// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . use ethkey::{Public, Secret, Random, Generator, math}; use bigint::prelude::U256; use bigint::hash::H256; use hash::keccak; use key_server_cluster::Error; /// Encryption result. #[derive(Debug)] pub struct EncryptedSecret { /// Common encryption point. pub common_point: Public, /// Ecnrypted point. pub encrypted_point: Public, } /// Generate random scalar pub fn generate_random_scalar() -> Result { Ok(Random.generate()?.secret().clone()) } /// Generate random point pub fn generate_random_point() -> Result { Ok(Random.generate()?.public().clone()) } /// Compute publics sum. pub fn compute_public_sum<'a, I>(mut publics: I) -> Result where I: Iterator { let mut sum = publics.next().expect("compute_public_sum is called when there's at least one public; qed").clone(); while let Some(public) = publics.next() { math::public_add(&mut sum, &public)?; } Ok(sum) } /// Compute secrets sum. pub fn compute_secret_sum<'a, I>(mut secrets: I) -> Result where I: Iterator { let mut sum = secrets.next().expect("compute_secret_sum is called when there's at least one secret; qed").clone(); while let Some(secret) = secrets.next() { sum.add(secret)?; } Ok(sum) } /// Compute secrets 'shadow' multiplication: coeff * multiplication(s[j] / (s[i] - s[j])) for every i != j pub fn compute_shadow_mul<'a, I>(coeff: &Secret, self_secret: &Secret, mut other_secrets: I) -> Result where I: Iterator { // when there are no other secrets, only coeff is left let other_secret = match other_secrets.next() { Some(other_secret) => other_secret, None => return Ok(coeff.clone()), }; let mut shadow_mul = self_secret.clone(); shadow_mul.sub(other_secret)?; shadow_mul.inv()?; shadow_mul.mul(other_secret)?; while let Some(other_secret) = other_secrets.next() { let mut shadow_mul_element = self_secret.clone(); shadow_mul_element.sub(other_secret)?; shadow_mul_element.inv()?; shadow_mul_element.mul(other_secret)?; shadow_mul.mul(&shadow_mul_element)?; } shadow_mul.mul(coeff)?; Ok(shadow_mul) } /// Update point by multiplying to random scalar pub fn update_random_point(point: &mut Public) -> Result<(), Error> { Ok(math::public_mul_secret(point, &generate_random_scalar()?)?) } /// Generate random polynom of threshold degree pub fn generate_random_polynom(threshold: usize) -> Result, Error> { (0..threshold + 1) .map(|_| generate_random_scalar()) .collect() } /// Compute absolute term of additional polynom1 when new node is added to the existing generation node set #[cfg(test)] pub fn compute_additional_polynom1_absolute_term<'a, I>(secret_values: I) -> Result where I: Iterator { let mut absolute_term = compute_secret_sum(secret_values)?; absolute_term.neg()?; Ok(absolute_term) } /// Add two polynoms together (coeff = coeff1 + coeff2). #[cfg(test)] pub fn add_polynoms(polynom1: &[Secret], polynom2: &[Secret], is_absolute_term2_zero: bool) -> Result, Error> { polynom1.iter().zip(polynom2.iter()) .enumerate() .map(|(i, (c1, c2))| { let mut sum_coeff = c1.clone(); if !is_absolute_term2_zero || i != 0 { sum_coeff.add(c2)?; } Ok(sum_coeff) }) .collect() } /// Compute value of polynom, using `node_number` as argument pub fn compute_polynom(polynom: &[Secret], node_number: &Secret) -> Result { debug_assert!(!polynom.is_empty()); let mut result = polynom[0].clone(); for i in 1..polynom.len() { // calculate pow(node_number, i) let mut appendum = node_number.clone(); appendum.pow(i)?; // calculate coeff * pow(point, i) appendum.mul(&polynom[i])?; // calculate result + coeff * pow(point, i) result.add(&appendum)?; } Ok(result) } /// Generate public keys for other participants. pub fn public_values_generation(threshold: usize, derived_point: &Public, polynom1: &[Secret], polynom2: &[Secret]) -> Result, Error> { debug_assert_eq!(polynom1.len(), threshold + 1); debug_assert_eq!