use util::*; use itertools::Itertools; pub const SHA3_EMPTY: H256 = H256( [0xc5, 0xd2, 0x46, 0x01, 0x86, 0xf7, 0x23, 0x3c, 0x92, 0x7e, 0x7d, 0xb2, 0xdc, 0xc7, 0x03, 0xc0, 0xe5, 0x00, 0xb6, 0x53, 0xca, 0x82, 0x27, 0x3b, 0x7b, 0xfa, 0xd8, 0x04, 0x5d, 0x85, 0xa4, 0x70] ); #[derive(Debug,Clone,PartialEq,Eq)] pub struct Diff where T: Eq { pub pre: T, pub post_opt: Option, } impl Diff where T: Eq { pub fn new_opt(pre: T, post: T) -> Option { if pre == post { None } else { Some(Self::new(pre, post)) } } pub fn one_opt(t: T) -> Option { Some(Self::one(t)) } pub fn new(pre: T, post: T) -> Self { Diff { pre: pre, post_opt: Some(post) }} pub fn one(t: T) -> Self { Diff { pre: t, post_opt: None }} pub fn pre(&self) -> &T { &self.pre } pub fn post(&self) -> &T { match self.post_opt { Some(ref x) => x, None => &self.pre } } } impl From for Diff where T: Eq { fn from(t: T) -> Diff { Diff::one(t) } } #[derive(Debug,Clone,PartialEq,Eq)] /// Genesis account data. Does not have a DB overlay cache. pub struct PodAccount { // Balance of the account. pub balance: U256, // Nonce of the account. pub nonce: U256, pub code: Bytes, pub storage: BTreeMap, } #[derive(Debug,Clone,PartialEq,Eq)] pub struct AccountDiff { pub exists: Diff, pub balance: Option>, pub nonce: Option>, pub code: Option>, pub storage: BTreeMap>, } pub type StateDiff = BTreeMap; pub fn pod_diff(pre: Option<&PodAccount>, post: Option<&PodAccount>) -> Option { match (pre, post) { (Some(x), None) | (None, Some(x)) => Some(AccountDiff { exists: Diff::new(pre.is_some(), post.is_some()), balance: Diff::one_opt(x.balance.clone()), nonce: Diff::one_opt(x.nonce.clone()), code: Diff::one_opt(x.code.clone()), storage: x.storage.iter().fold(BTreeMap::new(), |mut m, (k, v)| {m.insert(k.clone(), Diff::one(v.clone())); m}) }), (Some(pre), Some(post)) => { let storage: Vec<_> = pre.storage.keys().merge(post.storage.keys()) .filter(|k| pre.storage.get(k).unwrap_or(&H256::new()) != post.storage.get(k).unwrap_or(&H256::new())) .collect(); if pre.balance != post.balance || pre.nonce != post.nonce || pre.code != post.code || storage.len() > 0 { Some(AccountDiff { exists: Diff::one(true), balance: Diff::new_opt(pre.balance.clone(), post.balance.clone()), nonce: Diff::new_opt(pre.nonce.clone(), post.nonce.clone()), code: Diff::new_opt(pre.code.clone(), post.code.clone()), storage: storage.into_iter().fold(BTreeMap::new(), |mut m, k| { let v = Diff::new(pre.storage.get(&k).cloned().unwrap_or(H256::new()), post.storage.get(&k).cloned().unwrap_or(H256::new())); m.insert((*k).clone(), v); m }), }) } else { None } }, _ => None, } } pub fn pod_map_diff(pre: &BTreeMap, post: &BTreeMap) -> StateDiff { pre.keys() .merge(post.keys()) .filter_map(|acc| pod_diff(pre.get(acc), post.get(acc)).map(|d|(acc.clone(), d))) .collect::>() } macro_rules! map { ( $( $x:expr => $y:expr ),* ) => { vec![ $( ($x, $y) ),* ].into_iter().collect::>() } } macro_rules! x { ( $x:expr ) => { From::from($x) } } macro_rules! xx { ( $x:expr ) => { From::from(From::from($x)) } } #[test] fn state_diff_create_delete() { let a = map![ x!(1) => PodAccount{ balance: x!(69), nonce: x!(0), code: vec![], storage: map![] } ]; assert_eq!(pod_map_diff(&a, &map![]), map![ x!(1) => AccountDiff{ exists: Diff::new(true, false), balance: Diff::one_opt(x!(69)), nonce: Diff::one_opt(x!(0)), code: Diff::one_opt(vec![]), storage: map![], } ]); assert_eq!(pod_map_diff(&map![], &a), map![ x!(1) => AccountDiff{ exists: Diff::new(false, true), balance: Diff::one_opt(x!(69)), nonce: Diff::one_opt(x!