// Copyright 2015-2019 Parity Technologies (UK) Ltd. // This file is part of Parity Ethereum. // Parity Ethereum is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity Ethereum is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity Ethereum. If not, see . //! Single account in the system. use bytes::{Bytes, ToPretty}; use error::Error; use ethereum_types::{Address, H256, U256}; use ethtrie::{Result as TrieResult, SecTrieDB, TrieDB, TrieFactory}; use hash::{keccak, KECCAK_EMPTY, KECCAK_NULL_RLP}; use hash_db::HashDB; use keccak_hasher::KeccakHasher; use kvdb::DBValue; use lru_cache::LruCache; use pod_account::*; use rlp::{encode, RlpStream}; use std::{ collections::{BTreeMap, HashMap}, fmt, sync::Arc, }; use trie::{Recorder, Trie}; use types::basic_account::BasicAccount; use std::cell::{Cell, RefCell}; const STORAGE_CACHE_ITEMS: usize = 8192; /// Boolean type for clean/dirty status. #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub enum Filth { /// Data has not been changed. Clean, /// Data has been changed. Dirty, } /// Single account in the system. /// Keeps track of changes to the code and storage. /// The changes are applied in `commit_storage` and `commit_code` pub struct Account { // Balance of the account. balance: U256, // Nonce of the account. nonce: U256, // Trie-backed storage. storage_root: H256, // LRU Cache of the trie-backed storage. // This is limited to `STORAGE_CACHE_ITEMS` recent queries storage_cache: RefCell>, // LRU Cache of the trie-backed storage for original value. // This is only used when the initial storage root is different compared to // what is in the database. That is, it is only used for new contracts. original_storage_cache: Option<(H256, RefCell>)>, // Modified storage. Accumulates changes to storage made in `set_storage` // Takes precedence over `storage_cache`. storage_changes: HashMap, // Code hash of the account. code_hash: H256, // Size of the account code. code_size: Option, // Code cache of the account. code_cache: Arc, // Account code new or has been modified. code_filth: Filth, // Cached address hash. address_hash: Cell>, } impl From for Account { fn from(basic: BasicAccount) -> Self { Account { balance: basic.balance, nonce: basic.nonce, storage_root: basic.storage_root, storage_cache: Self::empty_storage_cache(), original_storage_cache: None, storage_changes: HashMap::new(), code_hash: basic.code_hash, code_size: None, code_cache: Arc::new(vec![]), code_filth: Filth::Clean, address_hash: Cell::new(None), } } } impl Account { #[cfg(test)] /// General constructor. pub fn new(balance: U256, nonce: U256, storage: HashMap, code: Bytes) -> Account { Account { balance: balance, nonce: nonce, storage_root: KECCAK_NULL_RLP, storage_cache: Self::empty_storage_cache(), original_storage_cache: None, storage_changes: storage, code_hash: keccak(&code), code_size: Some(code.len()), code_cache: Arc::new(code), code_filth: Filth::Dirty, address_hash: Cell::new(None), } } fn empty_storage_cache() -> RefCell> { RefCell::new(LruCache::new(STORAGE_CACHE_ITEMS)) } /// General constructor. pub fn from_pod(pod: PodAccount) -> Account { Account { balance: pod.balance, nonce: pod.nonce, storage_root: KECCAK_NULL_RLP, storage_cache: Self::empty_storage_cache(), original_storage_cache: None, storage_changes: pod.storage.into_iter().collect(), code_hash: pod.code.as_ref().map_or(KECCAK_EMPTY, |c| keccak(c)), code_filth: Filth::Dirty, code_size: Some(pod.code.as_ref().map_or(0, |c| c.len())), code_cache: Arc::new(pod.code.map_or_else( || { warn!