// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
//! Ethash implementation
//! See https://github.com/ethereum/wiki/wiki/Ethash
// TODO: fix endianess for big endian
use primal::is_prime;
use std::cell::Cell;
use std::mem;
use std::ptr;
use sha3;
use std::slice;
use std::path::PathBuf;
use std::io::{self, Read, Write};
use std::fs::{self, File};
use parking_lot::Mutex;
pub const ETHASH_EPOCH_LENGTH: u64 = 30000;
pub const ETHASH_CACHE_ROUNDS: usize = 3;
pub const ETHASH_MIX_BYTES: usize = 128;
pub const ETHASH_ACCESSES: usize = 64;
pub const ETHASH_DATASET_PARENTS: u32 = 256;
const DATASET_BYTES_INIT: u64 = 1 << 30;
const DATASET_BYTES_GROWTH: u64 = 1 << 23;
const CACHE_BYTES_INIT: u64 = 1 << 24;
const CACHE_BYTES_GROWTH: u64 = 1 << 17;
const NODE_WORDS: usize = 64 / 4;
const NODE_BYTES: usize = 64;
const MIX_WORDS: usize = ETHASH_MIX_BYTES / 4;
const MIX_NODES: usize = MIX_WORDS / NODE_WORDS;
const FNV_PRIME: u32 = 0x01000193;
/// Computation result
pub struct ProofOfWork {
/// Difficulty boundary
pub value: H256,
/// Mix
pub mix_hash: H256,
}
struct Node {
bytes: [u8; NODE_BYTES],
}
impl Default for Node {
fn default() -> Self {
Node { bytes: [0u8; NODE_BYTES] }
}
}
impl Clone for Node {
fn clone(&self) -> Self {
Node { bytes: *&self.bytes }
}
}
impl Node {
#[inline]
fn as_words(&self) -> &[u32; NODE_WORDS] {
unsafe { mem::transmute(&self.bytes) }
}
#[inline]
fn as_words_mut(&mut self) -> &mut [u32; NODE_WORDS] {
unsafe { mem::transmute(&mut self.bytes) }
}
}
pub type H256 = [u8; 32];
pub struct Light {
block_number: u64,
cache: Vec,
seed_compute: Mutex,
}
/// Light cache structur
impl Light {
/// Create a new light cache for a given block number
pub fn new(block_number: u64) -> Light {
light_new(block_number)
}
/// Calculate the light boundary data
/// `header_hash` - The header hash to pack into the mix
/// `nonce` - The nonce to pack into the mix
pub fn compute(&self, header_hash: &H256, nonce: u64) -> ProofOfWork {
light_compute(self, header_hash, nonce)
}
pub fn file_path(seed_hash: H256) -> PathBuf {
let mut home = ::std::env::home_dir().unwrap();
home.push(".ethash");
home.push("light");
home.push(to_hex(&seed_hash));
home
}
pub fn from_file(block_number: u64) -> io::Result {
let seed_compute = SeedHashCompute::new();
let path = Light::file_path(seed_compute.get_seedhash(block_number));
let mut file = try!(File::open(path));
let cache_size = get_cache_size(block_number);
if try!(file.metadata()).len() != cache_size as u64 {
return Err(io::Error::new(io::ErrorKind::Other, "Cache file size mismatch"));
}
let num_nodes = cache_size / NODE_BYTES;
let mut nodes: Vec = Vec::new();
nodes.resize(num_nodes, unsafe { mem::uninitialized() });
let buf = unsafe { slice::from_raw_parts_mut(nodes.as_mut_ptr() as *mut u8, cache_size) };
try!(file.read_exact(buf));
Ok(Light {
cache: nodes,
block_number: block_number,
seed_compute: Mutex::new(seed_compute),
})
}
pub fn to_file(&self) -> io::Result<()> {
let seed_compute = self.seed_compute.lock();
let path = Light::file_path(seed_compute.get_seedhash(self.block_number));
try!(fs::create_dir_all(path.parent().unwrap()));