(0)), code: Diff::one_opt(vec![]), storage: map![], } ]); } #[test] fn state_diff_cretae_delete_with_unchanged() { let a = map![ x!(1) => PodAccount{ balance: x!(69), nonce: x!(0), code: vec![], storage: map![] } ]; let b = map![ x!(1) => PodAccount{ balance: x!(69), nonce: x!(0), code: vec![], storage: map![] }, x!(2) => PodAccount{ balance: x!(69), nonce: x!(0), code: vec![], storage: map![] } ]; assert_eq!(pod_map_diff(&a, &b), map![ x!(2) => AccountDiff{ exists: Diff::new(false, true), balance: Diff::one_opt(x!(69)), nonce: Diff::one_opt(x!(0)), code: Diff::one_opt(vec![]), storage: map![], } ]); assert_eq!(pod_map_diff(&b, &a), map![ x!(2) => AccountDiff{ exists: Diff::new(true, false), balance: Diff::one_opt(x!(69)), nonce: Diff::one_opt(x!(0)), code: Diff::one_opt(vec![]), storage: map![], } ]); } #[test] fn state_diff_change_with_unchanged() { let a = map![ x!(1) => PodAccount{ balance: x!(69), nonce: x!(0), code: vec![], storage: map![] }, x!(2) => PodAccount{ balance: x!(69), nonce: x!(0), code: vec![], storage: map![] } ]; let b = map![ x!(1) => PodAccount{ balance: x!(69), nonce: x!(1), code: vec![], storage: map![] }, x!(2) => PodAccount{ balance: x!(69), nonce: x!(0), code: vec![], storage: map![] } ]; assert_eq!(pod_map_diff(&a, &b), map![ x!(1) => AccountDiff{ exists: Diff::one(true), balance: None, nonce: Diff::new_opt(x!(0), x!(1)), code: None, storage: map![], } ]); } #[test] fn account_diff_existence() { let a = PodAccount{balance: x!(69), nonce: x!(0), code: vec![], storage: map![]}; assert_eq!(pod_diff(Some(&a), Some(&a)), None); assert_eq!(pod_diff(None, Some(&a)), Some(AccountDiff{ exists: Diff::new(false, true), balance: Diff::one_opt(x!(69)), nonce: Diff::one_opt(x!(0)), code: Diff::one_opt(vec![]), storage: map![], })); } #[test] fn account_diff_basic() { let a = PodAccount{balance: U256::from(69u64), nonce: U256::zero(), code: vec![], storage: BTreeMap::new()}; let b = PodAccount{balance: U256::from(42u64), nonce: U256::from(1u64), code: vec![], storage: BTreeMap::new()}; assert_eq!(pod_diff(Some(&a), Some(&b)), Some(AccountDiff { exists: Diff::one(true), balance: Diff::new_opt(U256::from(69u64), U256::from(42u64)), nonce: Diff::new_opt(U256::zero(), U256::from(1u64)), code: None, storage: BTreeMap::new(), })); } #[test] fn account_diff_code() { let a = PodAccount{balance: U256::zero(), nonce: U256::zero(), code: vec![], storage: BTreeMap::new()}; let b = PodAccount{balance: U256::zero(), nonce: U256::from(1u64), code: vec![0x00u8], storage: BTreeMap::new()}; assert_eq!(pod_diff(Some(&a), Some(&b)), Some(AccountDiff { exists: Diff::one(true), balance: None, nonce: Diff::new_opt(U256::zero(), U256::from(1u64)), code: Diff::new_opt(vec![], vec![0x00u8]), storage: BTreeMap::new(), })); } pub fn h256_from_u8(v: u8) -> H256 { let mut r = H256::new(); r[31] = v; r } #[test] fn account_diff_storage() { let a = PodAccount{balance: U256::zero(), nonce: U256::zero(), code: vec![], storage: vec![(1u8, 1u8), (2, 2), (3, 3), (4, 4), (5, 0), (6, 0), (7, 0)].into_iter().fold(BTreeMap::new(), |mut m, (k, v)|{m.insert(h256_from_u8(k), h256_from_u8(v)); m})}; let b = PodAccount{balance: U256::zero(), nonce: U256::zero(), code: vec![], storage: vec![(1u8, 1u8), (2, 3), (3, 0), (5, 0), (7, 7), (8, 0), (9, 9)].into_iter().fold(BTreeMap::new(), |mut m, (k, v)|{m.insert(h256_from_u8(k), h256_from_u8(v)); m})}; assert_eq!