// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see .
//! Single account in the system.
use bytes::{Bytes, ToPretty};
use error::Error;
use ethereum_types::{Address, H256, U256};
use ethtrie::{Result as TrieResult, SecTrieDB, TrieDB, TrieFactory};
use hash::{keccak, KECCAK_EMPTY, KECCAK_NULL_RLP};
use hash_db::HashDB;
use keccak_hasher::KeccakHasher;
use kvdb::DBValue;
use lru_cache::LruCache;
use pod_account::*;
use rlp::{encode, RlpStream};
use std::{
collections::{BTreeMap, HashMap},
fmt,
sync::Arc,
};
use trie::{Recorder, Trie};
use types::basic_account::BasicAccount;
use std::cell::{Cell, RefCell};
const STORAGE_CACHE_ITEMS: usize = 8192;
/// Boolean type for clean/dirty status.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum Filth {
/// Data has not been changed.
Clean,
/// Data has been changed.
Dirty,
}
/// Single account in the system.
/// Keeps track of changes to the code and storage.
/// The changes are applied in `commit_storage` and `commit_code`
pub struct Account {
// Balance of the account.
balance: U256,
// Nonce of the account.
nonce: U256,
// Trie-backed storage.
storage_root: H256,
// LRU Cache of the trie-backed storage.
// This is limited to `STORAGE_CACHE_ITEMS` recent queries
storage_cache: RefCell>,
// LRU Cache of the trie-backed storage for original value.
// This is only used when the initial storage root is different compared to
// what is in the database. That is, it is only used for new contracts.
original_storage_cache: Option<(H256, RefCell>)>,
// Modified storage. Accumulates changes to storage made in `set_storage`
// Takes precedence over `storage_cache`.
storage_changes: HashMap,
// Code hash of the account.
code_hash: H256,
// Size of the account code.
code_size: Option,
// Code cache of the account.
code_cache: Arc,
// Account code new or has been modified.
code_filth: Filth,
// Cached address hash.
address_hash: Cell>,
}
impl From for Account {
fn from(basic: BasicAccount) -> Self {
Account {
balance: basic.balance,
nonce: basic.nonce,
storage_root: basic.storage_root,
storage_cache: Self::empty_storage_cache(),
original_storage_cache: None,
storage_changes: HashMap::new(),
code_hash: basic.code_hash,
code_size: None,
code_cache: Arc::new(vec![]),
code_filth: Filth::Clean,
address_hash: Cell::new(None),
}
}
}
impl Account {
#[cfg(test)]
/// General constructor.
pub fn new(balance: U256, nonce: U256, storage: HashMap, code: Bytes) -> Account {
Account {
balance: balance,
nonce: nonce,
storage_root: KECCAK_NULL_RLP,
storage_cache: Self::empty_storage_cache(),
original_storage_cache: None,
storage_changes: storage,
code_hash: keccak(&code),
code_size: Some(code.len()),
code_cache: Arc::new(code),
code_filth: Filth::Dirty,
address_hash: Cell::new(None),
}
}
fn empty_storage_cache() -> RefCell> {
RefCell::new(LruCache::new(STORAGE_CACHE_ITEMS))
}
/// General constructor.
pub fn from_pod(pod: PodAccount) -> Account {
Account {
balance: pod.balance,
nonce: pod.nonce,
storage_root: KECCAK_NULL_RLP,
storage_cache: Self::empty_storage_cache(),
original_storage_cache: None,
storage_changes: pod.storage.into_iter().collect(),
code_hash: pod.code.as_ref().map_or(KECCAK_EMPTY, |c| keccak(c)),
code_filth: Filth::Dirty,
code_size: Some(pod.code.as_ref().map_or(0, |c| c.len())),
code_cache: Arc::new(pod.code.map_or_else(
|| {
warn!("POD account with unknown code is being created! Assuming no code.");
vec![]
},
|c| c,
)),
address_hash: Cell::new(None),
}
}
/// Create a new account with the given balance.
pub fn new_basic(balance: U256, nonce: U256) -> Account {
Account {
balance: balance,
nonce: nonce,
storage_root: KECCAK_NULL_RLP,
storage_cache: Self::empty_storage_cache(),
original_storage_cache: None,
storage_changes: HashMap::new(),
code_hash: KECCAK_EMPTY,
code_cache: Arc::new(vec![]),
code_size: Some(0),
code_filth: Filth::Clean,
address_hash: Cell::new(None),
}
}
/// Create a new account from RLP.
pub fn from_rlp(rlp: &[u8]) -> Result {
::rlp::decode::(rlp)
.map(|ba| ba.into())
.map_err(|e| e.into())
}
/// Create a new contract account.
