// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . use std::collections::BTreeSet; use std::sync::Arc; use parking_lot::{Mutex, Condvar}; use ethkey::{Public, Secret, Signature}; use util::H256; use key_server_cluster::{Error, NodeId, SessionId, SessionMeta, AclStorage, DocumentKeyShare}; use key_server_cluster::cluster::{Cluster}; use key_server_cluster::cluster_sessions::ClusterSession; use key_server_cluster::generation_session::{SessionImpl as GenerationSession, SessionParams as GenerationSessionParams, Session as GenerationSessionApi, SessionState as GenerationSessionState}; use key_server_cluster::message::{Message, SigningMessage, SigningConsensusMessage, SigningGenerationMessage, RequestPartialSignature, PartialSignature, SigningSessionCompleted, GenerationMessage, ConsensusMessage, SigningSessionError, InitializeConsensusSession, ConfirmConsensusInitialization}; use key_server_cluster::jobs::job_session::JobTransport; use key_server_cluster::jobs::signing_job::{PartialSigningRequest, PartialSigningResponse, SigningJob}; use key_server_cluster::jobs::consensus_session::{ConsensusSessionParams, ConsensusSessionState, ConsensusSession}; pub use key_server_cluster::decryption_session::DecryptionSessionId as SigningSessionId; /// Signing session API. pub trait Session: Send + Sync + 'static { /// Wait until session is completed. Returns signed message. fn wait(&self) -> Result<(Secret, Secret), Error>; } /// Distributed signing session. /// Based on "Efficient Multi-Party Digital Signature using Adaptive Secret Sharing for Low-Power Devices in Wireless Network" paper. /// Brief overview: /// 1) initialization: master node (which has received request for signing the message) requests all other nodes to sign the message /// 2) ACL check: all nodes which have received the request are querying ACL-contract to check if requestor has access to the private key /// 3) partial signing: every node which has succussfully checked access for the requestor do a partial signing /// 4) signing: master node receives all partial signatures of the secret and computes the signature pub struct SessionImpl { /// Session core. core: SessionCore, /// Session data. data: Mutex, } /// Immutable session data. struct SessionCore { /// Session metadata. pub meta: SessionMeta, /// Signing session access key. pub access_key: Secret, /// Key share. pub key_share: DocumentKeyShare, /// Cluster which allows this node to send messages to other nodes in the cluster. pub cluster: Arc, /// SessionImpl completion condvar. pub completed: Condvar, } /// Signing consensus session type. type SigningConsensusSession = ConsensusSession; /// Mutable session data. struct SessionData { /// Session state. pub state: SessionState, /// Message hash. pub message_hash: Option, /// Consensus-based signing session. pub consensus_session: SigningConsensusSession, /// Session key generation session. pub generation_session: Option, /// Decryption result. pub result: Option>, } /// Signing session state. #[derive(Debug, PartialEq)] pub enum SessionState { /// State when consensus is establishing. ConsensusEstablishing, /// State when session key is generating. SessionKeyGeneration, /// State when signature is computing. SignatureComputing, } /// Session creation parameters pub struct SessionParams { /// Session metadata. pub meta: SessionMeta, /// Session access key. pub access_key: Secret, /// Key share. pub key_share: DocumentKeyShare, /// ACL storage. pub acl_storage: Arc, /// Cluster pub cluster: Arc, } /// Signing consensus transport. struct SigningConsensusTransport { /// Session id. id: SessionId, /// Session access key. access_key: Secret, /// Cluster. cluster: Arc, } /// Signing key generation transport. struct SessionKeyGenerationTransport { /// Session access key. access_key: Secret, /// Cluster. cluster: Arc, /// Other nodes ids. other_nodes_ids: BTreeSet, } /// Signing job transport struct SigningJobTransport { /// Session id. id: SessionId, //// Session access key. access_key: Secret, /// Cluster. cluster: Arc, } impl SessionImpl { /// Create new signing session. pub fn new(params: SessionParams, requester_signature: Option) -> Result { debug_assert_eq!