// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
//! Snapshot creation, restoration, and network service.
//!
//! Documentation of the format can be found at
//! https://github.com/paritytech/parity/wiki/Warp-Sync-Snapshot-Format
use std::collections::{HashMap, HashSet};
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use account_db::{AccountDB, AccountDBMut};
use blockchain::{BlockChain, BlockProvider};
use engines::Engine;
use header::Header;
use ids::BlockId;
use util::{Bytes, Hashable, HashDB, DBValue, snappy, U256};
use util::Mutex;
use util::hash::{H256};
use util::journaldb::{self, Algorithm, JournalDB};
use util::kvdb::KeyValueDB;
use util::trie::{TrieDB, TrieDBMut, Trie, TrieMut};
use util::sha3::SHA3_NULL_RLP;
use rlp::{RlpStream, UntrustedRlp};
use bloom_journal::Bloom;
use self::io::SnapshotWriter;
use super::state_db::StateDB;
use super::state::Account as StateAccount;
use crossbeam::scope;
use rand::{Rng, OsRng};
pub use self::error::Error;
pub use self::consensus::*;
pub use self::service::{Service, DatabaseRestore};
pub use self::traits::SnapshotService;
pub use self::watcher::Watcher;
pub use types::snapshot_manifest::ManifestData;
pub use types::restoration_status::RestorationStatus;
pub use types::basic_account::BasicAccount;
pub mod io;
pub mod service;
mod account;
mod block;
mod consensus;
mod error;
mod watcher;
#[cfg(test)]
mod tests;
/// IPC interfaces
#[cfg(feature="ipc")]
pub mod remote {
pub use super::traits::RemoteSnapshotService;
}
mod traits {
#![allow(dead_code, unused_assignments, unused_variables, missing_docs)] // codegen issues
include!(concat!(env!("OUT_DIR"), "/snapshot_service_trait.rs"));
}
// Try to have chunks be around 4MB (before compression)
const PREFERRED_CHUNK_SIZE: usize = 4 * 1024 * 1024;
// Minimum supported state chunk version.
const MIN_SUPPORTED_STATE_CHUNK_VERSION: u64 = 1;
// current state chunk version.
const STATE_CHUNK_VERSION: u64 = 2;
/// A progress indicator for snapshots.
#[derive(Debug, Default)]
pub struct Progress {
accounts: AtomicUsize,
blocks: AtomicUsize,
size: AtomicUsize, // Todo [rob] use Atomicu64 when it stabilizes.
done: AtomicBool,
}
impl Progress {
/// Reset the progress.
pub fn reset(&self) {
self.accounts.store(0, Ordering::Release);
self.blocks.store(0, Ordering::Release);
self.size.store(0, Ordering::Release);
// atomic fence here to ensure the others are written first?
// logs might very rarely get polluted if not.
self.done.store(false, Ordering::Release);
}
/// Get the number of accounts snapshotted thus far.
pub fn accounts(&self) -> usize { self.accounts.load(Ordering::Acquire) }
/// Get the number of blocks snapshotted thus far.
pub fn blocks(&self) -> usize { self.blocks.load(Ordering::Acquire) }
/// Get the written size of the snapshot in bytes.
pub fn size(&self) -> usize { self.size.load(Ordering::Acquire) }
/// Whether the snapshot is complete.
pub fn done(&self) -> bool { self.done.load(Ordering::Acquire) }
}
/// Take a snapshot using the given blockchain, starting block hash, and database, writing into the given writer.