/// NOTE: make sure you use `init_code` on this before `commit`ing.
pub fn new_contract(balance: U256, nonce: U256, original_storage_root: H256) -> Account {
Account {
balance: balance,
nonce: nonce,
storage_root: KECCAK_NULL_RLP,
storage_cache: Self::empty_storage_cache(),
original_storage_cache: if original_storage_root == KECCAK_NULL_RLP {
None
} else {
Some((original_storage_root, Self::empty_storage_cache()))
},
storage_changes: HashMap::new(),
code_hash: KECCAK_EMPTY,
code_cache: Arc::new(vec![]),
code_size: None,
code_filth: Filth::Clean,
address_hash: Cell::new(None),
}
}
/// Set this account's code to the given code.
/// NOTE: Account should have been created with `new_contract()`
pub fn init_code(&mut self, code: Bytes) {
self.code_hash = keccak(&code);
self.code_cache = Arc::new(code);
self.code_size = Some(self.code_cache.len());
self.code_filth = Filth::Dirty;
}
/// Reset this account's code to the given code.
pub fn reset_code(&mut self, code: Bytes) {
self.init_code(code);
}
/// Reset this account's code and storage to given values.
pub fn reset_code_and_storage(&mut self, code: Arc, storage: HashMap) {
self.code_hash = keccak(&*code);
self.code_cache = code;
self.code_size = Some(self.code_cache.len());
self.code_filth = Filth::Dirty;
self.storage_cache = Self::empty_storage_cache();
self.storage_changes = storage;
if self.storage_root != KECCAK_NULL_RLP {
self.original_storage_cache = Some((self.storage_root, Self::empty_storage_cache()));
}
self.storage_root = KECCAK_NULL_RLP;
}
/// Set (and cache) the contents of the trie's storage at `key` to `value`.
pub fn set_storage(&mut self, key: H256, value: H256) {
self.storage_changes.insert(key, value);
}
/// Get (and cache) the contents of the trie's storage at `key`.
/// Takes modified storage into account.
pub fn storage_at(&self, db: &HashDB, key: &H256) -> TrieResult {
if let Some(value) = self.cached_storage_at(key) {
return Ok(value);
}
Self::get_and_cache_storage(
&self.storage_root,
&mut self.storage_cache.borrow_mut(),
db,
key,
)
}
/// Get (and cache) the contents of the trie's storage at `key`.
/// Does not take modified storage into account.
pub fn original_storage_at(
&self,
db: &HashDB,
key: &H256,
) -> TrieResult {
if let Some(value) = self.cached_original_storage_at(key) {
return Ok(value);
}
match &self.original_storage_cache {
Some((ref original_storage_root, ref original_storage_cache)) => {
Self::get_and_cache_storage(
original_storage_root,
&mut original_storage_cache.borrow_mut(),
db,
key,
)
}
None => Self::get_and_cache_storage(
&self.storage_root,
&mut self.storage_cache.borrow_mut(),
db,
key,
),
}
}
fn get_and_cache_storage(
storage_root: &H256,
storage_cache: &mut LruCache,
db: &HashDB,
key: &H256,
) -> TrieResult {
let db = SecTrieDB::new(&db, storage_root)?;
let panicky_decoder =
|bytes: &[u8]| ::rlp::decode(&bytes).expect("decoding db value failed");
let item: U256 = db
.get_with(key, panicky_decoder)?