(pod_diff(Some(&a), Some(&b)), Some(AccountDiff { exists: Diff::one(true), balance: None, nonce: None, code: None, storage: vec![ (2u8, Diff::new(h256_from_u8(2), h256_from_u8(3))), (3, Diff::new(h256_from_u8(3), H256::new())), (4, Diff::new(h256_from_u8(4), H256::new())), (7, Diff::new(H256::new(), h256_from_u8(7))), (9, Diff::new(H256::new(), h256_from_u8(9))), ].into_iter().fold(BTreeMap::new(), |mut m, (k, v)|{m.insert(h256_from_u8(k), v); m}) })); } /// Single account in the system. #[derive(Clone)] pub struct Account { // Balance of the account. balance: U256, // Nonce of the account. nonce: U256, // Trie-backed storage. storage_root: H256, // Overlay on trie-backed storage. storage_overlay: RefCell>, // Code hash of the account. If None, means that it's a contract whose code has not yet been set. code_hash: Option, // Code cache of the account. code_cache: Bytes, } impl PodAccount { /// Convert Account to a PodAccount. /// NOTE: This will silently fail unless the account is fully cached. pub fn from_account(acc: &Account) -> PodAccount { PodAccount { balance: acc.balance.clone(), nonce: acc.nonce.clone(), storage: acc.storage_overlay.borrow().iter().fold(BTreeMap::new(), |mut m, (k, v)| {m.insert(k.clone(), v.clone()); m}), code: acc.code_cache.clone() } } pub fn rlp(&self) -> Bytes { let mut stream = RlpStream::new_list(4); stream.append(&self.nonce); stream.append(&self.balance); // TODO. stream.append(&SHA3_NULL_RLP); stream.append(&self.code.sha3()); stream.out() } } impl Account { /// General constructor. pub fn new(balance: U256, nonce: U256, storage: HashMap, code: Bytes) -> Account { Account { balance: balance, nonce: nonce, storage_root: SHA3_NULL_RLP, storage_overlay: RefCell::new(storage), code_hash: Some(code.sha3()), code_cache: code } } /// General constructor. pub fn from_pod(pod: PodAccount) -> Account { Account { balance: pod.balance, nonce: pod.nonce, storage_root: SHA3_NULL_RLP, storage_overlay: RefCell::new(pod.storage.into_iter().fold(HashMap::new(), |mut m, (k, v)| {m.insert(k, v); m})), code_hash: Some(pod.code.sha3()), code_cache: pod.code } } /// Create a new account with the given balance. pub fn new_basic(balance: U256, nonce: U256) -> Account { Account { balance: balance, nonce: nonce, storage_root: SHA3_NULL_RLP, storage_overlay: RefCell::new(HashMap::new()), code_hash: Some(SHA3_EMPTY), code_cache: vec![], } } /// Create a new account from RLP. pub fn from_rlp(rlp: &[u8]) -> Account { let r: Rlp = Rlp::new(rlp); Account { nonce: r.val_at(0), balance: r.val_at(1), storage_root: r.val_at(2), storage_overlay: RefCell::new(HashMap::new()), code_hash: Some(r.val_at(3)), code_cache: vec![], } } /// Create a new contract account. /// NOTE: make sure you use `init_code` on this before `commit`ing. pub fn new_contract(balance: U256) -> Account { Account { balance: balance, nonce: U256::from(0u8), storage_root: SHA3_NULL_RLP, storage_overlay: RefCell::new(HashMap::new()), code_hash: None, code_cache: vec![], } } /// Reset this account to the status of a not-yet-initialised contract. /// NOTE: Account should have `init_code()` called on it later. pub fn reset_code(&mut self) { self.code_hash = None; self.code_cache = vec![]; } /// Set this account's code to the given code. /// NOTE: Account should have been created with `new_contract()` or have `reset_code()` called on it. pub fn init_code(&mut self, code: Bytes) { assert!