(params.meta.threshold, params.key_share.threshold); debug_assert_eq!(params.meta.self_node_id == params.meta.master_node_id, requester_signature.is_some()); use key_server_cluster::generation_session::{check_cluster_nodes, check_threshold}; // check nodes and threshold let nodes = params.key_share.id_numbers.keys().cloned().collect(); check_cluster_nodes(¶ms.meta.self_node_id, &nodes)?; check_threshold(params.key_share.threshold, &nodes)?; let consensus_transport = SigningConsensusTransport { id: params.meta.id.clone(), access_key: params.access_key.clone(), cluster: params.cluster.clone(), }; Ok(SessionImpl { core: SessionCore { meta: params.meta.clone(), access_key: params.access_key, key_share: params.key_share, cluster: params.cluster, completed: Condvar::new(), }, data: Mutex::new(SessionData { state: SessionState::ConsensusEstablishing, message_hash: None, consensus_session: match requester_signature { Some(requester_signature) => ConsensusSession::new_on_master(ConsensusSessionParams { meta: params.meta, acl_storage: params.acl_storage.clone(), consensus_transport: consensus_transport, }, requester_signature)?, None => ConsensusSession::new_on_slave(ConsensusSessionParams { meta: params.meta, acl_storage: params.acl_storage.clone(), consensus_transport: consensus_transport, })?, }, generation_session: None, result: None, }), }) } /// Initialize signing session on master node. pub fn initialize(&self, message_hash: H256) -> Result<(), Error> { let mut data = self.data.lock(); data.message_hash = Some(message_hash); data.consensus_session.initialize(self.core.key_share.id_numbers.keys().cloned().collect())?; if data.consensus_session.state() == ConsensusSessionState::ConsensusEstablished { let generation_session = GenerationSession::new(GenerationSessionParams { id: self.core.meta.id.clone(), self_node_id: self.core.meta.self_node_id.clone(), key_storage: None, cluster: Arc::new(SessionKeyGenerationTransport { access_key: self.core.access_key.clone(), cluster: self.core.cluster.clone(), other_nodes_ids: BTreeSet::new() }), }); generation_session.initialize(Public::default(), 0, vec![self.core.meta.self_node_id.clone()].into_iter().collect())?; debug_assert_eq!(generation_session.state(), GenerationSessionState::WaitingForGenerationConfirmation); let joint_public_and_secret = generation_session .joint_public_and_secret() .expect("session key is generated before signature is computed; we are in SignatureComputing state; qed")?; data.generation_session = Some(generation_session); data.state = SessionState::SignatureComputing; self.core.disseminate_jobs(&mut data.consensus_session, joint_public_and_secret.0, joint_public_and_secret.1, message_hash)?; debug_assert!(data.consensus_session.state() == ConsensusSessionState::Finished); data.result = Some(Ok(data.consensus_session.result()?)); self.core.completed.notify_all(); } Ok(()) } /// Process signing message. pub fn process_message(&self, sender: &NodeId, message: &SigningMessage) -> Result<(), Error> { match message { &SigningMessage::SigningConsensusMessage(ref message) => self.on_consensus_message(sender, message), &SigningMessage::SigningGenerationMessage(ref message) => self.on_generation_message(sender, message), &SigningMessage::RequestPartialSignature(ref message) => self.on_partial_signature_requested(sender, message), &SigningMessage::PartialSignature(ref message) => self.on_partial_signature(sender, message), &SigningMessage::SigningSessionError(ref message) => self.on_session_error(sender, message), &SigningMessage::SigningSessionCompleted(ref message) => self.on_session_completed(sender, message), } } /// When consensus-related message is received. pub fn on_consensus_message(&self, sender: &NodeId, message: &SigningConsensusMessage) -> Result<(), Error> { debug_assert!(self.core.meta.id == *message.session); debug_assert!(self.core.access_key == *message.sub_session); debug_assert!