(polynom2.len(), threshold + 1); // compute t+1 public values let mut publics = Vec::with_capacity(threshold + 1); for i in 0..threshold + 1 { let coeff1 = &polynom1[i]; let mut multiplication1 = math::generation_point(); math::public_mul_secret(&mut multiplication1, &coeff1)?; let coeff2 = &polynom2[i]; let mut multiplication2 = derived_point.clone(); math::public_mul_secret(&mut multiplication2, &coeff2)?; math::public_add(&mut multiplication1, &multiplication2)?; publics.push(multiplication1); } debug_assert_eq!(publics.len(), threshold + 1); Ok(publics) } /// Check keys passed by other participants. pub fn keys_verification(threshold: usize, derived_point: &Public, number_id: &Secret, secret1: &Secret, secret2: &Secret, publics: &[Public]) -> Result { // calculate left part let mut multiplication1 = math::generation_point(); math::public_mul_secret(&mut multiplication1, secret1)?; let mut multiplication2 = derived_point.clone(); math::public_mul_secret(&mut multiplication2, secret2)?; math::public_add(&mut multiplication1, &multiplication2)?; let left = multiplication1; // calculate right part let mut right = publics[0].clone(); for i in 1..threshold + 1 { let mut secret_pow = number_id.clone(); secret_pow.pow(i)?; let mut public_k = publics[i].clone(); math::public_mul_secret(&mut public_k, &secret_pow)?; math::public_add(&mut right, &public_k)?; } Ok(left == right) } /// Check refreshed keys passed by other participants. #[cfg(test)] pub fn refreshed_keys_verification(threshold: usize, number_id: &Secret, secret1: &Secret, publics: &[Public]) -> Result { // calculate left part let mut left = math::generation_point(); math::public_mul_secret(&mut left, secret1)?; // calculate right part let mut right = publics[0].clone(); for i in 1..threshold + 1 { let mut secret_pow = number_id.clone(); secret_pow.pow(i)?; let mut public_k = publics[i].clone(); math::public_mul_secret(&mut public_k, &secret_pow)?; math::public_add(&mut right, &public_k)?; } Ok(left == right) } /// Compute secret share. pub fn compute_secret_share<'a, I>(secret_values: I) -> Result where I: Iterator { compute_secret_sum(secret_values) } /// Compute public key share. pub fn compute_public_share(self_secret_value: &Secret) -> Result { let mut public_share = math::generation_point(); math::public_mul_secret(&mut public_share, self_secret_value)?; Ok(public_share) } /// Compute joint public key. pub fn compute_joint_public<'a, I>(public_shares: I) -> Result where I: Iterator { compute_public_sum(public_shares) } /// Compute joint secret key. #[cfg(test)] pub fn compute_joint_secret<'a, I>(secret_coeffs: I) -> Result where I: Iterator { compute_secret_sum(secret_coeffs) } /// Encrypt secret with joint public key. pub fn encrypt_secret(secret: &Public, joint_public: &Public) -> Result { // this is performed by KS-cluster client (or KS master) let key_pair = Random.generate()?; // k * T let mut common_point = math::generation_point(); math::public_mul_secret(&mut common_point, key_pair.secret())?; // M + k * y let mut encrypted_point = joint_public.clone(); math::public_mul_secret(&mut encrypted_point, key_pair.secret())?; math::public_add(&mut encrypted_point, secret)?; Ok(EncryptedSecret { common_point: common_point, encrypted_point: encrypted_point, }) } /// Compute shadow for the node. pub fn compute_node_shadow<'a, I>(node_secret_share: &Secret, node_number: &Secret, other_nodes_numbers: I) -> Result where I: Iterator { compute_shadow_mul(node_secret_share, node_number, other_nodes_numbers) } /// Compute shadow point for the node. pub fn compute_node_shadow_point(access_key: &Secret, common_point: &Public, node_shadow: &Secret, decrypt_shadow: Option) -> Result<(Public, Option), Error> { let mut shadow_key = node_shadow.clone(); let decrypt_shadow = match decrypt_shadow { None => None, Some(mut decrypt_shadow) => { // update shadow key shadow_key.mul(&decrypt_shadow)?; // now udate decrypt shadow itself decrypt_shadow.dec()?; decrypt_shadow.mul(node_shadow)?; Some(decrypt_shadow) } }; shadow_key.mul(access_key)?; let mut node_shadow_point = common_point.clone(); math::public_mul_secret(&mut node_shadow_point, &shadow_key)?; Ok((node_shadow_point, decrypt_shadow)) } /// Compute joint shadow point. pub fn compute_joint_shadow_point<'a, I>(nodes_shadow_points: I) -> Result where I: Iterator { compute_public_sum(nodes_shadow_points) } /// Compute joint shadow point (version for tests). #[cfg(test)] pub fn compute_joint_shadow_point_test<'a, I>(access_key: &Secret, common_point: &Public, nodes_shadows: I) -> Result where I: Iterator { let mut joint_shadow = compute_secret_sum(nodes_shadows)?; joint_shadow.mul(access_key)?; let mut joint_shadow_point = common_point.clone(); math::public_mul_secret(&mut joint_shadow_point, &joint_shadow)?; Ok(joint_shadow_point) } /// Decrypt data using joint shadow point. pub fn decrypt_with_joint_shadow(threshold: usize, access_key: &Secret, encrypted_point: &Public, joint_shadow_point: &Public) -> Result { let mut inv_access_key = access_key.clone(); inv_access_key.inv()?; let mut mul = joint_shadow_point.clone(); math::public_mul_secret(&mut mul, &inv_access_key)?; let mut decrypted_point = encrypted_point.clone(); if threshold % 2 != 0 { math::public_add(&mut decrypted_point, &mul)?; } else { math::public_sub(&mut decrypted_point, &mul)?; } Ok(decrypted_point) } /// Prepare common point for shadow decryption. pub fn make_common_shadow_point(threshold: usize, mut common_point: Public) -> Result { if threshold % 2 != 1 { Ok(common_point) } else { math::public_negate(&mut common_point)?; Ok(common_point) } } /// Decrypt shadow-encrypted secret. #[cfg(test)] pub fn decrypt_with_shadow_coefficients(mut decrypted_shadow: Public, mut common_shadow_point: Public, shadow_coefficients: Vec) -> Result { let shadow_coefficients_sum = compute_secret_sum(shadow_coefficients.iter())?; math::public_mul_secret(&mut common_shadow_point, &shadow_coefficients_sum)?; math::public_add(&mut decrypted_shadow, &common_shadow_point)?; Ok(decrypted_shadow) } /// Decrypt data using joint secret (version for tests). #[cfg(test)] pub fn decrypt_with_joint_secret(encrypted_point: &Public, common_point: &Public, joint_secret: &Secret) -> Result { let mut common_point_mul = common_point.clone(); math::public_mul_secret(&mut common_point_mul, joint_secret)?; let mut decrypted_point = encrypted_point.clone(); math::public_sub(&mut decrypted_point, &common_point_mul)?; Ok(decrypted_point) } /// Combine message hash with public key X coordinate. pub fn combine_message_hash_with_public(message_hash: &H256, public: &Public) -> Result { // buffer is just [message_hash | public.x] let mut buffer = [0; 64]; buffer[0..32].copy_from_slice(&message_hash[0..32]); buffer[32..64].copy_from_slice(&public[0..32]); // calculate hash of buffer let hash = keccak(&buffer[..]); // map hash to EC finite field value let hash: U256 = hash.into(); let hash: H256 = (hash % math::curve_order()).into(); let hash = Secret::from_slice(&*hash); hash.check_validity()?; Ok(hash) } /// Compute signature share. pub fn compute_signature_share<'a, I>(threshold: usize, combined_hash: &Secret, one_time_secret_coeff: &Secret, node_secret_share: &Secret, node_number: &Secret, other_nodes_numbers: I) -> Result where I: Iterator { let mut sum = one_time_secret_coeff.clone(); let mut subtrahend = compute_shadow_mul(combined_hash, node_number, other_nodes_numbers)?; subtrahend.mul(node_secret_share)?; if threshold % 2 == 0 { sum.sub(&subtrahend)?; } else { sum.add(&subtrahend)?; } Ok(sum) } /// Check signature share. pub fn _check_signature_share<'a, I>(_combined_hash: &Secret, _signature_share: &Secret, _public_share: &Public, _one_time_public_share: &Public, _node_numbers: I) -> Result where I: Iterator { // TODO: in paper partial signature is checked using comparison: // sig[i] * T = r[i] - c * lagrange_coeff(i) * y[i] // => (k[i] - c * lagrange_coeff(i) * s[i]) * T = r[i] - c * lagrange_coeff(i) * y[i] // => k[i] * T - c * lagrange_coeff(i) * s[i] * T = k[i] * T - c * lagrange_coeff(i) * y[i] // => this means that y[i] = s[i] * T // but when verifying signature (for t = 1), nonce public (r) is restored using following expression: // r = (sig[0] + sig[1]) * T - c * y // r = (k[0] - c * lagrange_coeff(0) * s[0] + k[1] - c * lagrange_coeff(1) * s[1]) * T - c * y // r = (k[0] + k[1]) * T - c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T - c * y // r = r - c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T - c * y // => -c * y = c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T // => -y = (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T // => y[i] != s[i] * T // => some other way is required Ok(true) } /// Compute signature. pub fn compute_signature<'a, I>(signature_shares: I) -> Result where I: Iterator { compute_secret_sum(signature_shares) } /// Locally compute Schnorr signature as described in https://en.wikipedia.org/wiki/Schnorr_signature#Signing. #[cfg(test)] pub fn local_compute_signature(nonce: &Secret, secret: &Secret, message_hash: &Secret) -> Result<(Secret, Secret), Error> { let mut nonce_public = math::generation_point(); math::public_mul_secret(&mut nonce_public, &nonce).unwrap(); let combined_hash = combine_message_hash_with_public(message_hash, &nonce_public)?; let mut sig_subtrahend = combined_hash.clone(); sig_subtrahend.mul(secret)?; let mut sig = nonce.clone(); sig.sub(&sig_subtrahend)?; Ok((combined_hash, sig)) } /// Verify signature as described in https://en.wikipedia.org/wiki/Schnorr_signature#Verifying. #[cfg(test)] pub fn verify_signature(public: &Public, signature: &(Secret, Secret), message_hash: &H256) -> Result { let mut addendum = math::generation_point(); math::public_mul_secret(&mut addendum, &signature.1)?; let mut nonce_public = public.clone(); math::public_mul_secret(&mut nonce_public, &signature.0)?; math::public_add(&mut nonce_public, &addendum)?; let combined_hash = combine_message_hash_with_public(message_hash, &nonce_public)?; Ok(combined_hash == signature.0) } #[cfg(test)] pub mod tests { use std::iter::once; use ethkey::KeyPair; use super::*; #[derive(Clone)] struct KeyGenerationArtifacts { id_numbers: Vec, polynoms1: Vec>, secrets1: Vec>, public_shares: Vec, secret_shares: Vec, joint_public: Public, } fn run_key_generation(t: usize, n: usize, id_numbers: Option>) -> KeyGenerationArtifacts { // === PART1: DKG === // data, gathered during initialization let derived_point = Random.generate().unwrap().public().clone(); let id_numbers: Vec<_> = match id_numbers { Some(id_numbers) => id_numbers, None => (0..n).map(|_| generate_random_scalar().unwrap()).collect(), }; // data, generated during keys dissemination let polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect(); let secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms1[i], &id_numbers[j]).unwrap()).collect::>()).collect(); // following data is used only on verification step let polynoms2: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect(); let secrets2: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms2[i], &id_numbers[j]).unwrap()).collect::>()).collect(); let publics: Vec<_> = (0..n).map(|i| public_values_generation(t, &derived_point, &polynoms1[i], &polynoms2[i]).unwrap()).collect(); // keys verification (0..n).map(|i| (0..n).map(|j| if i != j { assert!(keys_verification(t, &derived_point, &id_numbers[i], &secrets1[j][i], &secrets2[j][i], &publics[j]).unwrap()); }).collect::>()).collect::>(); // data, generated during keys generation let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&polynoms1[i][0]).unwrap()).collect(); let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(secrets1.iter().map(|s| &s[i])).unwrap()).collect(); // joint public key, as a result of DKG let joint_public = compute_joint_public(public_shares.iter()).unwrap(); KeyGenerationArtifacts { id_numbers: id_numbers, polynoms1: polynoms1, secrets1: secrets1, public_shares: public_shares, secret_shares: secret_shares, joint_public: joint_public, } } fn