c56c3ab646ad47431db5dd2d742a9297679c4c65b998557f8008469afd0c43d40b6c5f6c6a1c7354875da4115237ed87a".into(); let encrypted_datas: Vec<_> = (0..5).map(|i| EncryptedData { threshold: 3, id_numbers: id_numbers.clone().into_iter().collect(), secret_share: secret_shares[i].clone(), common_point: common_point.clone(), encrypted_point: encrypted_point.clone(), }).collect(); let acl_storages: Vec<_> = (0..5).map(|_| Arc::new(DummyAclStorage::default())).collect(); let clusters: Vec<_> = (0..5).map(|i| Arc::new(DummyCluster::new(id_numbers.iter().nth(i).clone().unwrap().0))).collect(); let sessions: Vec<_> = (0..5).map(|i| Session::new(SessionParams { id: session_id.clone(), access_key: access_key.clone(), self_node_id: id_numbers.iter().nth(i).clone().unwrap().0, encrypted_data: encrypted_datas[i].clone(), acl_storage: acl_storages[i].clone(), cluster: clusters[i].clone() }).unwrap()).collect(); (clusters, acl_storages, sessions) } fn do_messages_exchange(clusters: &[Arc], sessions: &[Session]) { do_messages_exchange_until(clusters, sessions, |_, _, _| false); } fn do_messages_exchange_until(clusters: &[Arc], sessions: &[Session], mut cond: F) where F: FnMut(&NodeId, &NodeId, &Message) -> bool { while let Some((from, to, message)) = clusters.iter().filter_map(|c| c.take_message().map(|(to, msg)| (c.node(), to, msg))).next() { let session = &sessions[sessions.iter().position(|s| s.node() == &to).unwrap()]; if cond(&from, &to, &message) { break; } match message { Message::InitializeDecryptionSession(message) => session.on_initialize_session(from, message).unwrap(), Message::ConfirmDecryptionInitialization(message) => session.on_confirm_initialization(from, message).unwrap(), Message::RequestPartialDecryption(message) => session.on_partial_decryption_requested(from, message).unwrap(), Message::PartialDecryption(message) => session.on_partial_decryption(from, message).unwrap(), _ => panic!("unexpected"), } } } #[test] fn fails_to_construct_in_cluster_of_single_node() { let mut nodes = BTreeMap::new(); let self_node_id = Random.generate().unwrap().public().clone(); nodes.insert(self_node_id, Random.generate().unwrap().secret().clone()); match Session::new(SessionParams { id: SessionId::default(), access_key: Random.generate().unwrap().secret().clone(), self_node_id: self_node_id.clone(), encrypted_data: EncryptedData { threshold: 0, id_numbers: nodes, secret_share: Random.generate().unwrap().secret().clone(), common_point: Random.generate().unwrap().public().clone(), encrypted_point: Random.generate().unwrap().public().clone(), }, acl_storage: Arc::new(DummyAclStorage::default()), cluster: Arc::new(DummyCluster::new(self_node_id.clone())), }) { Err(Error::InvalidNodesCount) => (), _ => panic!("unexpected"), } } #[test] fn fails_to_construct_if_not_a_part_of_cluster() { let mut nodes = BTreeMap::new(); let self_node_id = Random.generate().unwrap().public().clone(); nodes.insert(Random.generate().unwrap().public().clone(), Random.generate().unwrap().secret().clone()); nodes.insert(Random.generate().unwrap().public().clone(), Random.generate().unwrap().secret().clone()); match Session::new(SessionParams { id: SessionId::default(), access_key: Random.generate().unwrap().secret().clone(), self_node_id: self_node_id.clone(), encrypted_data: EncryptedData { threshold: 0, id_numbers: nodes, secret_share: Random.generate().unwrap().secret().clone(), common_point: Random.generate().unwrap().public().clone(), encrypted_point: Random.generate().unwrap().public().clone(), }, acl_storage: Arc::new(DummyAclStorage::default()), cluster: Arc::new(DummyCluster::new(self_node_id.clone())), }) { Err(Error::InvalidNodesConfiguration) => (), _ => panic!("unexpected"), } } #[test] fn fails_to_construct_if_threshold_is_wrong() { let mut nodes = BTreeMap::new(); let self_node_id = Random.generate().unwrap().public().clone(); nodes.insert(self_node_id.clone(), Random.generate().unwrap().secret().clone()); nodes.insert(Random.generate().unwrap().public().clone(), Random.generate().unwrap().secret().clone()); match Session::new(SessionParams { id: SessionId::default(), access_key: Random.generate().unwrap().secret().clone(), self_node_id: self_node_id.clone(), encrypted_data: EncryptedData { threshold: 2, id_numbers: nodes, secret_share: Random.generate().unwrap().secret().clone(), common_point: Random.generate().unwrap().public().clone(), encrypted_point: Random.generate().unwrap().public().clone(), }, acl_storage: Arc::new(DummyAclStorage::default()), cluster: Arc::new(DummyCluster::new(self_node_id.clone())), }) { Err(Error::InvalidThreshold) => (), _ => panic!("unexpected"), } } #[test] fn fails_to_initialize_when_already_initialized() { let (_, _, sessions) = prepare_decryption_sessions(); assert_eq!(sessions[0].initialize(ethkey::sign(Random.generate().unwrap().secret(), &SessionId::default()).unwrap()).unwrap(), ()); assert_eq!(sessions[0].initialize(ethkey::sign(Random.generate().unwrap().secret(), &SessionId::default()).unwrap()).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn fails_to_accept_initialization_when_already_initialized() { let (_, _, sessions) = prepare_decryption_sessions(); assert_eq!(sessions[0].initialize(ethkey::sign(Random.generate().unwrap().secret(), &SessionId::default()).unwrap()).unwrap(), ()); assert_eq!