// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Statistical functions and helpers. use std::iter::FromIterator; use std::ops::{Add, Sub, Deref, Div}; #[macro_use] extern crate log; /// Sorted corpus of data. #[derive(Debug, Clone, PartialEq)] pub struct Corpus(Vec); impl From> for Corpus { fn from(mut data: Vec) -> Self { data.sort(); Corpus(data) } } impl FromIterator for Corpus { fn from_iter>(iterable: I) -> Self { iterable.into_iter().collect::>().into() } } impl Deref for Corpus { type Target = [T]; fn deref(&self) -> &[T] { &self.0[..] } } impl Corpus { /// Get given percentile (approximated). pub fn percentile(&self, val: usize) -> Option<&T> { let len = self.0.len(); let x = val * len / 100; let x = ::std::cmp::min(x, len); if x == 0 { return None; } self.0.get(x - 1) } /// Get the median element, if it exists. pub fn median(&self) -> Option<&T> { self.0.get(self.0.len() / 2) } /// Whether the corpus is empty. pub fn is_empty(&self) -> bool { self.0.is_empty() } /// Number of elements in the corpus. pub fn len(&self) -> usize { self.0.len() } } impl Corpus where T: Add + Sub + Div + From { /// Create a histogram of this corpus if it at least spans the buckets. Bounds are left closed. /// Excludes outliers. pub fn histogram(&self, bucket_number: usize) -> Option> { // TODO: get outliers properly. let upto = self.len() - self.len() / 40; Histogram::create(&self.0[..upto], bucket_number) } } /// Discretised histogram. #[derive(Debug, PartialEq)] pub struct Histogram { /// Bounds of each bucket. pub bucket_bounds: Vec, /// Count within each bucket. pub counts: Vec, } impl Histogram where T: Add + Sub + Div + From { // Histogram of a sorted corpus if it at least spans the buckets. Bounds are left closed. fn create(corpus: &[T], bucket_number: usize) -> Option> { if corpus.len() < 1 { return None; } let corpus_end = corpus.last().expect("there is at least 1 element; qed").clone(); let corpus_start = corpus.first().expect("there is at least 1 element; qed").clone(); trace!(target: "stats", "Computing histogram from {} to {} with {} buckets.", corpus_start, corpus_end, bucket_number); // Bucket needs to be at least 1 wide. let bucket_size = { // Round up to get the entire corpus included. let raw_bucket_size = (corpus_end - corpus_start + bucket_number.into()) / bucket_number.into(); if raw_bucket_size == 0.into() { 1.into() } else { raw_bucket_size } }; let mut bucket_end = corpus_start + bucket_size; let mut bucket_bounds = vec![corpus_start; bucket_number + 1]; let mut counts = vec![0; bucket_number]; let mut corpus_i = 0; // Go through the corpus adding to buckets. for bucket in 0..bucket_number { while corpus.get(corpus_i).map_or(false, |v| v < &bucket_end) { // Initialized to size bucket_number above; iterates up to bucket_number; qed counts[bucket] += 1; corpus_i += 1; } // Initialized to size bucket_number + 1 above; iterates up to bucket_number; subscript is in range; qed bucket_bounds[bucket + 1] = bucket_end; bucket_end = bucket_end + bucket_size; } Some(Histogram { bucket_bounds: bucket_bounds, counts: counts }) } } #[cfg(test)] mod tests { use super::*; #[test] fn check_corpus() { let corpus = Corpus::from(vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); assert_eq!(corpus.percentile(0), None); assert_eq!(corpus.percentile(1), None); assert_eq!(corpus.percentile(101), Some(&10)); assert_eq!(corpus.percentile(100), Some(&10)); assert_eq!(corpus.percentile(50), Some(&5)); assert_eq!(corpus.percentile(60), Some(&6)); assert_eq!(corpus.median(), Some(&6)); } #[test] fn check_histogram() { let hist = Histogram::create(&[643,689,1408,2000,2296,2512,4250,4320,4842,4958,5804,6065,6098,6354,7002,7145,7845,8589,8593,8895], 5).unwrap(); let correct_bounds: Vec = vec![643, 2294, 3945, 5596, 7247, 8898]; assert_eq!(Histogram { bucket_bounds: correct_bounds, counts: vec![4,2,4,6,4] }, hist); } #[test] fn smaller_data_range_than_bucket_range() { assert_eq!( Histogram::create(&[1, 2, 2], 3), Some(Histogram { bucket_bounds: vec![1, 2, 3, 4], counts: vec![1, 2, 0] }) ); } #[test] fn data_range_is_not_multiple_of_bucket_range() { assert_eq!( Histogram::create(&[1, 2, 5], 2), Some(Histogram { bucket_bounds: vec![1, 4, 7], counts: vec![2, 1] }) ); } #[test] fn data_range_is_multiple_of_bucket_range() { assert_eq!( Histogram::create(&[1, 2, 6], 2), Some(Histogram { bucket_bounds: vec![1, 4, 7], counts: vec![2, 1] }) ); } #[test] fn none_when_too_few_data() { assert!(Histogram::::create(&[], 1).is_none()); } }