let mut file = try!(File::create(path));
let cache_size = self.cache.len() * NODE_BYTES;
let buf = unsafe { slice::from_raw_parts(self.cache.as_ptr() as *const u8, cache_size) };
try!(file.write(buf));
Ok(())
}
}
pub struct SeedHashCompute {
prev_epoch: Cell,
prev_seedhash: Cell,
}
impl SeedHashCompute {
#[inline]
pub fn new() -> SeedHashCompute {
SeedHashCompute {
prev_epoch: Cell::new(0),
prev_seedhash: Cell::new([0u8; 32]),
}
}
#[inline]
fn reset_cache(&self) {
self.prev_epoch.set(0);
self.prev_seedhash.set([0u8; 32]);
}
#[inline]
pub fn get_seedhash(&self, block_number: u64) -> H256 {
let epoch = block_number / ETHASH_EPOCH_LENGTH;
if epoch < self.prev_epoch.get() {
// can't build on previous hash if requesting an older block
self.reset_cache();
}
if epoch > self.prev_epoch.get() {
let seed_hash = SeedHashCompute::resume_compute_seedhash(self.prev_seedhash.get(), self.prev_epoch.get(), epoch);
self.prev_seedhash.set(seed_hash);
self.prev_epoch.set(epoch);
}
self.prev_seedhash.get()
}
#[inline]
pub fn resume_compute_seedhash(mut hash: H256, start_epoch: u64, end_epoch: u64) -> H256 {
for _ in start_epoch..end_epoch {
unsafe { sha3::sha3_256(hash[..].as_mut_ptr(), 32, hash[..].as_ptr(), 32) };
}
hash
}
}
#[inline]
fn fnv_hash(x: u32, y: u32) -> u32 {
return x.wrapping_mul(FNV_PRIME) ^ y;
}
#[inline]
fn sha3_512(input: &[u8], output: &mut [u8]) {
unsafe { sha3::sha3_512(output.as_mut_ptr(), output.len(), input.as_ptr(), input.len()) };
}
#[inline]
fn get_cache_size(block_number: u64) -> usize {
let mut sz: u64 = CACHE_BYTES_INIT + CACHE_BYTES_GROWTH * (block_number / ETHASH_EPOCH_LENGTH);
sz = sz - NODE_BYTES as u64;
while !is_prime(sz / NODE_BYTES as u64) {
sz = sz - 2 * NODE_BYTES as u64;
}
sz as usize
}
#[inline]
fn get_data_size(block_number: u64) -> usize {
let mut sz: u64 = DATASET_BYTES_INIT + DATASET_BYTES_GROWTH * (block_number / ETHASH_EPOCH_LENGTH);
sz = sz - ETHASH_MIX_BYTES as u64;
while !is_prime(sz / ETHASH_MIX_BYTES as u64) {
sz = sz - 2 * ETHASH_MIX_BYTES as u64;
}
sz as usize
}
/// Difficulty quick check for POW preverification
///
/// `header_hash` The hash of the header
/// `nonce` The block's nonce
/// `mix_hash` The mix digest hash
/// Boundary recovered from mix hash
pub fn quick_get_difficulty(header_hash: &H256, nonce: u64, mix_hash: &H256) -> H256 {
let mut buf = [0u8; 64 + 32];
unsafe { ptr::copy_nonoverlapping(header_hash.as_ptr(), buf.as_mut_ptr(), 32) };
unsafe { ptr::copy_nonoverlapping(mem::transmute(&nonce), buf[32..].as_mut_ptr(), 8) };
unsafe { sha3::sha3_512(buf.as_mut_ptr(), 64, buf.as_ptr(), 40) };
unsafe { ptr::copy_nonoverlapping(mix_hash.as_ptr(), buf[64..].as_mut_ptr(), 32) };
let mut hash = [0u8; 32];
unsafe { sha3::sha3_256(hash.as_mut_ptr(), hash.len(), buf.as_ptr(), buf.len()) };
hash.as_mut_ptr();
hash
}
/// Calculate the light client data
/// `light` - The light client handler
/// `header_hash` - The header hash to pack into the mix
/// `nonce` - The nonce to pack into the mix
pub fn light_compute(light: &Light, header_hash: &H256, nonce: u64) -> ProofOfWork {
let full_size = get_data_size(light.block_number);