(self.code_hash.is_none()); self.code_cache = code; } /// Set (and cache) the contents of the trie's storage at `key` to `value`. pub fn set_storage(&mut self, key: H256, value: H256) { self.storage_overlay.borrow_mut().insert(key, value); } /// Get (and cache) the contents of the trie's storage at `key`. pub fn storage_at(&self, db: &HashDB, key: &H256) -> H256 { self.storage_overlay.borrow_mut().entry(key.clone()).or_insert_with(||{ H256::from_slice(TrieDB::new(db, &self.storage_root).get(key.bytes()).unwrap_or(&[0u8;32][..])) }).clone() } /// return the balance associated with this account. pub fn balance(&self) -> &U256 { &self.balance } /// return the nonce associated with this account. pub fn nonce(&self) -> &U256 { &self.nonce } /// return the code hash associated with this account. pub fn code_hash(&self) -> H256 { self.code_hash.clone().unwrap_or(SHA3_EMPTY) } /// returns the account's code. If `None` then the code cache isn't available - /// get someone who knows to call `note_code`. pub fn code(&self) -> Option<&[u8]> { match self.code_hash { Some(SHA3_EMPTY) | None if self.code_cache.is_empty() => Some(&self.code_cache), Some(_) if !self.code_cache.is_empty() => Some(&self.code_cache), None => Some(&self.code_cache), _ => None, } } /// Provide a byte array which hashes to the `code_hash`. returns the hash as a result. pub fn note_code(&mut self, code: Bytes) -> Result<(), H256> { let h = code.sha3(); match self.code_hash { Some(ref i) if h == *i => { self.code_cache = code; Ok(()) }, _ => Err(h) } } /// Is `code_cache` valid; such that code is going to return Some? pub fn is_cached(&self) -> bool { !self.code_cache.is_empty() || (self.code_cache.is_empty() && self.code_hash == Some(SHA3_EMPTY)) } /// Provide a database to lookup `code_hash`. Should not be called if it is a contract without code. pub fn cache_code(&mut self, db: &HashDB) -> bool { // TODO: fill out self.code_cache; /* return !self.is_cached() || match db.lookup(&self.code_hash.unwrap()) { // why doesn't this work? unwrap causes move?! Some(x) => { self.code_cache = x.to_vec(); true }, _ => { false } }*/ if self.is_cached() { return true; } return if let Some(ref h) = self.code_hash { match db.lookup(&h) { Some(x) => { self.code_cache = x.to_vec(); true }, _ => { false } } } else { false } } /// return the storage root associated with this account. pub fn base_root(&self) -> &H256 { &self.storage_root } /// return the storage root associated with this account or None if it has been altered via the overlay. pub fn storage_root(&self) -> Option<&H256> { if self.storage_overlay.borrow().is_empty() {Some(&self.storage_root)} else {None} } /// rturn the storage overlay. pub fn storage_overlay(&self) -> Ref> { self.storage_overlay.borrow() } /// Increment the nonce of the account by one. pub fn inc_nonce(&mut self) { self.nonce = self.nonce + U256::from(1u8); } /// Increment the nonce of the account by one. pub fn add_balance(&mut self, x: &U256) { self.balance = self.balance + *x; } /// Increment the nonce of the account by one. pub fn sub_balance(&mut self, x: &U256) { self.balance = self.balance - *x; } /// Commit the `storage_overlay` to the backing DB and update `storage_root`. pub fn commit_storage(&mut self, db: &mut HashDB) { let mut t = TrieDBMut::new(db, &mut self.storage_root); for (k, v) in self.storage_overlay.borrow().iter() { // cast key and value to trait type, // so we can call overloaded `to_bytes` method t.insert(k, v); } self.storage_overlay.borrow_mut().clear(); } /// Commit any unsaved code. `code_hash` will always return the hash of the `code_cache` after this. pub fn commit_code(&mut self, db: &mut HashDB) { trace!("Commiting code of {:?} - {:?}, {:?}", self, self.code_hash.is_none(), self.code_cache.is_empty()); match (self.code_hash.is_none(), self.code_cache.is_empty()) { (true, true) => self.code_hash = Some(SHA3_EMPTY), (true, false) => { println!