("POD account with unknown code is being created! Assuming no code."); vec![] }, |c| c, )), address_hash: Cell::new(None), } } /// Create a new account with the given balance. pub fn new_basic(balance: U256, nonce: U256) -> Account { Account { balance: balance, nonce: nonce, storage_root: KECCAK_NULL_RLP, storage_cache: Self::empty_storage_cache(), original_storage_cache: None, storage_changes: HashMap::new(), code_hash: KECCAK_EMPTY, code_cache: Arc::new(vec![]), code_size: Some(0), code_filth: Filth::Clean, address_hash: Cell::new(None), } } /// Create a new account from RLP. pub fn from_rlp(rlp: &[u8]) -> Result { ::rlp::decode::(rlp) .map(|ba| ba.into()) .map_err(|e| e.into()) } /// Create a new contract account. /// NOTE: make sure you use `init_code` on this before `commit`ing. pub fn new_contract(balance: U256, nonce: U256, original_storage_root: H256) -> Account { Account { balance: balance, nonce: nonce, storage_root: KECCAK_NULL_RLP, storage_cache: Self::empty_storage_cache(), original_storage_cache: if original_storage_root == KECCAK_NULL_RLP { None } else { Some((original_storage_root, Self::empty_storage_cache())) }, storage_changes: HashMap::new(), code_hash: KECCAK_EMPTY, code_cache: Arc::new(vec![]), code_size: None, code_filth: Filth::Clean, address_hash: Cell::new(None), } } /// Set this account's code to the given code. /// NOTE: Account should have been created with `new_contract()` pub fn init_code(&mut self, code: Bytes) { self.code_hash = keccak(&code); self.code_cache = Arc::new(code); self.code_size = Some(self.code_cache.len()); self.code_filth = Filth::Dirty; } /// Reset this account's code to the given code. pub fn reset_code(&mut self, code: Bytes) { self.init_code(code); } /// Reset this account's code and storage to given values. pub fn reset_code_and_storage(&mut self, code: Arc, storage: HashMap) { self.code_hash = keccak(&*code); self.code_cache = code; self.code_size = Some(self.code_cache.len()); self.code_filth = Filth::Dirty; self.storage_cache = Self::empty_storage_cache(); self.storage_changes = storage; if self.storage_root != KECCAK_NULL_RLP { self.original_storage_cache = Some((self.storage_root, Self::empty_storage_cache())); } self.storage_root = KECCAK_NULL_RLP; } /// Set (and cache) the contents of the trie's storage at `key` to `value`. pub fn set_storage(&mut self, key: H256, value: H256) { self.storage_changes.insert(key, value); } /// Get (and cache) the contents of the trie's storage at `key`. /// Takes modified storage into account. pub fn storage_at(&self, db: &HashDB, key: &H256) -> TrieResult { if let Some(value) = self.cached_storage_at(key) { return Ok(value); } Self::get_and_cache_storage( &self.storage_root, &mut self.storage_cache.borrow_mut(), db, key, ) } /// Get (and cache) the contents of the trie's storage at `key`. /// Does not take modified storage into account. pub fn original_storage_at( &self, db: &HashDB, key: &H256, ) -> TrieResult { if let Some(value) = self.cached_original_storage_at(key) { return Ok(value); } match &self.original_storage_cache { Some((ref original_storage_root, ref original_storage_cache)) => { Self::get_and_cache_storage( original_storage_root, &mut original_storage_cache.borrow_mut(), db, key, ) } None => Self::get_and_cache_storage( &self.storage_root, &mut self.storage_cache.borrow_mut(), db, key, ), } } fn get_and_cache_storage( storage_root: &H256, storage_cache: &mut LruCache, db: &HashDB, key: &H256, ) -> TrieResult { let db = SecTrieDB::new(&db, storage_root)?; let panicky_decoder = |bytes: &[u8]| ::rlp::decode(&bytes).expect("decoding db value failed"); let item: U256 = db .get_with(key, panicky_decoder)? .unwrap_or_else(U256::zero); let value: H256 = item.into(); storage_cache.insert(key.clone(), value.clone()); Ok(value) } /// Get cached storage value if any. Returns `None` if the /// key is not in the cache. pub fn cached_storage_at(&self, key: &H256) -> Option { if let Some(value) = self.storage_changes.get(key) { return