// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
use parity_bytes::Bytes;
use std::net::SocketAddr;
use std::collections::{HashSet, HashMap, VecDeque};
use std::collections::hash_map::Entry;
use std::default::Default;
use std::time::{Duration, Instant, SystemTime, UNIX_EPOCH};
use hash::keccak;
use ethereum_types::{H256, H520};
use rlp::{Rlp, RlpStream};
use node_table::*;
use network::{Error, ErrorKind};
use ethkey::{Secret, KeyPair, sign, recover};
use network::IpFilter;
use PROTOCOL_VERSION;
const ADDRESS_BYTES_SIZE: usize = 32; // Size of address type in bytes.
const ADDRESS_BITS: usize = 8 * ADDRESS_BYTES_SIZE; // Denoted by n in [Kademlia].
const DISCOVERY_MAX_STEPS: u16 = 8; // Max iterations of discovery. (discover)
const BUCKET_SIZE: usize = 16; // Denoted by k in [Kademlia]. Number of nodes stored in each bucket.
const ALPHA: usize = 3; // Denoted by \alpha in [Kademlia]. Number of concurrent FindNode requests.
pub const MAX_DATAGRAM_SIZE: usize = 1280;
const PACKET_PING: u8 = 1;
const PACKET_PONG: u8 = 2;
const PACKET_FIND_NODE: u8 = 3;
const PACKET_NEIGHBOURS: u8 = 4;
const PING_TIMEOUT: Duration = Duration::from_millis(300);
const FIND_NODE_TIMEOUT: Duration = Duration::from_secs(2);
const EXPIRY_TIME: Duration = Duration::from_secs(60);
const MAX_NODES_PING: usize = 32; // Max nodes to add/ping at once
const REQUEST_BACKOFF: [Duration; 4] = [
Duration::from_secs(1),
Duration::from_secs(4),
Duration::from_secs(16),
Duration::from_secs(64)
];
#[derive(Clone, Debug)]
pub struct NodeEntry {
pub id: NodeId,
pub endpoint: NodeEndpoint,
}
pub struct BucketEntry {
pub address: NodeEntry,
pub id_hash: H256,
pub last_seen: Instant,
backoff_until: Instant,
fail_count: usize,
}
impl BucketEntry {
fn new(address: NodeEntry) -> Self {
let now = Instant::now();
BucketEntry {
id_hash: keccak(address.id),
address,
last_seen: now,
backoff_until: now,
fail_count: 0,
}
}
}
pub struct NodeBucket {
nodes: VecDeque, //sorted by last active
}
struct PendingRequest {
packet_id: u8,
sent_at: Instant,
packet_hash: H256,
response_count: usize, // Some requests (eg. FIND_NODE) have multi-packet responses
}
impl Default for NodeBucket {
fn default() -> Self {
NodeBucket::new()
}
}
impl NodeBucket {
fn new() -> Self {
NodeBucket {
nodes: VecDeque::new()
}
}
}
pub struct Datagram {
pub payload: Bytes,
pub address: SocketAddr,
}
pub struct Discovery<'a> {
id: NodeId,
id_hash: H256,
secret: Secret,
public_endpoint: NodeEndpoint,
discovery_round: u16,
discovery_id: NodeId,
discovery_nodes: HashSet,
node_buckets: Vec,
in_flight_requests: HashMap,
expiring_pings: VecDeque<(NodeId, Instant)>,
expiring_finds: VecDeque<(NodeId, Instant)>,
send_queue: VecDeque,
check_timestamps: bool,
adding_nodes: Vec,
ip_filter: IpFilter,
request_backoff: &'a [Duration],
}
pub struct TableUpdates {
pub added: HashMap,
pub removed: HashSet,
}
impl<'a> Discovery<'a> {
pub fn new(key: &KeyPair, public: NodeEndpoint, ip_filter: IpFilter) -> Discovery<'static> {
Discovery {
id: *key.public(),
id_hash: keccak(key.public()),
secret: key.secret().clone(),
public_endpoint: public,
discovery_round: 0,
discovery_id: NodeId::new(),
discovery_nodes: HashSet::new(),
node_buckets: (0..ADDRESS_BITS).map(|_| NodeBucket::new()).collect(),
in_flight_requests: HashMap::new(),
expiring_pings: VecDeque::new(),
expiring_finds: VecDeque::new(),
send_queue: VecDeque::new(),
check_timestamps: true,
adding_nodes: Vec::new(),
ip_filter,
request_backoff: &REQUEST_BACKOFF,
}
}
/// Add a new node to discovery table. Pings the node.
