use std::fmt; use memorydb::*; use sha3::*; use hashdb::*; use hash::*; use nibbleslice::*; use bytes::*; use rlp::*; //use log::*; pub const NULL_RLP: [u8; 1] = [0x80; 1]; pub const SHA3_NULL_RLP: H256 = H256( [0x56, 0xe8, 0x1f, 0x17, 0x1b, 0xcc, 0x55, 0xa6, 0xff, 0x83, 0x45, 0xe6, 0x92, 0xc0, 0xf8, 0x6e, 0x5b, 0x48, 0xe0, 0x1b, 0x99, 0x6c, 0xad, 0xc0, 0x01, 0x62, 0x2f, 0xb5, 0xe3, 0x63, 0xb4, 0x21] ); pub trait Trie { fn root(&self) -> &H256; fn is_empty(&self) -> bool { *self.root() == SHA3_NULL_RLP } // TODO: consider returning &[u8]... fn contains(&self, key: &[u8]) -> bool; fn at<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key; fn insert(&mut self, key: &[u8], value: &[u8]); fn remove(&mut self, key: &[u8]); } #[derive(Eq, PartialEq, Debug)] pub enum Node<'a> { NullRoot, Leaf(NibbleSlice<'a>, &'a[u8]), Extension(NibbleSlice<'a>, &'a[u8]), Branch([Option<&'a[u8]>; 16], Option<&'a [u8]>) } impl <'a>Node<'a> { pub fn decoded(node_rlp: &'a [u8]) -> Node<'a> { let r = Rlp::new(node_rlp); match r.prototype() { // either leaf or extension - decode first item with NibbleSlice::??? // and use is_leaf return to figure out which. // if leaf, second item is a value (is_data()) // if extension, second item is a node (either SHA3 to be looked up and // fed back into this function or inline RLP which can be fed back into this function). Prototype::List(2) => match NibbleSlice::from_encoded(r.at(0).data()) { (slice, true) => Node::Leaf(slice, r.at(1).data()), (slice, false) => Node::Extension(slice, r.at(1).raw()), }, // branch - first 16 are nodes, 17th is a value (or empty). Prototype::List(17) => { let mut nodes: [Option<&'a [u8]>; 16] = unsafe { ::std::mem::uninitialized() }; for i in 0..16 { nodes[i] = if r.at(i).is_empty() { None } else { Some(r.at(i).raw()) } } Node::Branch(nodes, if r.at(16).is_empty() { None } else { Some(r.at(16).data()) }) }, // an empty branch index. Prototype::Data(0) => Node::NullRoot, // something went wrong. _ => panic!("Rlp is not valid.") } } // todo: should check length before encoding, cause it may just be sha3 of data pub fn encoded(&self) -> Bytes { match *self { Node::Leaf(ref slice, ref value) => { let mut stream = RlpStream::new_list(2); stream.append(&slice.encoded(true)); stream.append(value); stream.out() }, Node::Extension(ref slice, ref raw_rlp) => { let mut stream = RlpStream::new_list(2); stream.append(&slice.encoded(false)); stream.append_raw(raw_rlp, 1); stream.out() }, Node::Branch(ref nodes, ref value) => { let mut stream = RlpStream::new_list(17); for i in 0..16 { match nodes[i] { Some(n) => { stream.append_raw(n, 1); }, None => { stream.append_empty_data(); }, } } match *value { Some(n) => { stream.append(&n); }, None => { stream.append_empty_data(); }, } stream.out() }, Node::NullRoot => { let mut stream = RlpStream::new(); stream.append_empty_data(); stream.out() } } } } //enum ValidationResult<'a> { //Valid, //Invalid { node: Node<'a>, depth: usize } //} enum Operation { New(H256, Bytes), Delete(H256), } struct Diff (Vec); impl Diff { fn new() -> Diff { Diff(vec![]) } /// Given the RLP that encodes a node, append a reference to that node `out` and leave `diff` /// such that the reference is valid, once applied. fn new_node(&mut self, rlp: Bytes, out: &mut RlpStream) { if rlp.len() >= 32 { trace!("new_node: reference node {:?}", rlp.pretty()); let rlp_sha3 = rlp.sha3(); out.append(&rlp_sha3); self.0.push(Operation::New(rlp_sha3, rlp)); } else { trace!("new_node: inline node {:?}", rlp.pretty()); out.append_raw(&rlp, 1); } } /// Given the RLP that encodes a now-unused node, leave `diff` in such a state that it is noted. fn delete_node_sha3(&mut self, old_sha3: H256) { self.0.push(Operation::Delete(old_sha3)); } fn delete_node(&mut self, old: &Rlp) { if old.is_data() && old.size() == 32 { self.0.push(Operation::Delete(H256::decode(old))); } } fn replace_node(&mut self, old: &Rlp, rlp: Bytes, out: &mut RlpStream) { self.delete_node(old); self.new_node(rlp, out); } } pub struct TrieDB { db: Box, root: H256, } impl fmt::Debug for TrieDB { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(writeln!