Some(value.clone()); } self.cached_moved_original_storage_at(key) } /// Get cached original storage value after last state commitment. Returns `None` if the key is not in the cache. pub fn cached_original_storage_at(&self, key: &H256) -> Option { match &self.original_storage_cache { Some((_, ref original_storage_cache)) => { if let Some(value) = original_storage_cache.borrow_mut().get_mut(key) { Some(value.clone()) } else { None } } None => self.cached_moved_original_storage_at(key), } } /// Get cached original storage value since last contract creation on this address. Returns `None` if the key is not in the cache. fn cached_moved_original_storage_at(&self, key: &H256) -> Option { // If storage root is empty RLP, then early return zero value. Practically, this makes it so that if // `original_storage_cache` is used, then `storage_cache` will always remain empty. if self.storage_root == KECCAK_NULL_RLP { return Some(H256::new()); } if let Some(value) = self.storage_cache.borrow_mut().get_mut(key) { Some(value.clone()) } else { None } } /// return the balance associated with this account. pub fn balance(&self) -> &U256 { &self.balance } /// return the nonce associated with this account. pub fn nonce(&self) -> &U256 { &self.nonce } /// return the code hash associated with this account. pub fn code_hash(&self) -> H256 { self.code_hash.clone() } /// return and cache `keccak(address)`, `address` must be the address of this /// account. pub fn address_hash(&self, address: &Address) -> H256 { let hash = self.address_hash.get(); hash.unwrap_or_else(|| { let hash = keccak(address); self.address_hash.set(Some(hash.clone())); hash }) } /// returns the account's code. If `None` then the code cache isn't available - /// get someone who knows to call `note_code`. pub fn code(&self) -> Option> { if self.code_hash != KECCAK_EMPTY && self.code_cache.is_empty() { return None; } Some(self.code_cache.clone()) } /// returns the account's code size. If `None` then the code cache or code size cache isn't available - /// get someone who knows to call `note_code`. pub fn code_size(&self) -> Option { self.code_size.clone() } #[cfg(test)] /// Provide a byte array which hashes to the `code_hash`. returns the hash as a result. pub fn note_code(&mut self, code: Bytes) -> Result<(), H256> { let h = keccak(&code); if self.code_hash == h { self.code_cache = Arc::new(code); self.code_size = Some(self.code_cache.len()); Ok(()) } else { Err(h) } } /// Is `code_cache` valid; such that code is going to return Some? pub fn is_cached(&self) -> bool { !self.code_cache.is_empty() || (self.code_cache.is_empty() && self.code_hash == KECCAK_EMPTY) } /// Provide a database to get `code_hash`. Should not be called if it is a contract without code. Returns the cached code, if successful. #[must_use] pub fn cache_code(&mut self, db: &HashDB) -> Option> { // TODO: fill out self.code_cache; trace!( "Account::cache_code: ic={}; self.code_hash={:?}, self.code_cache={}", self.is_cached(), self.code_hash, self.code_cache.pretty() ); if self.is_cached() { return Some(self.code_cache.clone()); } match db.get(&self.code_hash) { Some(x) => { self.code_size = Some(x.len()); self.code_cache = Arc::new(x.into_vec()); Some(self.code_cache.clone()) } _ => { warn!("Failed reverse get of {}", self.code_hash); None } } } /// Provide code to cache. For correctness, should be the correct code for the account. pub fn cache_given_code(&mut self, code: Arc) { trace!( "Account::cache_given_code: ic={}; self.code_hash={:?}, self.code_cache={}", self.is_cached(), self.code_hash, self.code_cache.pretty() ); self.code_size = Some(code.len()); self.code_cache = code; } /// Provide a database to get `code_size`. Should not be called if it is a contract without code. Returns whether /// the cache succeeds. #[must_use] pub fn cache_code_size(&mut self, db: &HashDB) -> bool { // TODO: fill out self.code_cache; trace!