(sender != &self.core.meta.self_node_id); let mut data = self.data.lock(); let is_establishing_consensus = data.consensus_session.state() == ConsensusSessionState::EstablishingConsensus; data.consensus_session.on_consensus_message(&sender, &message.message)?; let is_consensus_established = data.consensus_session.state() == ConsensusSessionState::ConsensusEstablished; if self.core.meta.self_node_id != self.core.meta.master_node_id || !is_establishing_consensus || !is_consensus_established { return Ok(()); } let consensus_group = data.consensus_session.select_consensus_group()?.clone(); let mut other_consensus_group_nodes = consensus_group.clone(); other_consensus_group_nodes.remove(&self.core.meta.self_node_id); let generation_session = GenerationSession::new(GenerationSessionParams { id: self.core.meta.id.clone(), self_node_id: self.core.meta.self_node_id.clone(), key_storage: None, cluster: Arc::new(SessionKeyGenerationTransport { access_key: self.core.access_key.clone(), cluster: self.core.cluster.clone(), other_nodes_ids: other_consensus_group_nodes, }), }); generation_session.initialize(Public::default(), self.core.key_share.threshold, consensus_group)?; data.generation_session = Some(generation_session); data.state = SessionState::SessionKeyGeneration; Ok(()) } /// When session key related message is received. pub fn on_generation_message(&self, sender: &NodeId, message: &SigningGenerationMessage) -> Result<(), Error> { debug_assert!(self.core.meta.id == *message.session); debug_assert!(self.core.access_key == *message.sub_session); debug_assert!(sender != &self.core.meta.self_node_id); let mut data = self.data.lock(); if let &GenerationMessage::InitializeSession(ref message) = &message.message { if &self.core.meta.master_node_id != sender { return Err(Error::InvalidMessage); } let consensus_group: BTreeSet = message.nodes.keys().cloned().map(Into::into).collect(); let mut other_consensus_group_nodes = consensus_group.clone(); other_consensus_group_nodes.remove(&self.core.meta.self_node_id); let generation_session = GenerationSession::new(GenerationSessionParams { id: self.core.meta.id.clone(), self_node_id: self.core.meta.self_node_id.clone(), key_storage: None, cluster: Arc::new(SessionKeyGenerationTransport { access_key: self.core.access_key.clone(), cluster: self.core.cluster.clone(), other_nodes_ids: other_consensus_group_nodes }), }); data.generation_session = Some(generation_session); data.state = SessionState::SessionKeyGeneration; } { let generation_session = data.generation_session.as_ref().ok_or(Error::InvalidStateForRequest)?; let is_key_generating = generation_session.state() != GenerationSessionState::Finished; generation_session.process_message(sender, &message.message)?; let is_key_generated = generation_session.state() == GenerationSessionState::Finished; if !is_key_generating || !is_key_generated { return Ok(()); } } data.state = SessionState::SignatureComputing; if self.core.meta.master_node_id != self.core.meta.self_node_id { return Ok(()); } let message_hash = data.message_hash .expect("we are on master node; on master node message_hash is filled in initialize(); on_generation_message follows initialize; qed"); let joint_public_and_secret = data.generation_session.as_ref() .expect("session key is generated before signature is computed; we are in SignatureComputing state; qed") .joint_public_and_secret() .expect("session key is generated before signature is computed; we are in SignatureComputing state; qed")?; self.core.disseminate_jobs(&mut data.consensus_session, joint_public_and_secret.0, joint_public_and_secret.1, message_hash) } /// When partial signature is requested. pub fn on_partial_signature_requested(&self, sender: &NodeId, message: &RequestPartialSignature) -> Result<(), Error> { debug_assert!(self.core.meta.id == *message.session); debug_assert!(self.core.access_key == *message.sub_session); debug_assert!