(f, "[")); let root_rlp = self.db.lookup(&self.root).expect("Trie root not found!"); try!(self.fmt_all(root_rlp, f, 0)); writeln!(f, "]") } } impl TrieDB { pub fn new_boxed(db_box: Box) -> Self { let mut r = TrieDB{ db: db_box, root: H256::new() }; r.set_root_rlp(&NULL_RLP); r } pub fn new(db: T) -> Self where T: HashDB + 'static { Self::new_boxed(Box::new(db)) } pub fn new_memory() -> Self { Self::new(MemoryDB::new()) } pub fn db(&self) -> &HashDB { self.db.as_ref() } fn set_root_rlp(&mut self, root_data: &[u8]) { self.db.kill(&self.root); self.root = self.db.insert(root_data); trace!("set_root_rlp {:?} {:?}", root_data.pretty(), self.root); } fn apply(&mut self, diff: Diff) { trace!("applying {:?} changes", diff.0.len()); for d in diff.0.into_iter() { match d { Operation::Delete(h) => { trace!("TrieDB::apply --- {:?}", &h); self.db.kill(&h); }, Operation::New(h, d) => { trace!("TrieDB::apply +++ {:?} -> {:?}", &h, d.pretty()); self.db.emplace(h, d); } } } } fn fmt_indent(&self, f: &mut fmt::Formatter, size: usize) -> fmt::Result { for _ in 0..size { try!(write!(f, " ")); } Ok(()) } fn fmt_all(&self, node: &[u8], f: &mut fmt::Formatter, deepness: usize) -> fmt::Result { let node = Node::decoded(node); match node { Node::Leaf(slice, value) => try!(writeln!(f, "-{:?}: {:?}.", slice, value.pretty())), Node::Extension(ref slice, ref item) => { try!(write!(f, "-{:?}- ", slice)); try!(self.fmt_all(self.get_raw_or_lookup(item), f, deepness)); }, Node::Branch(ref nodes, ref value) => { try!(writeln!(f, "")); match value { &Some(v) => { try!(self.fmt_indent(f, deepness + 1)); try!(writeln!(f, "=: {:?}", v.pretty())) }, &None => {} } for i in 0..16 { match nodes[i] { Some(n) => { try!(self.fmt_indent(f, deepness + 1)); try!(write!(f, "{:x}: ", i)); try!(self.fmt_all(self.get_raw_or_lookup(n), f, deepness + 1)); }, None => {}, } } }, // empty Node::NullRoot => { try!(writeln!(f, "")); } }; Ok(()) } fn get<'a, 'key>(&'a self, key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key { let root_rlp = self.db.lookup(&self.root).expect("Trie root not found!"); self.get_from_node(&root_rlp, key) } fn get_from_node<'a, 'key>(&'a self, node: &'a [u8], key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key { match Node::decoded(node) { Node::Leaf(ref slice, ref value) if key == slice => Some(value), Node::Extension(ref slice, ref item) if key.starts_with(slice) => { self.get_from_node(self.get_raw_or_lookup(item), &key.mid(slice.len())) }, Node::Branch(ref nodes, value) => match key.is_empty() { true => value, false => match nodes[key.at(0) as usize] { Some(payload) => { self.get_from_node(self.get_raw_or_lookup(payload), &key.mid(1)) }, None => None } }, _ => None } } fn get_raw_or_lookup<'a>(&'a self, node: &'a [u8]) -> &'a [u8] { // check if its sha3 + len let r = Rlp::new(node); match r.is_data() && r.size() == 32 { true => self.db.lookup(&H256::decode(&r)).expect("Not found!"), false => node } } fn add(&mut self, key: &NibbleSlice, value: &[u8]) { trace!("ADD: {:?} {:?}", key, value.pretty()); // determine what the new root is, insert new nodes and remove old as necessary. let mut todo: Diff = Diff::new(); let root_rlp = self.augmented(self.db.lookup(&self.root).expect("Trie root not found!"), key, value, &mut todo); self.apply(todo); self.set_root_rlp(&root_rlp); trace!("/"); } fn compose_leaf(partial: &NibbleSlice, value: &[u8]) -> Bytes { trace!("compose_leaf {:?} {:?} ({:?