// Copyright 2015, 2016 Ethcore (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Transaction data structure. use util::numbers::*; use std::ops::Deref; use util::rlp::*; use util::sha3::*; use util::{UtilError, CryptoError, Bytes, Signature, Secret, ec}; use std::cell::*; use error::*; use evm::Schedule; use header::BlockNumber; use ethjson; use ipc::binary::BinaryConvertError; use std::mem; use std::collections::VecDeque; #[derive(Debug, Clone, PartialEq, Eq, Binary)] /// Transaction action type. pub enum Action { /// Create creates new contract. Create, /// Calls contract at given address. /// In the case of a transfer, this is the receiver's address.' Call(Address), } impl Default for Action { fn default() -> Action { Action::Create } } impl Decodable for Action { fn decode(decoder: &D) -> Result where D: Decoder { let rlp = decoder.as_rlp(); if rlp.is_empty() { Ok(Action::Create) } else { Ok(Action::Call(try!(rlp.as_val()))) } } } /// A set of information describing an externally-originating message call /// or contract creation operation. #[derive(Default, Debug, Clone, PartialEq, Eq, Binary)] pub struct Transaction { /// Nonce. pub nonce: U256, /// Gas price. pub gas_price: U256, /// Gas paid up front for transaction execution. pub gas: U256, /// Action, can be either call or contract create. pub action: Action, /// Transfered value. pub value: U256, /// Transaction data. pub data: Bytes, } impl Transaction { /// Append object with a without signature into RLP stream pub fn rlp_append_unsigned_transaction(&self, s: &mut RlpStream) { s.begin_list(6); s.append(&self.nonce); s.append(&self.gas_price); s.append(&self.gas); match self.action { Action::Create => s.append_empty_data(), Action::Call(ref to) => s.append(to) }; s.append(&self.value); s.append(&self.data); } } impl From for SignedTransaction { fn from(t: ethjson::state::Transaction) -> Self { let to: Option<_> = t.to.into(); Transaction { nonce: t.nonce.into(), gas_price: t.gas_price.into(), gas: t.gas_limit.into(), action: match to { Some(to) => Action::Call(to.into()), None => Action::Create }, value: t.value.into(), data: t.data.into(), }.sign(&t.secret.into()) } } impl From for SignedTransaction { fn from(t: ethjson::transaction::Transaction) -> Self { let to: Option<_> = t.to.into(); SignedTransaction { unsigned: Transaction { nonce: t.nonce.into(), gas_price: t.gas_price.into(), gas: t.gas_limit.into(), action: match to { Some(to) => Action::Call(to.into()), None => Action::Create }, value: t.value.into(), data: t.data.into(), }, r: t.r.into(), s: t.s.into(), v: t.v.into(), sender: Cell::new(None), hash: Cell::new(None) } } } impl Transaction { /// The message hash of the transaction. pub fn hash(&self) -> H256 { let mut stream = RlpStream::new(); self.rlp_append_unsigned_transaction(&mut stream); stream.out().sha3() } /// Signs the transaction as coming from `sender`. pub fn sign(self, secret: &Secret) -> SignedTransaction { let sig = ec::sign(secret, &self.hash()).unwrap(); self.with_signature(sig) } /// Signs the transaction with signature. pub fn with_signature(self, sig: H520) -> SignedTransaction { let (r, s, v) = sig.to_rsv(); SignedTransaction { unsigned: self, r: r, s: s, v: v + 27, hash: Cell::new(None), sender: Cell::new(None), } } /// Useful for test incorrectly signed transactions. #[cfg(test)] pub fn invalid_sign(self) -> SignedTransaction { SignedTransaction { unsigned: self, r: U256::zero(), s: U256::zero(), v: 0, hash: Cell::new(None), sender: Cell::new(None), } } /// Specify