(sender != &self.core.meta.self_node_id); let mut data = self.data.lock(); if sender != &self.core.meta.master_node_id { return Err(Error::InvalidMessage); } if data.state != SessionState::SignatureComputing { return Err(Error::InvalidStateForRequest); } let joint_public_and_secret = data.generation_session.as_ref() .expect("session key is generated before signature is computed; we are in SignatureComputing state; qed") .joint_public_and_secret() .expect("session key is generated before signature is computed; we are in SignatureComputing state; qed")?; let signing_job = SigningJob::new_on_slave(self.core.meta.self_node_id.clone(), self.core.key_share.clone(), joint_public_and_secret.0, joint_public_and_secret.1)?; let signing_transport = self.core.signing_transport(); data.consensus_session.on_job_request(sender, PartialSigningRequest { id: message.request_id.clone().into(), message_hash: message.message_hash.clone().into(), other_nodes_ids: message.nodes.iter().cloned().map(Into::into).collect(), }, signing_job, signing_transport) } /// When partial signature is received. pub fn on_partial_signature(&self, sender: &NodeId, message: &PartialSignature) -> Result<(), Error> { debug_assert!(self.core.meta.id == *message.session); debug_assert!(self.core.access_key == *message.sub_session); debug_assert!(sender != &self.core.meta.self_node_id); let mut data = self.data.lock(); data.consensus_session.on_job_response(sender, PartialSigningResponse { request_id: message.request_id.clone().into(), partial_signature: message.partial_signature.clone().into(), })?; if data.consensus_session.state() != ConsensusSessionState::Finished { return Ok(()); } self.core.cluster.broadcast(Message::Signing(SigningMessage::SigningSessionCompleted(SigningSessionCompleted { session: self.core.meta.id.clone().into(), sub_session: self.core.access_key.clone().into(), })))?; data.result = Some(Ok(data.consensus_session.result()?)); self.core.completed.notify_all(); Ok(()) } /// When session is completed. pub fn on_session_completed(&self, sender: &NodeId, message: &SigningSessionCompleted) -> Result<(), Error> { debug_assert!(self.core.meta.id == *message.session); debug_assert!(self.core.access_key == *message.sub_session); debug_assert!(sender != &self.core.meta.self_node_id); self.data.lock().consensus_session.on_session_completed(sender) } /// When error has occured on another node. pub fn on_session_error(&self, sender: &NodeId, message: &SigningSessionError) -> Result<(), Error> { self.process_node_error(Some(&sender), &message.error) } /// Process error from the other node. fn process_node_error(&self, node: Option<&NodeId>, error: &String) -> Result<(), Error> { let mut data = self.data.lock(); match { match node { Some(node) => data.consensus_session.on_node_error(node), None => data.consensus_session.on_session_timeout(), } } { Ok(false) => Ok(()), Ok(true) => { let message_hash = data.message_hash.as_ref().cloned() .expect("on_node_error returned true; this means that jobs must be REsent; this means that jobs already have been sent; jobs are sent when message_hash.is_some(); qed"); let joint_public_and_secret = data.generation_session.as_ref() .expect("on_node_error returned true; this means that jobs must be REsent; this means that jobs already have been sent; jobs are sent when message_hash.is_some(); qed") .joint_public_and_secret() .expect("on_node_error returned true; this means that jobs must be REsent; this means that jobs already have been sent; jobs are sent when message_hash.is_some(); qed")?; let disseminate_result = self.core.disseminate_jobs(&mut data.consensus_session, joint_public_and_secret.0, joint_public_and_secret.1, message_hash); match disseminate_result { Ok(()) => Ok(()), Err(err) => { warn!("{}: signing session failed with error: {:?} from {:?}", &self.core.meta.self_node_id, error, node); data.result = Some(Err(err.clone())); self.core.completed.notify_all(); Err(err) } } }, Err(err) => { warn!("{}: signing session failed with error: {:?} from {:?