})", partial, value.pretty(), partial.encoded(true).pretty()); let mut s = RlpStream::new_list(2); s.append(&partial.encoded(true)); s.append(&value); let r = s.out(); trace!("compose_leaf: -> {:?}", r.pretty()); r } fn compose_raw(partial: &NibbleSlice, raw_payload: &[u8], is_leaf: bool) -> Bytes { println!("compose_raw {:?} {:?} {:?} ({:?})", partial, raw_payload.pretty(), is_leaf, partial.encoded(is_leaf)); let mut s = RlpStream::new_list(2); s.append(&partial.encoded(is_leaf)); s.append_raw(raw_payload, 1); let r = s.out(); println!("compose_raw: -> {:?}", r.pretty()); r } fn compose_stub_branch(value: &[u8]) -> Bytes { let mut s = RlpStream::new_list(17); for _ in 0..16 { s.append_empty_data(); } s.append(&value); s.out() } fn compose_extension(partial: &NibbleSlice, raw_payload: &[u8]) -> Bytes { Self::compose_raw(partial, raw_payload, false) } fn create_extension(partial: &NibbleSlice, downstream_node: Bytes, diff: &mut Diff) -> Bytes { trace!("create_extension partial: {:?}, downstream_node: {:?}", partial, downstream_node.pretty()); let mut s = RlpStream::new_list(2); s.append(&partial.encoded(false)); diff.new_node(downstream_node, &mut s); s.out() } /// Return the bytes encoding the node represented by `rlp`. It will be unlinked from /// the trie. fn take_node<'a, 'rlp_view>(&'a self, rlp: &'rlp_view Rlp<'a>, diff: &mut Diff) -> &'a [u8] where 'a: 'rlp_view { if rlp.is_list() { trace!("take_node {:?} (inline)", rlp.raw().pretty()); rlp.raw() } else if rlp.is_data() && rlp.size() == 32 { let h = H256::decode(rlp); let r = self.db.lookup(&h).expect("Trie root not found!"); trace!("take_node {:?} (indirect for {:?})", rlp.raw().pretty(), r); diff.delete_node_sha3(h); r } else { trace!("take_node {:?} (???)", rlp.raw().pretty()); panic!("Empty or invalid node given?"); } } /// Transform an existing extension or leaf node to an invalid single-entry branch. /// /// **This operation will not insert the new node nor destroy the original.** fn transmuted_extension_to_branch(orig_partial: &NibbleSlice, orig_raw_payload: &[u8], diff: &mut Diff) -> Bytes { trace!("transmuted_extension_to_branch"); let mut s = RlpStream::new_list(17); assert!(!orig_partial.is_empty()); // extension nodes are not allowed to have empty partial keys. let index = orig_partial.at(0); // orig is extension - orig_raw_payload is a node itself. for i in 0..17 { if index == i { if orig_partial.len() > 1 { // still need an extension diff.new_node(Self::compose_extension(&orig_partial.mid(1), orig_raw_payload), &mut s); } else { // was an extension of length 1 - just redirect the payload into here. s.append_raw(orig_raw_payload, 1); } } else { s.append_empty_data(); } } s.out() } fn transmuted_leaf_to_branch(orig_partial: &NibbleSlice, orig_raw_payload: &[u8], diff: &mut Diff) -> Bytes { trace!("transmuted_leaf_to_branch"); let mut s = RlpStream::new_list(17); let index = if orig_partial.is_empty() {16} else {orig_partial.at(0)}; // orig is leaf - orig_raw_payload is data representing the actual value. for i in 0..17 { if index == i { // this is our node. diff.new_node(Self::compose_raw(&orig_partial.mid(if i == 16 {0} else {1}), orig_raw_payload, true), &mut s); } else { s.append_empty_data(); } } s.out() } /// Transform an existing extension or leaf node plus a new partial/value to a two-entry branch. /// /// **This operation will not insert the new node nor destroy the original.** fn transmuted_to_branch_and_augmented(&self, orig_is_leaf: bool, orig_partial: &NibbleSlice, orig_raw_payload: &[u8], partial: &NibbleSlice, value: &[u8], diff: &mut Diff) -> Bytes { trace!