hash_compute(light, full_size, header_hash, nonce)
}
fn hash_compute(light: &Light, full_size: usize, header_hash: &H256, nonce: u64) -> ProofOfWork {
if full_size % MIX_WORDS != 0 {
panic!("Unaligned full size");
}
// pack hash and nonce together into first 40 bytes of s_mix
let mut s_mix: [Node; MIX_NODES + 1] = [Node::default(), Node::default(), Node::default()];
unsafe { ptr::copy_nonoverlapping(header_hash.as_ptr(), s_mix.get_unchecked_mut(0).bytes.as_mut_ptr(), 32) };
unsafe { ptr::copy_nonoverlapping(mem::transmute(&nonce), s_mix.get_unchecked_mut(0).bytes[32..].as_mut_ptr(), 8) };
// compute sha3-512 hash and replicate across mix
unsafe {
sha3::sha3_512(s_mix.get_unchecked_mut(0).bytes.as_mut_ptr(), NODE_BYTES, s_mix.get_unchecked(0).bytes.as_ptr(), 40);
let (f_mix, mut mix) = s_mix.split_at_mut(1);
for w in 0..MIX_WORDS {
*mix.get_unchecked_mut(0).as_words_mut().get_unchecked_mut(w) = *f_mix.get_unchecked(0).as_words().get_unchecked(w % NODE_WORDS);
}
let page_size = 4 * MIX_WORDS;
let num_full_pages = (full_size / page_size) as u32;
for i in 0..(ETHASH_ACCESSES as u32) {
let index = fnv_hash(f_mix.get_unchecked(0).as_words().get_unchecked(0) ^ i, *mix.get_unchecked(0).as_words().get_unchecked((i as usize) % MIX_WORDS)) % num_full_pages;
for n in 0..MIX_NODES {
let tmp_node = calculate_dag_item(index * MIX_NODES as u32 + n as u32, light);
for w in 0..NODE_WORDS {
*mix.get_unchecked_mut(n).as_words_mut().get_unchecked_mut(w) = fnv_hash(*mix.get_unchecked(n).as_words().get_unchecked(w), *tmp_node.as_words().get_unchecked(w));
}
}
}
// compress mix
for i in 0..(MIX_WORDS / 4) {
let w = i * 4;
let mut reduction = *mix.get_unchecked(0).as_words().get_unchecked(w + 0);
reduction = reduction.wrapping_mul(FNV_PRIME) ^ *mix.get_unchecked(0).as_words().get_unchecked(w + 1);
reduction = reduction.wrapping_mul(FNV_PRIME) ^ *mix.get_unchecked(0).as_words().get_unchecked(w + 2);
reduction = reduction.wrapping_mul(FNV_PRIME) ^ *mix.get_unchecked(0).as_words().get_unchecked(w + 3);
*mix.get_unchecked_mut(0).as_words_mut().get_unchecked_mut(i) = reduction;
}
let mut mix_hash = [0u8; 32];
let mut buf = [0u8; 32 + 64];
ptr::copy_nonoverlapping(f_mix.get_unchecked_mut(0).bytes.as_ptr(), buf.as_mut_ptr(), 64);
ptr::copy_nonoverlapping(mix.get_unchecked_mut(0).bytes.as_ptr(), buf[64..].as_mut_ptr(), 32);
ptr::copy_nonoverlapping(mix.get_unchecked_mut(0).bytes.as_ptr(), mix_hash.as_mut_ptr(), 32);
let mut value: H256 = [0u8; 32];
sha3::sha3_256(value.as_mut_ptr(), value.len(), buf.as_ptr(), buf.len());
ProofOfWork {
mix_hash: mix_hash,
value: value,
}
}
}
fn calculate_dag_item(node_index: u32, light: &Light) -> Node {
unsafe {
let num_parent_nodes = light.cache.len();
let cache_nodes = &light.cache;
let init = cache_nodes.get_unchecked(node_index as usize % num_parent_nodes);
let mut ret = init.clone();
*ret.as_words_mut().get_unchecked_mut(0) ^= node_index;
sha3::sha3_512(ret.bytes.as_mut_ptr(), ret.bytes.len(), ret.bytes.as_ptr(), ret.bytes.len());
for i in 0..ETHASH_DATASET_PARENTS {
let parent_index = fnv_hash(node_index ^ i, *ret.as_words().get_unchecked(i as usize % NODE_WORDS)) % num_parent_nodes as u32;