run_key_share_refreshing(t: usize, n: usize, artifacts: &KeyGenerationArtifacts) -> KeyGenerationArtifacts { // === share refreshing protocol from http://www.wu.ece.ufl.edu/mypapers/msig.pdf // key refreshing distribution algorithm (KRD) let refreshed_polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect(); let refreshed_polynoms1_sum: Vec<_> = (0..n).map(|i| add_polynoms(&artifacts.polynoms1[i], &refreshed_polynoms1[i], true).unwrap()).collect(); let refreshed_secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&refreshed_polynoms1_sum[i], &artifacts.id_numbers[j]).unwrap()).collect::>()).collect(); let refreshed_publics: Vec<_> = (0..n).map(|i| { (0..t+1).map(|j| compute_public_share(&refreshed_polynoms1_sum[i][j]).unwrap()).collect::>() }).collect(); // key refreshing verification algorithm (KRV) (0..n).map(|i| (0..n).map(|j| if i != j { assert!(refreshed_keys_verification(t, &artifacts.id_numbers[i], &refreshed_secrets1[j][i], &refreshed_publics[j]).unwrap()) }).collect::>()).collect::>(); // data, generated during keys generation let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&refreshed_polynoms1_sum[i][0]).unwrap()).collect(); let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(refreshed_secrets1.iter().map(|s| &s[i])).unwrap()).collect(); // joint public key, as a result of DKG let joint_public = compute_joint_public(public_shares.iter()).unwrap(); KeyGenerationArtifacts { id_numbers: artifacts.id_numbers.clone(), polynoms1: refreshed_polynoms1_sum, secrets1: refreshed_secrets1, public_shares: public_shares, secret_shares: secret_shares, joint_public: joint_public, } } fn run_key_share_refreshing_and_add_new_nodes(t: usize, n: usize, new_nodes: usize, artifacts: &KeyGenerationArtifacts) -> KeyGenerationArtifacts { // === share refreshing protocol (with new node addition) from http://www.wu.ece.ufl.edu/mypapers/msig.pdf let mut id_numbers: Vec<_> = artifacts.id_numbers.iter().cloned().collect(); // key refreshing distribution algorithm (KRD) // for each new node: generate random polynom let refreshed_polynoms1: Vec<_> = (0..n).map(|_| (0..new_nodes).map(|_| generate_random_polynom(t).unwrap()).collect::>()).collect(); let mut refreshed_polynoms1_sum: Vec<_> = (0..n).map(|i| { let mut refreshed_polynom1_sum = artifacts.polynoms1[i].clone(); for refreshed_polynom1 in &refreshed_polynoms1[i] { refreshed_polynom1_sum = add_polynoms(&refreshed_polynom1_sum, refreshed_polynom1, false).unwrap(); } refreshed_polynom1_sum }).collect(); // new nodes receiving private information and generates its own polynom let mut new_nodes_polynom1 = Vec::with_capacity(new_nodes); for i in 0..new_nodes { let mut new_polynom1 = generate_random_polynom(t).unwrap(); let new_polynom_absolute_term = compute_additional_polynom1_absolute_term(refreshed_polynoms1.iter().map(|polynom1| &polynom1[i][0])).unwrap(); new_polynom1[0] = new_polynom_absolute_term; new_nodes_polynom1.push(new_polynom1); } // new nodes sends its own information to all other nodes let n = n + new_nodes; id_numbers.extend((0..new_nodes).map(|_| Random.generate().unwrap().secret().clone())); refreshed_polynoms1_sum.extend(new_nodes_polynom1); // the rest of protocol is the same as without new node let refreshed_secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&refreshed_polynoms1_sum[i], &id_numbers[j]).unwrap()).collect::>()).collect(); let refreshed_publics: Vec<_> = (0..n).map(|i| { (0..t+1).map(|j| compute_public_share(&refreshed_polynoms1_sum[i][j]).unwrap()).collect::>() }).collect(); // key refreshing verification algorithm (KRV) (0..n).map(|i| (0..n).map(|j| if i != j { assert!