( "Account::cache_code_size: ic={}; self.code_hash={:?}, self.code_cache={}", self.is_cached(), self.code_hash, self.code_cache.pretty() ); self.code_size.is_some() || if self.code_hash != KECCAK_EMPTY { match db.get(&self.code_hash) { Some(x) => { self.code_size = Some(x.len()); true } _ => { warn!("Failed reverse get of {}", self.code_hash); false } } } else { // If the code hash is empty hash, then the code size is zero. self.code_size = Some(0); true } } /// Determine whether there are any un-`commit()`-ed storage-setting operations. pub fn storage_is_clean(&self) -> bool { self.storage_changes.is_empty() } /// Check if account has zero nonce, balance, no code and no storage. /// /// NOTE: Will panic if `!self.storage_is_clean()` pub fn is_empty(&self) -> bool { assert!( self.storage_is_clean(), "Account::is_empty() may only legally be called when storage is clean." ); self.is_null() && self.storage_root == KECCAK_NULL_RLP } /// Check if account has zero nonce, balance, no code. pub fn is_null(&self) -> bool { self.balance.is_zero() && self.nonce.is_zero() && self.code_hash == KECCAK_EMPTY } /// Check if account is basic (Has no code). pub fn is_basic(&self) -> bool { self.code_hash == KECCAK_EMPTY } /// Return the storage root associated with this account or None if it has been altered via the overlay. pub fn storage_root(&self) -> Option { if self.storage_is_clean() { Some(self.storage_root) } else { None } } /// Return the original storage root of this account. pub fn original_storage_root(&self) -> H256 { if let Some((original_storage_root, _)) = self.original_storage_cache { original_storage_root } else { self.storage_root } } /// Whether the base storage root of this account is unchanged. pub fn is_base_storage_root_unchanged(&self) -> bool { self.original_storage_cache.is_none() } /// Storage root where the account changes are based upon. pub fn base_storage_root(&self) -> H256 { self.storage_root } /// Return the storage overlay. pub fn storage_changes(&self) -> &HashMap { &self.storage_changes } /// Increment the nonce of the account by one. pub fn inc_nonce(&mut self) { self.nonce = self.nonce.saturating_add(U256::from(1u8)); } /// Increase account balance. pub fn add_balance(&mut self, x: &U256) { self.balance = self.balance.saturating_add(*x); } /// Decrease account balance. /// Panics if balance is less than `x` pub fn sub_balance(&mut self, x: &U256) { assert!(self.balance >= *x); self.balance = self.balance - *x; } /// Commit the `storage_changes` to the backing DB and update `storage_root`. pub fn commit_storage( &mut self, trie_factory: &TrieFactory, db: &mut HashDB, ) -> TrieResult<()> { let mut t = trie_factory.from_existing(db, &mut self.storage_root)?; for (k, v) in self.storage_changes.drain() { // cast key and value to trait type, // so we can call overloaded `to_bytes` method match v.is_zero() { true => t.remove(&k)?, false => t.insert(&k, &encode(&U256::from(&*v)))?, }; self.storage_cache.borrow_mut().insert(k, v); } self.original_storage_cache = None; Ok(()) } /// Commit any unsaved code. `code_hash` will always return the hash of the `code_cache` after this. pub fn commit_code(&mut self, db: &mut HashDB) { trace!( "Commiting code of {:?} - {:?}, {:?