(sessions[0].on_initialize_session(sessions[1].node().clone(), message::InitializeDecryptionSession { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), requestor_signature: ethkey::sign(Random.generate().unwrap().secret(), &SessionId::default()).unwrap(), }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn fails_to_partial_decrypt_if_not_waiting() { let (_, _, sessions) = prepare_decryption_sessions(); assert_eq!(sessions[1].on_initialize_session(sessions[0].node().clone(), message::InitializeDecryptionSession { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), requestor_signature: ethkey::sign(Random.generate().unwrap().secret(), &SessionId::default()).unwrap(), }).unwrap(), ()); assert_eq!(sessions[1].on_partial_decryption_requested(sessions[0].node().clone(), message::RequestPartialDecryption { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), nodes: sessions.iter().map(|s| s.node().clone()).take(4).collect(), }).unwrap(), ()); assert_eq!(sessions[1].on_partial_decryption_requested(sessions[0].node().clone(), message::RequestPartialDecryption { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), nodes: sessions.iter().map(|s| s.node().clone()).take(4).collect(), }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn fails_to_partial_decrypt_if_requested_by_slave() { let (_, _, sessions) = prepare_decryption_sessions(); assert_eq!(sessions[1].on_initialize_session(sessions[0].node().clone(), message::InitializeDecryptionSession { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), requestor_signature: ethkey::sign(Random.generate().unwrap().secret(), &SessionId::default()).unwrap(), }).unwrap(), ()); assert_eq!(sessions[1].on_partial_decryption_requested(sessions[2].node().clone(), message::RequestPartialDecryption { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), nodes: sessions.iter().map(|s| s.node().clone()).take(4).collect(), }).unwrap_err(), Error::InvalidMessage); } #[test] fn fails_to_partial_decrypt_if_wrong_number_of_nodes_participating() { let (_, _, sessions) = prepare_decryption_sessions(); assert_eq!(sessions[1].on_initialize_session(sessions[0].node().clone(), message::InitializeDecryptionSession { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), requestor_signature: ethkey::sign(Random.generate().unwrap().secret(), &SessionId::default()).unwrap(), }).unwrap(), ()); assert_eq!(sessions[1].on_partial_decryption_requested(sessions[0].node().clone(), message::RequestPartialDecryption { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), nodes: sessions.iter().map(|s| s.node().clone()).take(2).collect(), }).unwrap_err(), Error::InvalidMessage); } #[test] fn fails_to_accept_partial_decrypt_if_not_waiting() { let (_, _, sessions) = prepare_decryption_sessions(); assert_eq!(sessions[0].on_partial_decryption(sessions[1].node().clone(), message::PartialDecryption { session: SessionId::default(), sub_session: sessions[0].access_key().clone(), shadow_point: Random.generate().unwrap().public().clone(), }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn fails_to_accept_partial_decrypt_twice() { let (clusters, _, sessions) = prepare_decryption_sessions(); sessions[0].initialize(ethkey::sign(Random.generate().unwrap().secret(), &SessionId::default()).unwrap()).unwrap(); let mut pd_from = None; let mut pd_msg = None; do_messages_exchange_until(&clusters, &sessions, |from, _, msg| match msg { &Message::PartialDecryption(ref msg) => { pd_from = Some(from.clone()); pd_msg = Some(msg.clone()); true }, _ => false, }); assert_eq!(sessions[0].on_partial_decryption(pd_from.clone().unwrap(), pd_msg.clone().unwrap()).unwrap(), ()); assert_eq!(sessions[0].on_partial_decryption(pd_from.unwrap(), pd_msg.unwrap()).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn complete_dec_session() { let (clusters, _, sessions) = prepare_decryption_sessions(); // now let's try to do a decryption let key_pair = Random.generate().unwrap(); let signature = ethkey::sign(key_pair.secret(), &SessionId::default()).unwrap(); sessions[0].initialize(signature).unwrap(); do_messages_exchange(&clusters, &sessions); // now check that: // 1) 4 of 5 sessions are in Finished state assert_eq!(sessions.iter().filter(|s| s.state() == SessionState::Finished).count(), 4); // 2) 1 session is in WaitingForPartialDecryptionRequest state assert_eq!(sessions.iter().filter(|s| s.state() == SessionState::WaitingForPartialDecryptionRequest).count(), 1); // 3) 1 session has decrypted key value assert!(sessions.iter().skip(1).all(|s| s.decrypted_secret().is_none())); assert_eq!(sessions[0].decrypted_secret(), Some(SECRET_PLAIN.into())); } #[test] fn failed_dec_session() { let (clusters, acl_storages, sessions) = prepare_decryption_sessions(); // now let's try to do a decryption let key_pair = Random.generate().unwrap(); let signature = ethkey::sign(key_pair.secret(), &SessionId::default()).unwrap(); sessions[0].initialize(signature).unwrap(); // we need 4 out of 5 nodes to agree to do a decryption // let's say that 2 of these nodes are disagree acl_storages[1].prohibit(key_pair.public().clone(), SessionId::default()); acl_storages[2].prohibit(key_pair.public().clone(), SessionId::default()); do_messages_exchange(&clusters, &sessions); // now check that: // 1) 3 of 5 sessions are in Failed state assert_eq!(sessions.iter().filter(|s| s.state() == SessionState::Failed).count(), 3); // 2) 2 of 5 sessions are in WaitingForPartialDecryptionRequest state assert_eq!(sessions.iter().filter(|s| s.state() == SessionState::WaitingForPartialDecryptionRequest).count(), 2); // 3) 0 sessions have decrypted key value assert!(sessions.iter().all(|s| s.decrypted_secret().is_none())); } }