pub fn take_snapshot(
engine: &Engine,
chain: &BlockChain,
block_at: H256,
state_db: &HashDB,
writer: W,
p: &Progress
) -> Result<(), Error> {
let start_header = chain.block_header(&block_at)
.ok_or(Error::InvalidStartingBlock(BlockId::Hash(block_at)))?;
let state_root = start_header.state_root();
let number = start_header.number();
info!("Taking snapshot starting at block {}", number);
let writer = Mutex::new(writer);
let chunker = engine.snapshot_components().ok_or(Error::SnapshotsUnsupported)?;
let snapshot_version = chunker.current_version();
let (state_hashes, block_hashes) = scope(|scope| {
let writer = &writer;
let block_guard = scope.spawn(move || chunk_secondary(chunker, chain, block_at, writer, p));
let state_res = chunk_state(state_db, state_root, writer, p);
state_res.and_then(|state_hashes| {
block_guard.join().map(|block_hashes| (state_hashes, block_hashes))
})
})?;
info!("produced {} state chunks and {} block chunks.", state_hashes.len(), block_hashes.len());
let manifest_data = ManifestData {
version: snapshot_version,
state_hashes: state_hashes,
block_hashes: block_hashes,
state_root: *state_root,
block_number: number,
block_hash: block_at,
};
writer.into_inner().finish(manifest_data)?;
p.done.store(true, Ordering::SeqCst);
Ok(())
}
/// Create and write out all secondary chunks to disk, returning a vector of all
/// the hashes of secondary chunks created.
///
/// Secondary chunks are engine-specific, but they intend to corroborate the state data
/// in the state chunks.
/// Returns a list of chunk hashes, with the first having the blocks furthest from the genesis.
pub fn chunk_secondary<'a>(mut chunker: Box, chain: &'a BlockChain, start_hash: H256, writer: &Mutex, progress: &'a Progress) -> Result, Error> {
let mut chunk_hashes = Vec::new();
let mut snappy_buffer = vec![0; snappy::max_compressed_len(PREFERRED_CHUNK_SIZE)];
{
let mut chunk_sink = |raw_data: &[u8]| {
let compressed_size = snappy::compress_into(raw_data, &mut snappy_buffer);
let compressed = &snappy_buffer[..compressed_size];
let hash = compressed.sha3();
let size = compressed.len();
writer.lock().write_block_chunk(hash, compressed)?;
trace!(target: "snapshot", "wrote secondary chunk. hash: {}, size: {}, uncompressed size: {}",
hash.hex(), size, raw_data.len());
progress.size.fetch_add(size, Ordering::SeqCst);
chunk_hashes.push(hash);
Ok(())
};
chunker.chunk_all(
chain,
start_hash,
&mut chunk_sink,
PREFERRED_CHUNK_SIZE,
)?;
}
Ok(chunk_hashes)
}
/// State trie chunker.
struct StateChunker<'a> {
hashes: Vec,
rlps: Vec,
cur_size: usize,
snappy_buffer: Vec,
writer: &'a Mutex,
progress: &'a Progress,
}
impl<'a> StateChunker<'a> {
// Push a key, value pair to be encoded.
//
// If the buffer is greater than the desired chunk size,
// this will write out the data to disk.
fn push(&mut self, data: Bytes) -> Result<(), Error> {
self.cur_size += data.len();
self.rlps.push(data);
Ok(())
}
// Write out the buffer to disk, pushing the created chunk's hash to
// the list.
fn write_chunk(&mut self) -> Result<(), Error> {
let num_entries = self.rlps.len();
let mut stream = RlpStream::new_list(num_entries);
for rlp in self.rlps.drain(..) {
stream.append_raw(&rlp, 1);
}
let raw_data = stream.out();
let compressed_size = snappy::compress_into(&raw_data, &mut self.snappy_buffer);
let compressed = &self.snappy_buffer[..compressed_size];
let hash = compressed.sha3();
self.writer.lock().write_state_chunk(hash, compressed)?;
trace!(target: "snapshot", "wrote state chunk. size: {}, uncompressed size: {}", compressed_size, raw_data.len());
self.progress.accounts.fetch_add(num_entries, Ordering::SeqCst);
self.progress.size.fetch_add(compressed_size, Ordering::SeqCst);
self.hashes.push(hash);
self.cur_size = 0;
Ok(())
}
// Get current chunk size.
fn chunk_size(&self) -> usize {
self.cur_size
}
}
/// Walk the given state database starting from the given root,
/// creating chunks and writing them out.