pub fn add_node(&mut self, e: NodeEntry) {
// If distance returns None, then we are trying to add ourself.
let id_hash = keccak(e.id);
if let Some(dist) = Discovery::distance(&self.id_hash, &id_hash) {
if self.node_buckets[dist].nodes.iter().any(|n| n.id_hash == id_hash) {
return;
}
self.try_ping(e);
}
}
/// Add a list of nodes. Pings a few nodes each round
pub fn add_node_list(&mut self, nodes: Vec) {
for node in nodes {
self.add_node(node);
}
}
/// Add a list of known nodes to the table.
pub fn init_node_list(&mut self, nodes: Vec) {
for n in nodes {
if self.is_allowed(&n) {
self.update_node(n);
}
}
}
fn update_node(&mut self, e: NodeEntry) -> Option {
trace!(target: "discovery", "Inserting {:?}", &e);
let id_hash = keccak(e.id);
let dist = match Discovery::distance(&self.id_hash, &id_hash) {
Some(dist) => dist,
None => {
debug!(target: "discovery", "Attempted to update own entry: {:?}", e);
return None;
}
};
let mut added_map = HashMap::new();
let ping = {
let bucket = &mut self.node_buckets[dist];
let updated = if let Some(node) = bucket.nodes.iter_mut().find(|n| n.address.id == e.id) {
node.address = e.clone();
node.last_seen = Instant::now();
node.backoff_until = Instant::now();
node.fail_count = 0;
true
} else { false };
if !updated {
added_map.insert(e.id, e.clone());
bucket.nodes.push_front(BucketEntry::new(e));
if bucket.nodes.len() > BUCKET_SIZE {
select_bucket_ping(bucket.nodes.iter())
} else { None }
} else { None }
};
if let Some(node) = ping {
self.try_ping(node);
}
Some(TableUpdates { added: added_map, removed: HashSet::new() })
}
/// Starts the discovery process at round 0
fn start(&mut self) {
trace!(target: "discovery", "Starting discovery");
self.discovery_round = 0;
self.discovery_id.randomize(); //TODO: use cryptographic nonce
self.discovery_nodes.clear();
}
fn update_new_nodes(&mut self) {
while self.in_flight_requests.len() < MAX_NODES_PING {
match self.adding_nodes.pop() {
Some(next) => self.try_ping(next),
None => break,
}
}
}
fn discover(&mut self) {
self.update_new_nodes();
if self.discovery_round == DISCOVERY_MAX_STEPS {
return;
}
trace!(target: "discovery", "Starting round {:?}", self.discovery_round);
let mut tried_count = 0;
{
let nearest = self.nearest_node_entries(&self.discovery_id).into_iter();
let nearest = nearest.filter(|x| !self.discovery_nodes.contains(&x.id)).take(ALPHA).collect::>();
let target = self.discovery_id;
for r in nearest {
match self.send_find_node(&r, &target) {
Ok(()) => {
self.discovery_nodes.insert(r.id);
tried_count += 1;
},
Err(e) => {
warn!(target: "discovery", "Error sending node discovery packet for {:?}: {:?}", &r.endpoint, e);
},
};
}
}
if tried_count == 0 {
trace!(target: "discovery", "Completing discovery");
self.discovery_round = DISCOVERY_MAX_STEPS;
self.discovery_nodes.clear();
return;
}
self.discovery_round += 1;
}
/// The base 2 log of the distance between a and b using the XOR metric.