("transmuted_to_branch_and_augmented"); let intermediate = match orig_is_leaf { true => Self::transmuted_leaf_to_branch(orig_partial, orig_raw_payload, diff), false => Self::transmuted_extension_to_branch(orig_partial, orig_raw_payload, diff), }; self.augmented(&intermediate, partial, value, diff) // TODO: implement without having to make an intermediate representation. } /// Given a branch node's RLP `orig` together with a `partial` key and `value`, return the /// RLP-encoded node that accomodates the trie with the new entry. Mutate `diff` so that /// once applied the returned node is valid. fn augmented_into_branch(&self, orig: &Rlp, partial: &NibbleSlice, value: &[u8], diff: &mut Diff) -> Bytes { trace!("augmented_into_branch"); let mut s = RlpStream::new_list(17); let index = if partial.is_empty() {16} else {partial.at(0) as usize}; for i in 0usize..17 { match (index == i, i) { (true, 16) => // leaf entry - just replace. { s.append(&value); }, (true, i) if orig.at(i).is_empty() => // easy - original had empty slot. diff.new_node(Self::compose_leaf(&partial.mid(1), value), &mut s), (true, i) => { // harder - original has something there already let new = self.augmented(self.take_node(&orig.at(i), diff), &partial.mid(1), value, diff); diff.replace_node(&orig.at(i), new, &mut s); } (false, i) => { s.append_raw(orig.at(i).raw(), 1); }, } } s.out() } /// Determine the RLP of the node, assuming we're inserting `partial` into the /// node currently of data `old`. This will *not* delete any hash of `old` from the database; /// it will just return the new RLP that includes the new node. /// /// The database will be updated so as to make the returned RLP valid through inserting /// and deleting nodes as necessary. /// /// **This operation will not insert the new node now destroy the original.** fn augmented(&self, old: &[u8], partial: &NibbleSlice, value: &[u8], diff: &mut Diff) -> Bytes { trace!("augmented (old: {:?}, partial: {:?}, value: {:?})", old.pretty(), partial, value.pretty()); // already have an extension. either fast_forward, cleve or transmute_to_branch. let old_rlp = Rlp::new(old); match old_rlp.prototype() { Prototype::List(17) => { trace!("branch: ROUTE,AUGMENT"); // already have a branch. route and augment. self.augmented_into_branch(&old_rlp, partial, value, diff) }, Prototype::List(2) => { let existing_key_rlp = old_rlp.at(0); let (existing_key, is_leaf) = NibbleSlice::from_encoded(existing_key_rlp.data()); match (is_leaf, partial.common_prefix(&existing_key)) { (true, cp) if cp == existing_key.len() && partial.len() == existing_key.len() => { // equivalent-leaf: replace trace!("equivalent-leaf: REPLACE"); Self::compose_leaf(partial, value) }, (_, 0) => { // one of us isn't empty: transmute to branch here trace!("no-common-prefix, not-both-empty (exist={:?}; new={:?}): TRANSMUTE,AUGMENT", existing_key.len(), partial.len()); self.transmuted_to_branch_and_augmented(is_leaf, &existing_key, old_rlp.at(1).raw(), partial, value, diff) }, (_, cp) if cp == existing_key.len() => { trace!("complete-prefix (cp={:?}): AUGMENT-AT-END", cp); // fully-shared prefix for this extension: // transform to an extension + augmented version of onward node. let downstream_node: Bytes = if is_leaf { // no onward node because we're a leaf - create fake stub and use that. self.augmented(&Self::compose_stub_branch(old_rlp.at(1).data()), &partial.mid(cp), value, diff) } else { self.augmented(self.take_node(&old_rlp.at(1), diff), &partial.mid(cp), value, diff) }; Self::create_extension(&existing_key, downstream_node, diff) }, (_, cp) => { // partially-shared prefix for this extension: // split into two extensions, high and low, pass the // low through augment with the value before inserting the result // into high to create the new. // TODO: optimise by doing this without creating augmented_low. trace!("partially-shared-prefix (exist={:?}; new={:?}; cp={:?