.unwrap_or_else(U256::zero);
let value: H256 = item.into();
storage_cache.insert(key.clone(), value.clone());
Ok(value)
}
/// Get cached storage value if any. Returns `None` if the
/// key is not in the cache.
pub fn cached_storage_at(&self, key: &H256) -> Option {
if let Some(value) = self.storage_changes.get(key) {
return Some(value.clone());
}
self.cached_moved_original_storage_at(key)
}
/// Get cached original storage value after last state commitment. Returns `None` if the key is not in the cache.
pub fn cached_original_storage_at(&self, key: &H256) -> Option {
match &self.original_storage_cache {
Some((_, ref original_storage_cache)) => {
if let Some(value) = original_storage_cache.borrow_mut().get_mut(key) {
Some(value.clone())
} else {
None
}
}
None => self.cached_moved_original_storage_at(key),
}
}
/// Get cached original storage value since last contract creation on this address. Returns `None` if the key is not in the cache.
fn cached_moved_original_storage_at(&self, key: &H256) -> Option {
// If storage root is empty RLP, then early return zero value. Practically, this makes it so that if
// `original_storage_cache` is used, then `storage_cache` will always remain empty.
if self.storage_root == KECCAK_NULL_RLP {
return Some(H256::new());
}
if let Some(value) = self.storage_cache.borrow_mut().get_mut(key) {
Some(value.clone())
} else {
None
}
}
/// return the balance associated with this account.
pub fn balance(&self) -> &U256 {
&self.balance
}
/// return the nonce associated with this account.
pub fn nonce(&self) -> &U256 {
&self.nonce
}
/// return the code hash associated with this account.
pub fn code_hash(&self) -> H256 {
self.code_hash.clone()
}
/// return and cache `keccak(address)`, `address` must be the address of this
/// account.
pub fn address_hash(&self, address: &Address) -> H256 {
let hash = self.address_hash.get();
hash.unwrap_or_else(|| {
let hash = keccak(address);
self.address_hash.set(Some(hash.clone()));
hash
})
}
/// returns the account's code. If `None` then the code cache isn't available -
/// get someone who knows to call `note_code`.
pub fn code(&self) -> Option> {
if self.code_hash != KECCAK_EMPTY && self.code_cache.is_empty() {
return None;
}
Some(self.code_cache.clone())
}
/// returns the account's code size. If `None` then the code cache or code size cache isn't available -
/// get someone who knows to call `note_code`.
pub fn code_size(&self) -> Option {
self.code_size.clone()
}
#[cfg(test)]
/// Provide a byte array which hashes to the `code_hash`. returns the hash as a result.
pub fn note_code(&mut self, code: Bytes) -> Result<(), H256> {
let h = keccak(&code);
if self.code_hash == h {
self.code_cache = Arc::new(code);
self.code_size = Some(self.code_cache.len());
Ok(())
} else {
Err(h)
}
}
/// Is `code_cache` valid; such that code is going to return Some?
pub fn is_cached(&self) -> bool {
!self.code_cache.is_empty()
|| (self.code_cache.is_empty() && self.code_hash == KECCAK_EMPTY)
}
/// Provide a database to get `code_hash`. Should not be called if it is a contract without code. Returns the cached code, if successful.
#[must_use]
pub fn cache_code(&mut self, db: &HashDB) -> Option> {
// TODO: fill out self.code_cache;
trace!(
"Account::cache_code: ic={}; self.code_hash={:?}, self.code_cache={}",
self.is_cached(),
self.code_hash,
self.code_cache.pretty()
);
if self.is_cached() {
return Some(self.code_cache.clone());
}
match db.get(&self.code_hash) {
Some(x) => {
self.code_size = Some(x.len());
self.code_cache = Arc::new(x.into_vec());
Some(self.code_cache.clone())
}
_ => {
warn!("Failed reverse get of {}", self.code_hash);
None
}
}
}
/// Provide code to cache. For correctness, should be the correct code for the account.
pub fn cache_given_code(&mut self, code: Arc) {
trace!(
"Account::cache_given_code: ic={}; self.code_hash={:?}, self.code_cache={}",
self.is_cached(),
self.code_hash,
self.code_cache.pretty()
);
self.code_size = Some(code.len());
self.code_cache = code;
}
/// Provide a database to get `code_size`. Should not be called if it is a contract without code. Returns whether
/// the cache succeeds.