///
/// Returns a list of hashes of chunks created, or any error it may
/// have encountered.
pub fn chunk_state<'a>(db: &HashDB, root: &H256, writer: &Mutex, progress: &'a Progress) -> Result, Error> {
let account_trie = TrieDB::new(db, &root)?;
let mut chunker = StateChunker {
hashes: Vec::new(),
rlps: Vec::new(),
cur_size: 0,
snappy_buffer: vec![0; snappy::max_compressed_len(PREFERRED_CHUNK_SIZE)],
writer: writer,
progress: progress,
};
let mut used_code = HashSet::new();
// account_key here is the address' hash.
for item in account_trie.iter()? {
let (account_key, account_data) = item?;
let account = ::rlp::decode(&*account_data);
let account_key_hash = H256::from_slice(&account_key);
let account_db = AccountDB::from_hash(db, account_key_hash);
let fat_rlps = account::to_fat_rlps(&account_key_hash, &account, &account_db, &mut used_code, PREFERRED_CHUNK_SIZE - chunker.chunk_size(), PREFERRED_CHUNK_SIZE)?;
for (i, fat_rlp) in fat_rlps.into_iter().enumerate() {
if i > 0 {
chunker.write_chunk()?;
}
chunker.push(fat_rlp)?;
}
}
if chunker.cur_size != 0 {
chunker.write_chunk()?;
}
Ok(chunker.hashes)
}
/// Used to rebuild the state trie piece by piece.
pub struct StateRebuilder {
db: Box,
state_root: H256,
known_code: HashMap, // code hashes mapped to first account with this code.
missing_code: HashMap>, // maps code hashes to lists of accounts missing that code.
bloom: Bloom,
known_storage_roots: HashMap, // maps account hashes to last known storage root. Only filled for last account per chunk.
}
impl StateRebuilder {
/// Create a new state rebuilder to write into the given backing DB.
pub fn new(db: Arc, pruning: Algorithm) -> Self {
StateRebuilder {
db: journaldb::new(db.clone(), pruning, ::db::COL_STATE),
state_root: SHA3_NULL_RLP,
known_code: HashMap::new(),
missing_code: HashMap::new(),
bloom: StateDB::load_bloom(&*db),
known_storage_roots: HashMap::new(),
}
}
/// Feed an uncompressed state chunk into the rebuilder.
pub fn feed(&mut self, chunk: &[u8], flag: &AtomicBool) -> Result<(), ::error::Error> {
let rlp = UntrustedRlp::new(chunk);
let empty_rlp = StateAccount::new_basic(U256::zero(), U256::zero()).rlp();
let mut pairs = Vec::with_capacity(rlp.item_count()?);
// initialize the pairs vector with empty values so we have slots to write into.
pairs.resize(rlp.item_count()?, (H256::new(), Vec::new()));
let status = rebuild_accounts(
self.db.as_hashdb_mut(),
rlp,
&mut pairs,
&self.known_code,
&mut self.known_storage_roots,
flag
)?;
for (addr_hash, code_hash) in status.missing_code {
self.missing_code.entry(code_hash).or_insert_with(Vec::new).push(addr_hash);
}
// patch up all missing code. must be done after collecting all new missing code entries.
for (code_hash, code, first_with) in status.new_code {
for addr_hash in self.missing_code.remove(&code_hash).unwrap_or_else(Vec::new) {
let mut db = AccountDBMut::from_hash(self.db.as_hashdb_mut(), addr_hash);
db.emplace(code_hash, DBValue::from_slice(&code));
}
self.known_code.insert(code_hash, first_with);
}
let backing = self.db.backing().clone();
// batch trie writes
{
let mut account_trie = if self.state_root != SHA3_NULL_RLP {
TrieDBMut::from_existing(self.db.as_hashdb_mut(), &mut self.state_root)?
} else {
TrieDBMut::new(self.db.as_hashdb_mut(), &mut self.state_root)
};
for (hash, thin_rlp) in pairs {
if !flag.load(Ordering::SeqCst) { return Err(Error::RestorationAborted.into()) }
if &thin_rlp[..] != &empty_rlp[..] {
self.bloom.set(&*hash);
}
account_trie.insert(&hash, &thin_rlp)?;
}
}
let bloom_journal = self.bloom.drain_journal();
let mut batch = backing.transaction();
StateDB::commit_bloom(&mut batch, bloom_journal)?;
self.db.inject(&mut batch)?;
backing.write_buffered(batch);
trace!(target: "snapshot", "current state root: {:?}", self.state_root);
Ok(())
}
/// Finalize the restoration. Check for accounts missing code and make a dummy
/// journal entry.