}", &self.core.meta.self_node_id, error, node); data.result = Some(Err(err.clone())); self.core.completed.notify_all(); Err(err) }, } } } impl ClusterSession for SessionImpl { fn is_finished(&self) -> bool { let data = self.data.lock(); data.consensus_session.state() == ConsensusSessionState::Failed || data.consensus_session.state() == ConsensusSessionState::Finished } fn on_node_timeout(&self, node: &NodeId) { // ignore error, only state matters let _ = self.process_node_error(Some(node), &Error::NodeDisconnected.into()); } fn on_session_timeout(&self) { // ignore error, only state matters let _ = self.process_node_error(None, &Error::NodeDisconnected.into()); } } impl Session for SessionImpl { fn wait(&self) -> Result<(Secret, Secret), Error> { let mut data = self.data.lock(); if !data.result.is_some() { self.core.completed.wait(&mut data); } data.result.as_ref() .expect("checked above or waited for completed; completed is only signaled when result.is_some(); qed") .clone() } } impl SessionKeyGenerationTransport { fn map_message(&self, message: Message) -> Result { match message { Message::Generation(message) => Ok(Message::Signing(SigningMessage::SigningGenerationMessage(SigningGenerationMessage { session: message.session_id().clone().into(), sub_session: self.access_key.clone().into(), message: message, }))), _ => Err(Error::InvalidMessage), } } } impl Cluster for SessionKeyGenerationTransport { fn broadcast(&self, message: Message) -> Result<(), Error> { let message = self.map_message(message)?; for to in &self.other_nodes_ids { self.cluster.send(to, message.clone())?; } Ok(()) } fn send(&self, to: &NodeId, message: Message) -> Result<(), Error> { debug_assert!(self.other_nodes_ids.contains(to)); self.cluster.send(to, self.map_message(message)?) } } impl SessionCore { pub fn signing_transport(&self) -> SigningJobTransport { SigningJobTransport { id: self.meta.id.clone(), access_key: self.access_key.clone(), cluster: self.cluster.clone() } } pub fn disseminate_jobs(&self, consensus_session: &mut SigningConsensusSession, session_public: Public, session_secret_share: Secret, message_hash: H256) -> Result<(), Error> { let signing_job = SigningJob::new_on_master(self.meta.self_node_id.clone(), self.key_share.clone(), session_public, session_secret_share, message_hash)?; consensus_session.disseminate_jobs(signing_job, self.signing_transport()) } } impl JobTransport for SigningConsensusTransport { type PartialJobRequest=Signature; type PartialJobResponse=bool; fn send_partial_request(&self, node: &NodeId, request: Signature) -> Result<(), Error> { self.cluster.send(node, Message::Signing(SigningMessage::SigningConsensusMessage(SigningConsensusMessage { session: self.id.clone().into(), sub_session: self.access_key.clone().into(), message: ConsensusMessage::InitializeConsensusSession(InitializeConsensusSession { requestor_signature: request.into(), }) }))) } fn send_partial_response(&self, node: &NodeId, response: bool) -> Result<(), Error> { self.cluster.send(node, Message::Signing(SigningMessage::SigningConsensusMessage(SigningConsensusMessage { session: self.id.clone().into(), sub_session: self.access_key.clone().into(), message: ConsensusMessage::ConfirmConsensusInitialization(ConfirmConsensusInitialization { is_confirmed: response, }) }))) } } impl JobTransport for SigningJobTransport { type PartialJobRequest=PartialSigningRequest; type PartialJobResponse=PartialSigningResponse; fn send_partial_request(&self, node: &NodeId, request: PartialSigningRequest) -> Result<(), Error> { self.cluster.send(node, Message::Signing(SigningMessage::RequestPartialSignature(RequestPartialSignature { session: self.id.clone().into(), sub_session: self.access_key.clone().into(), request_id: request.id.into(), message_hash: request.message_hash.into(), nodes: request.other_nodes_ids.into_iter().map(Into::into).collect(), }))) } fn send_partial_response(&self, node: &NodeId, response: PartialSigningResponse) -> Result<(), Error> { self.cluster.send(node, Message::Signing(SigningMessage::PartialSignature(PartialSignature { session: self.id.clone().into(), sub_session: self.access_key.clone().into(), request_id: response.request_id.into(), partial_signature: response.partial_signature.into(), }))) } } #[cfg(test)] mod tests { use std::sync::Arc; use std::collections::{BTreeMap, VecDeque}; use ethkey::{self, Random, Generator, Public}; use util::H256; use super::super::super::acl_storage::tests::DummyAclStorage; use key_server_cluster::{NodeId, SessionId, SessionMeta, Error, KeyStorage}; use key_server_cluster::cluster::tests::DummyCluster; use key_server_cluster::generation_session::{Session as GenerationSession}; use key_server_cluster::generation_session::tests::MessageLoop as KeyGenerationMessageLoop; use