#[must_use]
pub fn cache_code_size(&mut self, db: &HashDB) -> bool {
// TODO: fill out self.code_cache;
trace!(
"Account::cache_code_size: ic={}; self.code_hash={:?}, self.code_cache={}",
self.is_cached(),
self.code_hash,
self.code_cache.pretty()
);
self.code_size.is_some()
|| if self.code_hash != KECCAK_EMPTY {
match db.get(&self.code_hash) {
Some(x) => {
self.code_size = Some(x.len());
true
}
_ => {
warn!("Failed reverse get of {}", self.code_hash);
false
}
}
} else {
// If the code hash is empty hash, then the code size is zero.
self.code_size = Some(0);
true
}
}
/// Determine whether there are any un-`commit()`-ed storage-setting operations.
pub fn storage_is_clean(&self) -> bool {
self.storage_changes.is_empty()
}
/// Check if account has zero nonce, balance, no code and no storage.
///
/// NOTE: Will panic if `!self.storage_is_clean()`
pub fn is_empty(&self) -> bool {
assert!(
self.storage_is_clean(),
"Account::is_empty() may only legally be called when storage is clean."
);
self.is_null() && self.storage_root == KECCAK_NULL_RLP
}
/// Check if account has zero nonce, balance, no code.
pub fn is_null(&self) -> bool {
self.balance.is_zero() && self.nonce.is_zero() && self.code_hash == KECCAK_EMPTY
}
/// Check if account is basic (Has no code).
pub fn is_basic(&self) -> bool {
self.code_hash == KECCAK_EMPTY
}
/// Return the storage root associated with this account or None if it has been altered via the overlay.
pub fn storage_root(&self) -> Option {
if self.storage_is_clean() {
Some(self.storage_root)
} else {
None
}
}
/// Return the original storage root of this account.
pub fn original_storage_root(&self) -> H256 {
if let Some((original_storage_root, _)) = self.original_storage_cache {
original_storage_root
} else {
self.storage_root
}
}
/// Whether the base storage root of this account is unchanged.
pub fn is_base_storage_root_unchanged(&self) -> bool {
self.original_storage_cache.is_none()
}
/// Storage root where the account changes are based upon.
pub fn base_storage_root(&self) -> H256 {
self.storage_root
}
/// Return the storage overlay.
pub fn storage_changes(&self) -> &HashMap {
&self.storage_changes
}
/// Increment the nonce of the account by one.
pub fn inc_nonce(&mut self) {
self.nonce = self.nonce.saturating_add(U256::from(1u8));
}
/// Increase account balance.
pub fn add_balance(&mut self, x: &U256) {
self.balance = self.balance.saturating_add(*x);
}
/// Decrease account balance.
/// Panics if balance is less than `x`
pub fn sub_balance(&mut self, x: &U256) {
assert!(self.balance >= *x);
self.balance = self.balance - *x;
}
/// Commit the `storage_changes` to the backing DB and update `storage_root`.
pub fn commit_storage(
&mut self,
trie_factory: &TrieFactory,
db: &mut HashDB,
) -> TrieResult<()> {
let mut t = trie_factory.from_existing(db, &mut self.storage_root)?;
for (k, v) in self.storage_changes.drain() {
// cast key and value to trait type,
// so we can call overloaded `to_bytes` method
match v.is_zero() {
true => t.remove(&k)?,
false => t.insert(&k, &encode(&U256::from(&*v)))?,
};
self.storage_cache.borrow_mut().insert(k, v);
}
self.original_storage_cache = None;
Ok(())
}
/// Commit any unsaved code. `code_hash` will always return the hash of the `code_cache` after this.
pub fn commit_code(&mut self, db: &mut HashDB) {
trace!(
"Commiting code of {:?} - {:?}, {:?}",
self,
self.code_filth == Filth::Dirty,
self.code_cache.is_empty()
);
match (self.code_filth == Filth::Dirty, self.code_cache.is_empty()) {
(true, true) => {
self.code_size = Some(0);
self.code_filth = Filth::Clean;
}
(true, false) => {
db.emplace(
self.code_hash.clone(),
DBValue::from_slice(&*self.code_cache),
);
self.code_size = Some(self.code_cache.len());
self.code_filth = Filth::Clean;
}
(false, _) => {}
}
}
/// Export to RLP.