/// Once all chunks have been fed, there should be nothing missing.
pub fn finalize(mut self, era: u64, id: H256) -> Result, ::error::Error> {
let missing = self.missing_code.keys().cloned().collect::>();
if !missing.is_empty() { return Err(Error::MissingCode(missing).into()) }
let mut batch = self.db.backing().transaction();
self.db.journal_under(&mut batch, era, &id)?;
self.db.backing().write_buffered(batch);
Ok(self.db)
}
/// Get the state root of the rebuilder.
pub fn state_root(&self) -> H256 { self.state_root }
}
#[derive(Default)]
struct RebuiltStatus {
// new code that's become available. (code_hash, code, addr_hash)
new_code: Vec<(H256, Bytes, H256)>,
missing_code: Vec<(H256, H256)>, // accounts that are missing code.
}
// rebuild a set of accounts and their storage.
// returns a status detailing newly-loaded code and accounts missing code.
fn rebuild_accounts(
db: &mut HashDB,
account_fat_rlps: UntrustedRlp,
out_chunk: &mut [(H256, Bytes)],
known_code: &HashMap,
known_storage_roots: &mut HashMap,
abort_flag: &AtomicBool,
) -> Result {
let mut status = RebuiltStatus::default();
for (account_rlp, out) in account_fat_rlps.into_iter().zip(out_chunk.iter_mut()) {
if !abort_flag.load(Ordering::SeqCst) { return Err(Error::RestorationAborted.into()) }
let hash: H256 = account_rlp.val_at(0)?;
let fat_rlp = account_rlp.at(1)?;
let thin_rlp = {
// fill out the storage trie and code while decoding.
let (acc, maybe_code) = {
let mut acct_db = AccountDBMut::from_hash(db, hash);
let storage_root = known_storage_roots.get(&hash).cloned().unwrap_or(H256::zero());
account::from_fat_rlp(&mut acct_db, fat_rlp, storage_root)?
};
let code_hash = acc.code_hash.clone();
match maybe_code {
// new inline code
Some(code) => status.new_code.push((code_hash, code, hash)),
None => {
if code_hash != ::util::SHA3_EMPTY {
// see if this code has already been included inline
match known_code.get(&code_hash) {
Some(&first_with) => {
// if so, load it from the database.
let code = AccountDB::from_hash(db, first_with)
.get(&code_hash)
.ok_or_else(|| Error::MissingCode(vec![first_with]))?;
// and write it again under a different mangled key
AccountDBMut::from_hash(db, hash).emplace(code_hash, code);
}
// if not, queue it up to be filled later
None => status.missing_code.push((hash, code_hash)),
}
}
}
}
::rlp::encode(&acc).into_vec()
};
*out = (hash, thin_rlp);
}
if let Some(&(ref hash, ref rlp)) = out_chunk.iter().last() {
known_storage_roots.insert(*hash, ::rlp::decode::(rlp).storage_root);
}
if let Some(&(ref hash, ref rlp)) = out_chunk.iter().next() {
known_storage_roots.insert(*hash, ::rlp::decode::(rlp).storage_root);
}
Ok(status)
}
/// Proportion of blocks which we will verify `PoW` for.
const POW_VERIFY_RATE: f32 = 0.02;
/// Verify an old block with the given header, engine, blockchain, body. If `always` is set, it will perform
/// the fullest verification possible. If not, it will take a random sample to determine whether it will
/// do heavy or light verification.
pub fn verify_old_block(rng: &mut OsRng, header: &Header, engine: &Engine, chain: &BlockChain, body: Option<&[u8]>, always: bool) -> Result<(), ::error::Error> {
engine.verify_block_basic(header, body)?;
if always || rng.gen::() <= POW_VERIFY_RATE {
engine.verify_block_unordered(header, body)?;
match chain.block_header(header.parent_hash()) {
Some(parent) => engine.verify_block_family(header, &parent, body),
None => Ok(()),
}
} else {
Ok(())
}
}