(refreshed_keys_verification(t, &id_numbers[i], &refreshed_secrets1[j][i], &refreshed_publics[j]).unwrap()) }).collect::>()).collect::>(); // data, generated during keys generation let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&refreshed_polynoms1_sum[i][0]).unwrap()).collect(); let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(refreshed_secrets1.iter().map(|s| &s[i])).unwrap()).collect(); // joint public key, as a result of DKG let joint_public = compute_joint_public(public_shares.iter()).unwrap(); KeyGenerationArtifacts { id_numbers: id_numbers, polynoms1: refreshed_polynoms1_sum, secrets1: refreshed_secrets1, public_shares: public_shares, secret_shares: secret_shares, joint_public: joint_public, } } pub fn do_encryption_and_decryption(t: usize, joint_public: &Public, id_numbers: &[Secret], secret_shares: &[Secret], joint_secret: Option<&Secret>, document_secret_plain: Public) -> (Public, Public) { // === PART2: encryption using joint public key === // the next line is executed on KeyServer-client let encrypted_secret = encrypt_secret(&document_secret_plain, &joint_public).unwrap(); // === PART3: decryption === // next line is executed on KeyServer client let access_key = generate_random_scalar().unwrap(); // use t + 1 nodes to compute joint shadow point let nodes_shadows: Vec<_> = (0..t + 1).map(|i| compute_node_shadow(&secret_shares[i], &id_numbers[i], id_numbers.iter() .enumerate() .filter(|&(j, _)| j != i) .take(t) .map(|(_, id_number)| id_number)).unwrap()).collect(); let nodes_shadow_points: Vec<_> = nodes_shadows.iter() .map(|s| compute_node_shadow_point(&access_key, &encrypted_secret.common_point, s, None).unwrap()) .map(|sp| sp.0) .collect(); assert_eq!(nodes_shadows.len(), t + 1); assert_eq!(nodes_shadow_points.len(), t + 1); let joint_shadow_point = compute_joint_shadow_point(nodes_shadow_points.iter()).unwrap(); let joint_shadow_point_test = compute_joint_shadow_point_test(&access_key, &encrypted_secret.common_point, nodes_shadows.iter()).unwrap(); assert_eq!(joint_shadow_point, joint_shadow_point_test); // decrypt encrypted secret using joint shadow point let document_secret_decrypted = decrypt_with_joint_shadow(t, &access_key, &encrypted_secret.encrypted_point, &joint_shadow_point).unwrap(); // decrypt encrypted secret using joint secret [just for test] let document_secret_decrypted_test = match joint_secret { Some(joint_secret) => decrypt_with_joint_secret(&encrypted_secret.encrypted_point, &encrypted_secret.common_point, joint_secret).unwrap(), None => document_secret_decrypted.clone(), }; (document_secret_decrypted, document_secret_decrypted_test) } #[test] fn full_encryption_math_session() { let test_cases = [(0, 2), (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10)]; for &(t, n) in &test_cases { let artifacts = run_key_generation(t, n, None); // compute joint private key [just for test] let joint_secret = compute_joint_secret(artifacts.polynoms1.iter().map(|p| &p[0])).unwrap(); let joint_key_pair = KeyPair::from_secret(joint_secret.clone()).unwrap(); assert_eq!(&artifacts.joint_public, joint_key_pair.public()); // check secret shares computation [just for test] let secret_shares_polynom: Vec<_> = (0..t + 1).map(|k| compute_secret_share(artifacts.polynoms1.iter().map(|p| &p[k])).unwrap()).collect(); let secret_shares_calculated_from_polynom: Vec<_> = artifacts.id_numbers.iter().map(|id_number| compute_polynom(&*secret_shares_polynom, id_number).unwrap()).collect(); assert_eq!(artifacts.secret_shares, secret_shares_calculated_from_polynom); // now encrypt and decrypt data let document_secret_plain = generate_random_point().unwrap(); let (document_secret_decrypted, document_secret_decrypted_test) = do_encryption_and_decryption(t, &artifacts.joint_public, &artifacts.id_numbers, &artifacts.secret_shares, Some(&joint_secret), document_secret_plain.clone()); assert_eq!(document_secret_plain, document_secret_decrypted_test); assert_eq!(document_secret_plain, document_secret_decrypted); } } #[test] fn local_signature_works() { let key_pair = Random.generate().unwrap(); let message_hash = "0000000000000000000000000000000000000000000000000000000000000042".parse().unwrap(); let nonce = generate_random_scalar().unwrap(); let signature = local_compute_signature(&nonce, key_pair.secret(), &message_hash).unwrap(); assert_eq!