pub fn rlp(&self) -> Bytes {
let mut stream = RlpStream::new_list(4);
stream.append(&self.nonce);
stream.append(&self.balance);
stream.append(&self.storage_root);
stream.append(&self.code_hash);
stream.out()
}
/// Clone basic account data
pub fn clone_basic(&self) -> Account {
Account {
balance: self.balance.clone(),
nonce: self.nonce.clone(),
storage_root: self.storage_root.clone(),
storage_cache: Self::empty_storage_cache(),
original_storage_cache: self
.original_storage_cache
.as_ref()
.map(|(r, _)| (*r, Self::empty_storage_cache())),
storage_changes: HashMap::new(),
code_hash: self.code_hash.clone(),
code_size: self.code_size.clone(),
code_cache: self.code_cache.clone(),
code_filth: self.code_filth,
address_hash: self.address_hash.clone(),
}
}
/// Clone account data and dirty storage keys
pub fn clone_dirty(&self) -> Account {
let mut account = self.clone_basic();
account.storage_changes = self.storage_changes.clone();
account
}
/// Clone account data, dirty storage keys and cached storage keys.
pub fn clone_all(&self) -> Account {
let mut account = self.clone_dirty();
account.storage_cache = self.storage_cache.clone();
account.original_storage_cache = self.original_storage_cache.clone();
account
}
/// Replace self with the data from other account merging storage cache.
/// Basic account data and all modifications are overwritten
/// with new values.
pub fn overwrite_with(&mut self, other: Account) {
self.balance = other.balance;
self.nonce = other.nonce;
self.code_hash = other.code_hash;
self.code_filth = other.code_filth;
self.code_cache = other.code_cache;
self.code_size = other.code_size;
self.address_hash = other.address_hash;
if self.storage_root == other.storage_root {
let mut cache = self.storage_cache.borrow_mut();
for (k, v) in other.storage_cache.into_inner() {
cache.insert(k, v);
}
} else {
self.storage_cache = other.storage_cache;
}
self.original_storage_cache = other.original_storage_cache;
self.storage_root = other.storage_root;
self.storage_changes = other.storage_changes;
}
}
// light client storage proof.
impl Account {
/// Prove a storage key's existence or nonexistence in the account's storage
/// trie.
/// `storage_key` is the hash of the desired storage key, meaning
/// this will only work correctly under a secure trie.
pub fn prove_storage(
&self,
db: &HashDB,
storage_key: H256,
) -> TrieResult<(Vec, H256)> {
let mut recorder = Recorder::new();
let trie = TrieDB::new(&db, &self.storage_root)?;
let item: U256 = {
let panicky_decoder =
|bytes: &[u8]| ::rlp::decode(bytes).expect("decoding db value failed");
let query = (&mut recorder, panicky_decoder);
trie.get_with(&storage_key, query)?
.unwrap_or_else(U256::zero)
};
Ok((
recorder.drain().into_iter().map(|r| r.data).collect(),
item.into(),
))
}
}
impl fmt::Debug for Account {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Account")
.field("balance", &self.balance)
.field("nonce", &self.nonce)
.field("code", &self.code())
.field(
"storage",
&self.storage_changes.iter().collect::>(),
)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
use account_db::*;
use bytes::Bytes;
use ethereum_types::{Address, H256};
use journaldb::new_memory_db;
use rlp_compress::{compress, decompress, snapshot_swapper};
#[test]
fn account_compress() {
let raw = Account::new_basic(2.into(), 4.into()).rlp();
let compact_vec = compress(&raw, snapshot_swapper());
assert!(raw.len() > compact_vec.len());
let again_raw = decompress(&compact_vec, snapshot_swapper());
assert_eq!(raw, again_raw.into_vec());
}
#[test]
fn storage_at() {
let mut db = new_memory_db();
let mut db = AccountDBMut::new(&mut db, &Address::new());
let rlp = {
let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP);
a.set_storage(0x00u64.into(), 0x1234u64.into());