fn distance(a: &H256, b: &H256) -> Option {
for i in (0..ADDRESS_BYTES_SIZE).rev() {
let byte_index = ADDRESS_BYTES_SIZE - i - 1;
let d: u8 = a[byte_index] ^ b[byte_index];
if d != 0 {
let high_bit_index = 7 - d.leading_zeros() as usize;
return Some(i * 8 + high_bit_index);
}
}
None // a and b are equal, so log distance is -inf
}
fn try_ping(&mut self, node: NodeEntry) {
if !self.is_allowed(&node) ||
self.in_flight_requests.contains_key(&node.id) ||
self.adding_nodes.iter().any(|n| n.id == node.id)
{
return;
}
if self.in_flight_requests.len() < MAX_NODES_PING {
self.ping(&node)
.unwrap_or_else(|e| {
warn!(target: "discovery", "Error sending Ping packet: {:?}", e);
});
} else {
self.adding_nodes.push(node);
}
}
fn ping(&mut self, node: &NodeEntry) -> Result<(), Error> {
let mut rlp = RlpStream::new_list(4);
rlp.append(&PROTOCOL_VERSION);
self.public_endpoint.to_rlp_list(&mut rlp);
node.endpoint.to_rlp_list(&mut rlp);
append_expiration(&mut rlp);
let hash = self.send_packet(PACKET_PING, &node.endpoint.udp_address(), &rlp.drain())?;
let request_info = PendingRequest {
packet_id: PACKET_PING,
sent_at: Instant::now(),
packet_hash: hash,
response_count: 0,
};
self.expiring_pings.push_back((node.id, request_info.sent_at));
self.in_flight_requests.insert(node.id, request_info);
trace!(target: "discovery", "Sent Ping to {:?}", &node.endpoint);
Ok(())
}
fn send_find_node(&mut self, node: &NodeEntry, target: &NodeId) -> Result<(), Error> {
let mut rlp = RlpStream::new_list(2);
rlp.append(target);
append_expiration(&mut rlp);
let hash = self.send_packet(PACKET_FIND_NODE, &node.endpoint.udp_address(), &rlp.drain())?;
let request_info = PendingRequest {
packet_id: PACKET_FIND_NODE,
sent_at: Instant::now(),
packet_hash: hash,
response_count: 0,
};
self.expiring_finds.push_back((node.id, request_info.sent_at));
self.in_flight_requests.insert(node.id, request_info);
trace!(target: "discovery", "Sent FindNode to {:?}", &node.endpoint);
Ok(())
}
fn send_packet(&mut self, packet_id: u8, address: &SocketAddr, payload: &[u8]) -> Result {
let packet = assemble_packet(packet_id, payload, &self.secret)?;
let hash = H256::from(&packet[0..32]);
self.send_to(packet, address.clone());
Ok(hash)
}
fn nearest_node_entries(&self, target: &NodeId) -> Vec {
let target_hash = keccak(target);
let target_distance = self.id_hash ^ target_hash;
let mut ret = Vec::::with_capacity(BUCKET_SIZE);
// Sort bucket entries by distance to target and append to end of result vector.
let append_bucket = |results: &mut Vec, bucket: &NodeBucket| -> bool {
let mut sorted_entries: Vec<&BucketEntry> = bucket.nodes.iter().collect();
sorted_entries.sort_unstable_by_key(|entry| entry.id_hash ^ target_hash);
let remaining_capacity = results.capacity() - results.len();
let to_append = if remaining_capacity < sorted_entries.len() {
&sorted_entries[0..remaining_capacity]
} else {
&sorted_entries
};
for entry in to_append.iter() {
results.push(entry.address.clone());
}
results.len() == results.capacity()
};
// This algorithm leverages the structure of the routing table to efficiently find the
// nearest entries to a target hash. First, we compute the XOR distance from this node to
// the target. On a first pass, we iterate from the MSB of the distance, stopping at any
// buckets where the distance bit is set, and skipping the buckets where it is unset. These
// must be in order the nearest to the target. On a second pass, we traverse from LSB to
// MSB, appending the buckets skipped on the first pass. The reason this works is that all
// entries in bucket i have a common prefix of length exactly 32 - i - 1 with the ID of this
// node.
for i in 0..ADDRESS_BITS {
if ((target_distance[i / 8] << (i % 8)) & 0x80) != 0 {
let bucket = &self.node_buckets[ADDRESS_BITS - i - 1];
if !bucket.nodes.is_empty() && append_bucket(&mut ret, bucket) {
return ret;
}
}
}
for i in (0..ADDRESS_BITS).rev() {
if ((target_distance[i / 8] << (i % 8)) & 0x80) == 0 {
let bucket = &self.node_buckets[ADDRESS_BITS - i - 1];
if !bucket.nodes.is_empty() && append_bucket(&mut ret, bucket) {
return ret;
}
}
}
ret
}
fn send_to(&mut self, payload: Bytes, address: SocketAddr) {
self.send_queue.push_back(Datagram { payload, address });
}
pub fn on_packet(&mut self, packet: &[u8], from: SocketAddr) -> Result