(verify_signature(key_pair.public(), &signature, &message_hash), Ok(true)); } #[test] fn full_signature_math_session() { let test_cases = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10)]; for &(t, n) in &test_cases { // hash of the message to be signed let message_hash: Secret = "0000000000000000000000000000000000000000000000000000000000000042".parse().unwrap(); // === MiDS-S algorithm === // setup: all nodes share master secret key && every node knows master public key let artifacts = run_key_generation(t, n, None); // in this gap (not related to math): // master node should ask every other node if it is able to do a signing // if there are < than t+1 nodes, able to sign => error // select t+1 nodes for signing session // all steps below are for this subset of nodes let n = t + 1; // step 1: run DKG to generate one-time secret key (nonce) let id_numbers = artifacts.id_numbers.iter().cloned().take(n).collect(); let one_time_artifacts = run_key_generation(t, n, Some(id_numbers)); // step 2: message hash && x coordinate of one-time public value are combined let combined_hash = combine_message_hash_with_public(&message_hash, &one_time_artifacts.joint_public).unwrap(); // step 3: compute signature shares let partial_signatures: Vec<_> = (0..n) .map(|i| compute_signature_share( t, &combined_hash, &one_time_artifacts.polynoms1[i][0], &artifacts.secret_shares[i], &artifacts.id_numbers[i], artifacts.id_numbers.iter() .enumerate() .filter(|&(j, _)| i != j) .map(|(_, n)| n) .take(t) ).unwrap()) .collect(); // step 4: receive and verify signatures shares from other nodes let received_signatures: Vec> = (0..n) .map(|i| (0..n) .filter(|j| i != *j) .map(|j| { let signature_share = partial_signatures[j].clone(); assert!(_check_signature_share(&combined_hash, &signature_share, &artifacts.public_shares[j], &one_time_artifacts.public_shares[j], artifacts.id_numbers.iter().take(t)).unwrap_or(false)); signature_share }) .collect()) .collect(); // step 5: compute signature let signatures: Vec<_> = (0..n) .map(|i| (combined_hash.clone(), compute_signature(received_signatures[i].iter().chain(once(&partial_signatures[i]))).unwrap())) .collect(); // === verify signature === let master_secret = compute_joint_secret(artifacts.polynoms1.iter().map(|p| &p[0])).unwrap(); let nonce = compute_joint_secret(one_time_artifacts.polynoms1.iter().map(|p| &p[0])).unwrap(); let local_signature = local_compute_signature(&nonce, &master_secret, &message_hash).unwrap(); for signature in &signatures { assert_eq!(signature, &local_signature); assert_eq!(verify_signature(&artifacts.joint_public, signature, &message_hash), Ok(true)); } } } #[test] fn full_generation_math_session_with_refreshing_shares() { // generate key using 6-of-10 session let (t, n) = (5, 10); let artifacts1 = run_key_generation(t, n, None); // let's say we want to refresh existing secret shares // by doing this every T seconds, and assuming that in each T-second period adversary KS is not able to collect t+1 secret shares // we can be sure that the scheme is secure let artifacts2 = run_key_share_refreshing(t, n, &artifacts1); assert_eq!(artifacts1.joint_public, artifacts2.joint_public); // refresh again let artifacts3 = run_key_share_refreshing(t, n, &artifacts2); assert_eq!(artifacts1.joint_public, artifacts3.joint_public); } #[test] fn full_generation_math_session_with_adding_new_nodes() { // generate key using 6-of-10 session let (t, n) = (5, 10); let artifacts1 = run_key_generation(t, n, None); // let's say we want to include additional server to the set // so that scheme becames 6-of-11 let artifacts2 = run_key_share_refreshing_and_add_new_nodes(t, n, 1, &artifacts1); assert_eq!(artifacts1.joint_public, artifacts2.joint_public); // include another couple of servers (6-of-13) let artifacts3 = run_key_share_refreshing_and_add_new_nodes(t, n + 1, 2, &artifacts2); assert_eq!(artifacts1.joint_public, artifacts3.joint_public); } }