}", self, self.code_filth == Filth::Dirty, self.code_cache.is_empty() ); match (self.code_filth == Filth::Dirty, self.code_cache.is_empty()) { (true, true) => { self.code_size = Some(0); self.code_filth = Filth::Clean; } (true, false) => { db.emplace( self.code_hash.clone(), DBValue::from_slice(&*self.code_cache), ); self.code_size = Some(self.code_cache.len()); self.code_filth = Filth::Clean; } (false, _) => {} } } /// Export to RLP. pub fn rlp(&self) -> Bytes { let mut stream = RlpStream::new_list(4); stream.append(&self.nonce); stream.append(&self.balance); stream.append(&self.storage_root); stream.append(&self.code_hash); stream.out() } /// Clone basic account data pub fn clone_basic(&self) -> Account { Account { balance: self.balance.clone(), nonce: self.nonce.clone(), storage_root: self.storage_root.clone(), storage_cache: Self::empty_storage_cache(), original_storage_cache: self .original_storage_cache .as_ref() .map(|(r, _)| (*r, Self::empty_storage_cache())), storage_changes: HashMap::new(), code_hash: self.code_hash.clone(), code_size: self.code_size.clone(), code_cache: self.code_cache.clone(), code_filth: self.code_filth, address_hash: self.address_hash.clone(), } } /// Clone account data and dirty storage keys pub fn clone_dirty(&self) -> Account { let mut account = self.clone_basic(); account.storage_changes = self.storage_changes.clone(); account } /// Clone account data, dirty storage keys and cached storage keys. pub fn clone_all(&self) -> Account { let mut account = self.clone_dirty(); account.storage_cache = self.storage_cache.clone(); account.original_storage_cache = self.original_storage_cache.clone(); account } /// Replace self with the data from other account merging storage cache. /// Basic account data and all modifications are overwritten /// with new values. pub fn overwrite_with(&mut self, other: Account) { self.balance = other.balance; self.nonce = other.nonce; self.code_hash = other.code_hash; self.code_filth = other.code_filth; self.code_cache = other.code_cache; self.code_size = other.code_size; self.address_hash = other.address_hash; if self.storage_root == other.storage_root { let mut cache = self.storage_cache.borrow_mut(); for (k, v) in other.storage_cache.into_inner() { cache.insert(k, v); } } else { self.storage_cache = other.storage_cache; } self.original_storage_cache = other.original_storage_cache; self.storage_root = other.storage_root; self.storage_changes = other.storage_changes; } } // light client storage proof. impl Account { /// Prove a storage key's existence or nonexistence in the account's storage /// trie. /// `storage_key` is the hash of the desired storage key, meaning /// this will only work correctly under a secure trie. pub fn prove_storage( &self, db: &HashDB, storage_key: H256, ) -> TrieResult<(Vec, H256)> { let mut recorder = Recorder::new(); let trie = TrieDB::new(&db, &self.storage_root)?; let item: U256 = { let panicky_decoder = |bytes: &[u8]| ::rlp::decode(bytes).expect("decoding db value failed"); let query = (&mut recorder, panicky_decoder); trie.get_with(&storage_key, query)? .unwrap_or_else(U256::zero) }; Ok(( recorder.drain().into_iter().map(|r| r.data).collect(), item.into(), )) } } impl fmt::Debug for Account { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("Account") .field("balance", &self.balance) .field("nonce", &self.nonce) .field("code", &self.code()) .field( "storage", &self.storage_changes.iter().collect::>(), ) .finish() } } #[cfg(test)] mod tests { use super::*; use account_db::*; use bytes::Bytes; use ethereum_types::{Address, H256}; use journaldb::new_memory_db; use rlp_compress::{compress, decompress, snapshot_swapper}; #[test] fn account_compress() { let raw = Account::new_basic(2.into(), 4.into()).rlp(); let compact_vec = compress(&raw, snapshot_swapper()); assert!(raw.len() > compact_vec.len()); let again_raw = decompress(&compact_vec, snapshot_swapper()); assert_eq!(raw, again_raw.into_vec()); } #[test] fn storage_at() { let mut db = new_memory_db(); let mut db = AccountDBMut::new(&mut db, &Address::new()); let rlp = { let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP); a.set_storage(0x00u64.into(), 0x1234u64.into()); a.commit_storage(&Default::default(), &mut db).unwrap(); a.init_code(vec![]); a.commit_code(&mut db); a.rlp() }; let a = Account::from_rlp(&rlp).expect("decoding db value failed"); assert_eq!