let parent = cache_nodes.get_unchecked(parent_index as usize);
for w in 0..NODE_WORDS {
*ret.as_words_mut().get_unchecked_mut(w) = fnv_hash(*ret.as_words().get_unchecked(w), *parent.as_words().get_unchecked(w));
}
}
sha3::sha3_512(ret.bytes.as_mut_ptr(), ret.bytes.len(), ret.bytes.as_ptr(), ret.bytes.len());
ret
}
}
fn light_new(block_number: u64) -> Light {
let seed_compute = SeedHashCompute::new();
let seedhash = seed_compute.get_seedhash(block_number);
let cache_size = get_cache_size(block_number);
if cache_size % NODE_BYTES != 0 {
panic!("Unaligned cache size");
}
let num_nodes = cache_size / NODE_BYTES;
let mut nodes = Vec::with_capacity(num_nodes);
nodes.resize(num_nodes, Node::default());
unsafe {
sha3_512(&seedhash[0..32], &mut nodes.get_unchecked_mut(0).bytes);
for i in 1..num_nodes {
sha3::sha3_512(nodes.get_unchecked_mut(i).bytes.as_mut_ptr(), NODE_BYTES, nodes.get_unchecked(i - 1).bytes.as_ptr(), NODE_BYTES);
}
for _ in 0..ETHASH_CACHE_ROUNDS {
for i in 0..num_nodes {
let idx = *nodes.get_unchecked_mut(i).as_words().get_unchecked(0) as usize % num_nodes;
let mut data = nodes.get_unchecked((num_nodes - 1 + i) % num_nodes).clone();
for w in 0..NODE_WORDS {
*data.as_words_mut().get_unchecked_mut(w) ^= *nodes.get_unchecked(idx).as_words().get_unchecked(w);
}
sha3_512(&data.bytes, &mut nodes.get_unchecked_mut(i).bytes);
}
}
}
Light {
cache: nodes,
block_number: block_number,
seed_compute: Mutex::new(seed_compute),
}
}
static CHARS: &'static [u8] = b"0123456789abcdef";
fn to_hex(bytes: &[u8]) -> String {
let mut v = Vec::with_capacity(bytes.len() * 2);
for &byte in bytes.iter() {
v.push(CHARS[(byte >> 4) as usize]);
v.push(CHARS[(byte & 0xf) as usize]);
}
unsafe { String::from_utf8_unchecked(v) }
}
#[test]
fn test_get_cache_size() {
// https://github.com/ethereum/wiki/wiki/Ethash/ef6b93f9596746a088ea95d01ca2778be43ae68f#data-sizes
assert_eq!(16776896usize, get_cache_size(0));
assert_eq!(16776896usize, get_cache_size(1));
assert_eq!(16776896usize, get_cache_size(ETHASH_EPOCH_LENGTH - 1));
assert_eq!(16907456usize, get_cache_size(ETHASH_EPOCH_LENGTH));
assert_eq!(16907456usize, get_cache_size(ETHASH_EPOCH_LENGTH + 1));
assert_eq!(284950208usize, get_cache_size(2046 * ETHASH_EPOCH_LENGTH));
assert_eq!(285081536usize, get_cache_size(2047 * ETHASH_EPOCH_LENGTH));
assert_eq!(285081536usize, get_cache_size(2048 * ETHASH_EPOCH_LENGTH - 1));
}
#[test]
fn test_get_data_size() {
// https://github.com/ethereum/wiki/wiki/Ethash/ef6b93f9596746a088ea95d01ca2778be43ae68f#data-sizes
assert_eq!(1073739904usize, get_data_size(0));
assert_eq!(1073739904usize, get_data_size(1));
assert_eq!(1073739904usize, get_data_size(ETHASH_EPOCH_LENGTH - 1));
assert_eq!(1082130304usize, get_data_size(ETHASH_EPOCH_LENGTH));
assert_eq!(1082130304usize, get_data_size(ETHASH_EPOCH_LENGTH + 1));
assert_eq!(18236833408usize, get_data_size(2046 * ETHASH_EPOCH_LENGTH));
assert_eq!(18245220736usize, get_data_size(2047 * ETHASH_EPOCH_LENGTH));
}
#[test]
fn test_difficulty_test() {
let hash = [0xf5, 0x7e, 0x6f, 0x3a, 0xcf, 0xc0, 0xdd, 0x4b, 0x5b, 0xf2, 0xbe, 0xe4, 0x0a, 0xb3, 0x35, 0x8a, 0xa6, 0x87, 0x73, 0xa8, 0xd0, 0x9f, 0x5e, 0x59, 0x5e, 0xab, 0x55, 0x94, 0x05, 0x52, 0x7d, 0x72];