a.commit_storage(&Default::default(), &mut db).unwrap();
a.init_code(vec![]);
a.commit_code(&mut db);
a.rlp()
};
let a = Account::from_rlp(&rlp).expect("decoding db value failed");
assert_eq!(
a.storage_root().unwrap(),
"c57e1afb758b07f8d2c8f13a3b6e44fa5ff94ab266facc5a4fd3f062426e50b2".into()
);
assert_eq!(
a.storage_at(&db.immutable(), &0x00u64.into()).unwrap(),
0x1234u64.into()
);
assert_eq!(
a.storage_at(&db.immutable(), &0x01u64.into()).unwrap(),
H256::default()
);
}
#[test]
fn note_code() {
let mut db = new_memory_db();
let mut db = AccountDBMut::new(&mut db, &Address::new());
let rlp = {
let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP);
a.init_code(vec![0x55, 0x44, 0xffu8]);
a.commit_code(&mut db);
a.rlp()
};
let mut a = Account::from_rlp(&rlp).expect("decoding db value failed");
assert!(a.cache_code(&db.immutable()).is_some());
let mut a = Account::from_rlp(&rlp).expect("decoding db value failed");
assert_eq!(a.note_code(vec![0x55, 0x44, 0xffu8]), Ok(()));
}
#[test]
fn commit_storage() {
let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP);
let mut db = new_memory_db();
let mut db = AccountDBMut::new(&mut db, &Address::new());
a.set_storage(0.into(), 0x1234.into());
assert_eq!(a.storage_root(), None);
a.commit_storage(&Default::default(), &mut db).unwrap();
assert_eq!(
a.storage_root().unwrap(),
"c57e1afb758b07f8d2c8f13a3b6e44fa5ff94ab266facc5a4fd3f062426e50b2".into()
);
}
#[test]
fn commit_remove_commit_storage() {
let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP);
let mut db = new_memory_db();
let mut db = AccountDBMut::new(&mut db, &Address::new());
a.set_storage(0.into(), 0x1234.into());
a.commit_storage(&Default::default(), &mut db).unwrap();
a.set_storage(1.into(), 0x1234.into());
a.commit_storage(&Default::default(), &mut db).unwrap();
a.set_storage(1.into(), 0.into());
a.commit_storage(&Default::default(), &mut db).unwrap();
assert_eq!(
a.storage_root().unwrap(),
"c57e1afb758b07f8d2c8f13a3b6e44fa5ff94ab266facc5a4fd3f062426e50b2".into()
);
}
#[test]
fn commit_code() {
let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP);
let mut db = new_memory_db();
let mut db = AccountDBMut::new(&mut db, &Address::new());
a.init_code(vec![0x55, 0x44, 0xffu8]);
assert_eq!(a.code_filth, Filth::Dirty);
assert_eq!(a.code_size(), Some(3));
a.commit_code(&mut db);
assert_eq!(
a.code_hash(),
"af231e631776a517ca23125370d542873eca1fb4d613ed9b5d5335a46ae5b7eb".into()
);
}
#[test]
fn reset_code() {
let mut a = Account::new_contract(69.into(), 0.into(), KECCAK_NULL_RLP);
let mut db = new_memory_db();
let mut db = AccountDBMut::new(&mut db, &Address::new());
a.init_code(vec![0x55, 0x44, 0xffu8]);
assert_eq!(a.code_filth, Filth::Dirty);
a.commit_code(&mut db);
assert_eq!(a.code_filth, Filth::Clean);
assert_eq!(
a.code_hash(),
"af231e631776a517ca23125370d542873eca1fb4d613ed9b5d5335a46ae5b7eb".into()
);
a.reset_code(vec![0x55]);
assert_eq!(a.code_filth, Filth::Dirty);
a.commit_code(&mut db);
assert_eq!(
a.code_hash(),
"37bf2238b11b68cdc8382cece82651b59d3c3988873b6e0f33d79694aa45f1be".into()
);
}
#[test]
fn rlpio() {
let a = Account::new(69u8.into(), 0u8.into(), HashMap::new(), Bytes::new());
let b = Account::from_rlp(&a.rlp()).unwrap();
assert_eq!(a.balance(), b.balance());
assert_eq!(a.nonce(), b.nonce());
assert_eq!(a.code_hash(), b.code_hash());
assert_eq!(a.storage_root(), b.storage_root());
}
#[test]
fn new_account() {
let a = Account::new(69u8.into(), 0u8.into(), HashMap::new(), Bytes::new());
assert_eq!(a.rlp().to_hex(), "f8448045a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a0c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470");
assert_eq!(*a.balance(), 69u8.into());
assert_eq!(*a.nonce(), 0u8.into());
assert_eq!(a.code_hash(), KECCAK_EMPTY);
assert_eq!(a.storage_root().unwrap(), KECCAK_NULL_RLP);
}
}