( a.storage_root().unwrap(), "c57e1afb758b07f8d2c8f13a3b6e44fa5ff94ab266facc5a4fd3f062426e50b2".into() ); assert_eq!( a.storage_at(&db.immutable(), &0x00u64.into()).unwrap(), 0x1234u64.into() ); assert_eq!( a.storage_at(&db.immutable(), &0x01u64.into()).unwrap(), H256::default() ); } #[test] fn note_code() { let mut db = new_memory_db(); let mut db = AccountDBMut::new(&mut db, &Address::new()); let rlp = { let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP); a.init_code(vec![0x55, 0x44, 0xffu8]); a.commit_code(&mut db); a.rlp() }; let mut a = Account::from_rlp(&rlp).expect("decoding db value failed"); assert!(a.cache_code(&db.immutable()).is_some()); let mut a = Account::from_rlp(&rlp).expect("decoding db value failed"); assert_eq!(a.note_code(vec![0x55, 0x44, 0xffu8]), Ok(())); } #[test] fn commit_storage() { let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP); let mut db = new_memory_db(); let mut db = AccountDBMut::new(&mut db, &Address::new()); a.set_storage(0.into(), 0x1234.into()); assert_eq!(a.storage_root(), None); a.commit_storage(&Default::default(), &mut db).unwrap(); assert_eq!( a.storage_root().unwrap(), "c57e1afb758b07f8d2c8f13a3b6e44fa5ff94ab266facc5a4fd3f062426e50b2".into() ); } #[test] fn commit_remove_commit_storage() { let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP); let mut db = new_memory_db(); let mut db = AccountDBMut::new(&mut db, &Address::new()); a.set_storage(0.into(), 0x1234.into()); a.commit_storage(&Default::default(), &mut db).unwrap(); a.set_storage(1.into(), 0x1234.into()); a.commit_storage(&Default::default(), &mut db).unwrap(); a.set_storage(1.into(), 0.into()); a.commit_storage(&Default::default(), &mut db).unwrap(); assert_eq!( a.storage_root().unwrap(), "c57e1afb758b07f8d2c8f13a3b6e44fa5ff94ab266facc5a4fd3f062426e50b2".into() ); } #[test] fn commit_code() { let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP); let mut db = new_memory_db(); let mut db = AccountDBMut::new(&mut db, &Address::new()); a.init_code(vec![0x55, 0x44, 0xffu8]); assert_eq!(a.code_filth, Filth::Dirty); assert_eq!(a.code_size(), Some(3)); a.commit_code(&mut db); assert_eq!( a.code_hash(), "af231e631776a517ca23125370d542873eca1fb4d613ed9b5d5335a46ae5b7eb".into() ); } #[test] fn reset_code() { let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP); let mut db = new_memory_db(); let mut db = AccountDBMut::new(&mut db, &Address::new()); a.init_code(vec![0x55, 0x44, 0xffu8]); assert_eq!(a.code_filth, Filth::Dirty); a.commit_code(&mut db); assert_eq!(a.code_filth, Filth::Clean); assert_eq!( a.code_hash(), "af231e631776a517ca23125370d542873eca1fb4d613ed9b5d5335a46ae5b7eb".into() ); a.reset_code(vec![0x55]); assert_eq!(a.code_filth, Filth::Dirty); a.commit_code(&mut db); assert_eq!( a.code_hash(), "37bf2238b11b68cdc8382cece82651b59d3c3988873b6e0f33d79694aa45f1be".into() ); } #[test] fn rlpio() { let a = Account::new(69u8.into(), 0u8.into(), HashMap::new(), Bytes::new()); let b = Account::from_rlp(&a.rlp()).unwrap(); assert_eq!(a.balance(), b.balance()); assert_eq!(a.nonce(), b.nonce()); assert_eq!(a.code_hash(), b.code_hash()); assert_eq!(a.storage_root(), b.storage_root()); } #[test] fn new_account() { let a = Account::new(69u8.into(), 0u8.into(), HashMap::new(), Bytes::new()); assert_eq!(a.rlp().to_hex(), "f8448045a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a0c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"); assert_eq!(*a.balance(), 69u8.into()); assert_eq!(*a.nonce(), 0u8.into()); assert_eq!(a.code_hash(), KECCAK_EMPTY); assert_eq!(a.storage_root().unwrap(), KECCAK_NULL_RLP); } }