}): AUGMENT-AT-END", existing_key.len(), partial.len(), cp); // low (farther from root) let low = Self::compose_raw(&existing_key.mid(cp), old_rlp.at(1).raw(), is_leaf); let augmented_low = self.augmented(&low, &partial.mid(cp), value, diff); // high (closer to root) let mut s = RlpStream::new_list(2); s.append(&existing_key.encoded_leftmost(cp, false)); diff.new_node(augmented_low, &mut s); s.out() }, } }, Prototype::Data(0) => { trace!("empty: COMPOSE"); Self::compose_leaf(partial, value) }, _ => panic!("Invalid RLP for node: {:?}", old.pretty()), } } } impl Trie for TrieDB { fn root(&self) -> &H256 { &self.root } fn contains(&self, key: &[u8]) -> bool { self.at(key).is_some() } fn at<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key { self.get(&NibbleSlice::new(key)) } fn insert(&mut self, key: &[u8], value: &[u8]) { self.add(&NibbleSlice::new(key), value); } fn remove(&mut self, _key: &[u8]) { unimplemented!(); } } #[cfg(test)] mod tests { use rustc_serialize::hex::FromHex; use triehash::*; use super::*; use nibbleslice::*; use rlp; use env_logger; #[test] fn test_node_leaf() { let k = vec![0x20u8, 0x01, 0x23, 0x45]; let v: Vec = From::from("cat"); let (slice, is_leaf) = NibbleSlice::from_encoded(&k); assert_eq!(is_leaf, true); let leaf = Node::Leaf(slice, &v); let rlp = leaf.encoded(); let leaf2 = Node::decoded(&rlp); assert_eq!(leaf, leaf2); } #[test] fn test_node_extension() { let k = vec![0x00u8, 0x01, 0x23, 0x45]; // in extension, value must be valid rlp let v = rlp::encode(&"cat"); let (slice, is_leaf) = NibbleSlice::from_encoded(&k); assert_eq!(is_leaf, false); let ex = Node::Extension(slice, &v); let rlp = ex.encoded(); let ex2 = Node::decoded(&rlp); assert_eq!(ex, ex2); } #[test] fn test_node_empty_branch() { let branch = Node::Branch([None; 16], None); let rlp = branch.encoded(); let branch2 = Node::decoded(&rlp); assert_eq!(branch, branch2); } #[test] fn test_node_branch() { let k = rlp::encode(&"cat"); let mut nodes: [Option<&[u8]>; 16] = unsafe { ::std::mem::uninitialized() }; for i in 0..16 { nodes[i] = Some(&k); } let v: Vec = From::from("dog"); let branch = Node::Branch(nodes, Some(&v)); let rlp = branch.encoded(); let branch2 = Node::decoded(&rlp); assert_eq!(branch, branch2); } #[test] fn test_at_empty() { let t = TrieDB::new_memory(); assert_eq!(t.at(&[0x5]), None); } #[test] fn test_at_one() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); assert_eq!(t.at(&[0x1, 0x23]).unwrap(), &[0x1u8, 0x23]); } #[test] fn test_at_three() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]); t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]); assert_eq!(t.at(&[0x01, 0x23]).unwrap(), &[0x01u8, 0x23]); assert_eq!(t.at(&[0xf1, 0x23]).unwrap(), &[0xf1u8, 0x23]); assert_eq!(t.at(&[0x81, 0x23]).unwrap(), &[0x81u8, 0x23]); assert_eq!(t.at(&[0x82, 0x23]), None); } #[test] fn test_print_trie() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); t.insert(&[0x02u8, 0x23], &[0x01u8, 0x23]); t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]); t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]); println!("trie:"); println!("{:?}", t); //assert!(false); } fn test_all(v: Vec<(Vec, Vec)>) { let mut t = TrieDB::new_memory(); for i in 0..v.len() { let key: &[u8]= &v[i].0; let val: &[u8] = &v[i].1; t.insert(&key, &val); } trace!("{:?}", t); println!("{:?}", t); // check lifetime let _q = t.at(&[b'd', b'o']).unwrap(); assert_eq!(*t.root(), trie_root(v)); } #[test] fn test_at_dog() { env_logger::init().ok(); let v = vec![ (From::from("do"), From::from("verb")), (From::from("dog"), From::from("puppy")), (From::from("doge"), From::from("coin")), (From::from("horse"), From::from("stallion")), ]; test_all(v); } #[test] fn test_more_data() { let v = vec![ ("0000000000000000000000000000000000000000000000000000000000000045".from_hex().unwrap(), "22b224a1420a802ab51d326e29fa98e34c4f24ea".from_hex().unwrap()), ("0000000000000000000000000000000000000000000000000000000000000046".from_hex().unwrap(), "67706c2076330000000000000000000000000000000000000000000000000000".from_hex().unwrap()), ("000000000000000000000000697c7b8c961b56f675d570498424ac8de1a918f6".from_hex().unwrap(), "6f6f6f6820736f2067726561742c207265616c6c6c793f000000000000000000".from_hex().unwrap()), ("0000000000000000000000007ef9e639e2733cb34e4dfc576d4b23f72db776b2".from_hex().unwrap(), "4655474156000000000000000000000000000000000000000000000000000000".from_hex().unwrap()), ("000000000000000000000000ec4f34c97e43fbb2816cfd95e388353c7181dab1".from_hex().unwrap(), "4e616d6552656700000000000000000000000000000000000000000000000000".from_hex().unwrap()), ("4655474156000000000000000000000000000000000000000000000000000000".from_hex().unwrap(), "7ef9e639e2733cb34e4dfc576d4b23f72db776b2".from_hex().unwrap()), ("4e616d6552656700000000000000000000000000000000000000000000000000".from_hex().unwrap(), "ec4f34c97e43fbb2816cfd95e388353c7181dab1".from_hex().unwrap()), ("6f6f6f6820736f2067726561742c207265616c6c6c793f000000000000000000".from_hex().unwrap(), "697c7b8c961b56f675d570498424ac8de1a918f6".from_hex().unwrap()) ]; test_all(v); } #[test] fn playpen() { env_logger::init().ok(); let big_value = b"00000000000000000000000000000000"; let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], big_value); t.insert(&[0x11u8, 0x23], big_value); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], big_value.to_vec()), (vec![0x11u8, 0x23], big_value.to_vec()) ])); } #[test] fn init() { let t = TrieDB::new_memory(); assert_eq!(*t.root(), SHA3_NULL_RLP); assert!(t.is_empty()); } #[test] fn insert_on_empty() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]) ])); } #[test] fn insert_replace_root() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); t.insert(&[0x01u8, 0x23], &[0x23u8, 0x45]); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x23u8, 0x45]) ])); } #[test] fn insert_make_branch_root() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); t.insert(&[0x11u8, 0x23], &[0x11u8, 0x23]); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]), (vec![0x11u8, 0x23], vec![0x11u8, 0x23]) ])); } #[test] fn insert_into_branch_root() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]); t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]), (vec![0x81u8, 0x23], vec![0x81u8, 0x23]), (vec![0xf1u8, 0x23], vec![0xf1u8, 0x23]), ])); } #[test] fn insert_value_into_branch_root() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); t.insert(&[], &[0x0]); assert_eq!(*t.root(), trie_root(vec![ (vec![], vec![0x0]), (vec![0x01u8, 0x23], vec![0x01u8, 0x23]), ])); } #[test] fn insert_split_leaf() { let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); t.insert(&[0x01u8, 0x34], &[0x01u8, 0x34]); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]), (vec![0x01u8, 0x34], vec![0x01u8, 0x34]), ])); } #[test] fn insert_split_extenstion() { let mut t = TrieDB::new_memory(); t.insert(&[0x01, 0x23, 0x45], &[0x01]); t.insert(&[0x01, 0xf3, 0x45], &[0x02]); t.insert(&[0x01, 0xf3, 0xf5], &[0x03]); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01, 0x23, 0x45], vec![0x01]), (vec![0x01, 0xf3, 0x45], vec![0x02]), (vec![0x01, 0xf3, 0xf5], vec![0x03]), ])); } #[test] fn insert_big_value() { let big_value0 = b"00000000000000000000000000000000"; let big_value1 = b"11111111111111111111111111111111"; let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], big_value0); t.insert(&[0x11u8, 0x23], big_value1); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], big_value0.to_vec()), (vec![0x11u8, 0x23], big_value1.to_vec()) ])); } #[test] fn insert_duplicate_value() { let big_value = b"00000000000000000000000000000000"; let mut t = TrieDB::new_memory(); t.insert(&[0x01u8, 0x23], big_value); t.insert(&[0x11u8, 0x23], big_value); assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], big_value.to_vec()), (vec![0x11u8, 0x23], big_value.to_vec()) ])); } }