("Writing into DB {:?}", self.code_cache); self.code_hash = Some(db.insert(&self.code_cache)); }, (false, _) => {}, } } /// Export to RLP. pub fn rlp(&self) -> Bytes { let mut stream = RlpStream::new_list(4); stream.append(&self.nonce); stream.append(&self.balance); stream.append(&self.storage_root); stream.append(self.code_hash.as_ref().expect("Cannot form RLP of contract account without code.")); stream.out() } } impl fmt::Debug for Account { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}", PodAccount::from_account(self)) } } #[cfg(test)] mod tests { use super::*; use std::collections::HashMap; use util::hash::*; use util::bytes::*; use util::rlp::*; use util::uint::*; use util::overlaydb::*; #[test] fn storage_at() { let mut db = OverlayDB::new_temp(); let rlp = { let mut a = Account::new_contract(U256::from(69u8)); a.set_storage(H256::from(&U256::from(0x00u64)), H256::from(&U256::from(0x1234u64))); a.commit_storage(&mut db); a.init_code(vec![]); a.commit_code(&mut db); a.rlp() }; let a = Account::from_rlp(&rlp); assert_eq!(a.storage_root().unwrap().hex(), "3541f181d6dad5c504371884684d08c29a8bad04926f8ceddf5e279dbc3cc769"); assert_eq!(a.storage_at(&mut db, &H256::from(&U256::from(0x00u64))), H256::from(&U256::from(0x1234u64))); assert_eq!(a.storage_at(&mut db, &H256::from(&U256::from(0x01u64))), H256::new()); } #[test] fn note_code() { let mut db = OverlayDB::new_temp(); let rlp = { let mut a = Account::new_contract(U256::from(69u8)); a.init_code(vec![0x55, 0x44, 0xffu8]); a.commit_code(&mut db); a.rlp() }; let mut a = Account::from_rlp(&rlp); assert_eq!(a.cache_code(&db), true); let mut a = Account::from_rlp(&rlp); assert_eq!(a.note_code(vec![0x55, 0x44, 0xffu8]), Ok(())); } #[test] fn commit_storage() { let mut a = Account::new_contract(U256::from(69u8)); let mut db = OverlayDB::new_temp(); a.set_storage(H256::from(&U256::from(0x00u64)), H256::from(&U256::from(0x1234u64))); assert_eq!(a.storage_root(), None); a.commit_storage(&mut db); assert_eq!(a.storage_root().unwrap().hex(), "3541f181d6dad5c504371884684d08c29a8bad04926f8ceddf5e279dbc3cc769"); } #[test] fn commit_code() { let mut a = Account::new_contract(U256::from(69u8)); let mut db = OverlayDB::new_temp(); a.init_code(vec![0x55, 0x44, 0xffu8]); assert_eq!(a.code_hash(), SHA3_EMPTY); a.commit_code(&mut db); assert_eq!(a.code_hash().hex(), "af231e631776a517ca23125370d542873eca1fb4d613ed9b5d5335a46ae5b7eb"); } #[test] fn rlpio() { let a = Account::new(U256::from(69u8), U256::from(0u8), HashMap::new(), Bytes::new()); let b = Account::from_rlp(&a.rlp()); assert_eq!(a.balance(), b.balance()); assert_eq!(a.nonce(), b.nonce()); assert_eq!(a.code_hash(), b.code_hash()); assert_eq!(a.storage_root(), b.storage_root()); } #[test] fn new_account() { use rustc_serialize::hex::ToHex; let a = Account::new(U256::from(69u8), U256::from(0u8), HashMap::new(), Bytes::new()); assert_eq!(a.rlp().to_hex(), "f8448045a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a0c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"); assert_eq!(a.balance(), &U256::from(69u8)); assert_eq!(a.nonce(), &U256::from(0u8)); assert_eq!(a.code_hash(), SHA3_EMPTY); assert_eq!(a.storage_root().unwrap(), &SHA3_NULL_RLP); } #[test] fn create_account() { use rustc_serialize::hex::ToHex; let a = Account::new(U256::from(69u8), U256::from(0u8), HashMap::new(), Bytes::new()); assert_eq!(a.rlp().to_hex(), "f8448045a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a0c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"); } }