let mix_hash = [0x1f, 0xff, 0x04, 0xce, 0xc9, 0x41, 0x73, 0xfd, 0x59, 0x1e, 0x3d, 0x89, 0x60, 0xce, 0x6b, 0xdf, 0x8b, 0x19, 0x71, 0x04, 0x8c, 0x71, 0xff, 0x93, 0x7b, 0xb2, 0xd3, 0x2a, 0x64, 0x31, 0xab, 0x6d];
let nonce = 0xd7b3ac70a301a249;
let boundary_good = [0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x3e, 0x9b, 0x6c, 0x69, 0xbc, 0x2c, 0xe2, 0xa2, 0x4a, 0x8e, 0x95, 0x69, 0xef, 0xc7, 0xd7, 0x1b, 0x33, 0x35, 0xdf, 0x36, 0x8c, 0x9a, 0xe9, 0x7e, 0x53, 0x84];
assert_eq!(quick_get_difficulty(&hash, nonce, &mix_hash)[..], boundary_good[..]);
let boundary_bad = [0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x3a, 0x9b, 0x6c, 0x69, 0xbc, 0x2c, 0xe2, 0xa2, 0x4a, 0x8e, 0x95, 0x69, 0xef, 0xc7, 0xd7, 0x1b, 0x33, 0x35, 0xdf, 0x36, 0x8c, 0x9a, 0xe9, 0x7e, 0x53, 0x84];
assert!(quick_get_difficulty(&hash, nonce, &mix_hash)[..] != boundary_bad[..]);
}
#[test]
fn test_light_compute() {
let hash = [0xf5, 0x7e, 0x6f, 0x3a, 0xcf, 0xc0, 0xdd, 0x4b, 0x5b, 0xf2, 0xbe, 0xe4, 0x0a, 0xb3, 0x35, 0x8a, 0xa6, 0x87, 0x73, 0xa8, 0xd0, 0x9f, 0x5e, 0x59, 0x5e, 0xab, 0x55, 0x94, 0x05, 0x52, 0x7d, 0x72];
let mix_hash = [0x1f, 0xff, 0x04, 0xce, 0xc9, 0x41, 0x73, 0xfd, 0x59, 0x1e, 0x3d, 0x89, 0x60, 0xce, 0x6b, 0xdf, 0x8b, 0x19, 0x71, 0x04, 0x8c, 0x71, 0xff, 0x93, 0x7b, 0xb2, 0xd3, 0x2a, 0x64, 0x31, 0xab, 0x6d];
let boundary = [0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x3e, 0x9b, 0x6c, 0x69, 0xbc, 0x2c, 0xe2, 0xa2, 0x4a, 0x8e, 0x95, 0x69, 0xef, 0xc7, 0xd7, 0x1b, 0x33, 0x35, 0xdf, 0x36, 0x8c, 0x9a, 0xe9, 0x7e, 0x53, 0x84];
let nonce = 0xd7b3ac70a301a249;
// difficulty = 0x085657254bd9u64;
let light = Light::new(486382);
let result = light_compute(&light, &hash, nonce);
assert_eq!(result.mix_hash[..], mix_hash[..]);
assert_eq!(result.value[..], boundary[..]);
}
#[test]
fn test_seed_compute_once() {
let seed_compute = SeedHashCompute::new();
let hash = [241, 175, 44, 134, 39, 121, 245, 239, 228, 236, 43, 160, 195, 152, 46, 7, 199, 5, 253, 147, 241, 206, 98, 43, 3, 104, 17, 40, 192, 79, 106, 162];
assert_eq!(seed_compute.get_seedhash(486382), hash);
}
#[test]
fn test_seed_compute_zero() {
let seed_compute = SeedHashCompute::new();
assert_eq!(seed_compute.get_seedhash(0), [0u8; 32]);
}
#[test]
fn test_seed_compute_after_older() {
let seed_compute = SeedHashCompute::new();
// calculating an older value first shouldn't affect the result
let _ = seed_compute.get_seedhash(50000);
let hash = [241, 175, 44, 134, 39, 121, 245, 239, 228, 236, 43, 160, 195, 152, 46, 7, 199, 5, 253, 147, 241, 206, 98, 43, 3, 104, 17, 40, 192, 79, 106, 162];
assert_eq!(seed_compute.get_seedhash(486382), hash);
}
#[test]
fn test_seed_compute_after_newer() {
let seed_compute = SeedHashCompute::new();
// calculating an newer value first shouldn't affect the result
let _ = seed_compute.get_seedhash(972764);
let hash = [241, 175, 44, 134, 39, 121, 245, 239, 228, 236, 43, 160, 195, 152, 46, 7, 199, 5, 253, 147, 241, 206, 98, 43, 3, 104, 17, 40, 192, 79, 106, 162];
assert_eq!(seed_compute.get_seedhash(486382), hash);
}