key_server_cluster::math; use key_server_cluster::message::{Message, SigningMessage}; use key_server_cluster::signing_session::{Session, SessionImpl, SessionParams}; struct Node { pub node_id: NodeId, pub cluster: Arc, pub session: SessionImpl, } struct MessageLoop { pub session_id: SessionId, pub nodes: BTreeMap, pub queue: VecDeque<(NodeId, NodeId, Message)>, } impl MessageLoop { pub fn new(gl: &KeyGenerationMessageLoop) -> Self { let mut nodes = BTreeMap::new(); let session_id = gl.session_id.clone(); let requester = Random.generate().unwrap(); let signature = Some(ethkey::sign(requester.secret(), &SessionId::default()).unwrap()); let master_node_id = gl.nodes.keys().nth(0).unwrap().clone(); for (i, (gl_node_id, gl_node)) in gl.nodes.iter().enumerate() { let acl_storage = Arc::new(DummyAclStorage::default()); let cluster = Arc::new(DummyCluster::new(gl_node_id.clone())); let session = SessionImpl::new(SessionParams { meta: SessionMeta { id: session_id.clone(), self_node_id: gl_node_id.clone(), master_node_id: master_node_id.clone(), threshold: gl_node.key_storage.get(&session_id).unwrap().threshold, }, access_key: "834cb736f02d9c968dfaf0c37658a1d86ff140554fc8b59c9fdad5a8cf810eec".parse().unwrap(), key_share: gl_node.key_storage.get(&session_id).unwrap(), acl_storage: acl_storage, cluster: cluster.clone(), }, if i == 0 { signature.clone() } else { None }).unwrap(); nodes.insert(gl_node_id.clone(), Node { node_id: gl_node_id.clone(), cluster: cluster, session: session }); } let nodes_ids: Vec<_> = nodes.keys().cloned().collect(); for node in nodes.values() { for node_id in &nodes_ids { node.cluster.add_node(node_id.clone()); } } MessageLoop { session_id: session_id, nodes: nodes, queue: VecDeque::new(), } } pub fn master(&self) -> &SessionImpl { &self.nodes.values().nth(0).unwrap().session } pub fn take_message(&mut self) -> Option<(NodeId, NodeId, Message)> { self.nodes.values() .filter_map(|n| n.cluster.take_message().map(|m| (n.node_id.clone(), m.0, m.1))) .nth(0) .or_else(|| self.queue.pop_front()) } pub fn process_message(&mut self, mut msg: (NodeId, NodeId, Message)) -> Result<(), Error> { let mut is_queued_message = false; loop { match { match msg.2 { Message::Signing(SigningMessage::SigningConsensusMessage(ref message)) => self.nodes[&msg.1].session.on_consensus_message(&msg.0, &message), Message::Signing(SigningMessage::SigningGenerationMessage(ref message)) => self.nodes[&msg.1].session.on_generation_message(&msg.0, &message), Message::Signing(SigningMessage::RequestPartialSignature(ref message)) => self.nodes[&msg.1].session.on_partial_signature_requested(&msg.0, &message), Message::Signing(SigningMessage::PartialSignature(ref message)) => self.nodes[&msg.1].session.on_partial_signature(&msg.0, &message), Message::Signing(SigningMessage::SigningSessionCompleted(ref message)) => self.nodes[&msg.1].session.on_session_completed(&msg.0, &message), _ => panic!("unexpected"), } } { Ok(_) => { if let Some(message) = self.queue.pop_front() { msg = message; is_queued_message = true; continue; } return Ok(()); }, Err(Error::TooEarlyForRequest) => { if is_queued_message { self.queue.push_front(msg); } else { self.queue.push_back(msg); } return Ok(()); }, Err(err) => return Err(err), } } } } #[test] fn complete_gen_sign_session() { let test_cases = [(0, 1), (0, 5), (2, 5), (3, 5)]; for &(threshold, num_nodes) in &test_cases { // run key generation sessions let mut gl = KeyGenerationMessageLoop::new(num_nodes); gl.master().initialize(Public::default(), threshold, gl.nodes.keys().cloned().collect()).unwrap(); while let Some((from, to, message)) = gl.take_message() { gl.process_message((from, to, message)).unwrap(); } // run signing session let message_hash = H256::from(777); let mut sl = MessageLoop::new(&gl); sl.master().initialize(message_hash).unwrap(); while let Some((from, to, message)) = sl.take_message() { sl.process_message((from, to, message)).unwrap(); } // verify signature let public = gl.master().joint_public_and_secret().unwrap().unwrap().0; let signature = sl.master().wait().unwrap(); assert!(math::verify_signature(&public, &signature, &message_hash).unwrap()); } } }