the sender; this won't survive the serialize/deserialize process, but can be cloned. pub fn fake_sign(self, from: Address) -> SignedTransaction { SignedTransaction { unsigned: self, r: U256::zero(), s: U256::zero(), v: 0, hash: Cell::new(None), sender: Cell::new(Some(from)), } } /// Get the transaction cost in gas for the given params. pub fn gas_required_for(is_create: bool, data: &[u8], schedule: &Schedule) -> u64 { data.iter().fold( (if is_create {schedule.tx_create_gas} else {schedule.tx_gas}) as u64, |g, b| g + (match *b { 0 => schedule.tx_data_zero_gas, _ => schedule.tx_data_non_zero_gas }) as u64 ) } /// Get the transaction cost in gas for this transaction. pub fn gas_required(&self, schedule: &Schedule) -> u64 { Self::gas_required_for(match self.action{Action::Create=>true, Action::Call(_)=>false}, &self.data, schedule) } } /// Signed transaction information. #[derive(Debug, Clone, Eq, Binary)] pub struct SignedTransaction { /// Plain Transaction. unsigned: Transaction, /// The V field of the signature, either 27 or 28; helps describe the point on the curve. v: u8, /// The R field of the signature; helps describe the point on the curve. r: U256, /// The S field of the signature; helps describe the point on the curve. s: U256, /// Cached hash. hash: Cell>, /// Cached sender. sender: Cell>, } impl PartialEq for SignedTransaction { fn eq(&self, other: &SignedTransaction) -> bool { self.unsigned == other.unsigned && self.v == other.v && self.r == other.r && self.s == other.s } } impl Deref for SignedTransaction { type Target = Transaction; fn deref(&self) -> &Self::Target { &self.unsigned } } impl Decodable for SignedTransaction { fn decode(decoder: &D) -> Result where D: Decoder { let d = decoder.as_rlp(); if d.item_count() != 9 { return Err(DecoderError::RlpIncorrectListLen); } Ok(SignedTransaction { unsigned: Transaction { nonce: try!(d.val_at(0)), gas_price: try!(d.val_at(1)), gas: try!(d.val_at(2)), action: try!(d.val_at(3)), value: try!(d.val_at(4)), data: try!(d.val_at(5)), }, v: try!(d.val_at(6)), r: try!(d.val_at(7)), s: try!(d.val_at(8)), hash: Cell::new(None), sender: Cell::new(None), }) } } impl Encodable for SignedTransaction { fn rlp_append(&self, s: &mut RlpStream) { self.rlp_append_sealed_transaction(s) } } impl SignedTransaction { /// Append object with a signature into RLP stream pub fn rlp_append_sealed_transaction(&self, s: &mut RlpStream) { s.begin_list(9); s.append(&self.nonce); s.append(&self.gas_price); s.append(&self.gas); match self.action { Action::Create => s.append_empty_data(), Action::Call(ref to) => s.append(to) }; s.append(&self.value); s.append(&self.data); s.append(&self.v); s.append(&self.r); s.append(&self.s); } /// Get the hash of this header (sha3 of the RLP). pub fn hash(&self) -> H256 { let hash = self.hash.get(); match hash { Some(h) => h, None => { let h = self.rlp_sha3(); self.hash.set(Some(h)); h } } } /// 0 is `v` is 27, 1 if 28, and 4 otherwise. pub fn standard_v(&self) -> u8 { match self.v { 27 => 0, 28 => 1, _ => 4 } } /// Construct a signature object from the sig. pub fn signature(&self) -> Signature { Signature::from_rsv(&From::from(&self.r), &From::from(&self.s), self.standard_v()) } /// Checks whether the signature has a low 's' value. pub fn check_low_s(&self) -> Result<(), Error> { if !ec::is_low_s(&self.s) { Err(Error::Util(UtilError::Crypto(CryptoError::InvalidSignature))) } else { Ok(()) } } /// Returns transaction sender. pub fn sender(&self) -> Result { let sender = self.sender.get(); match sender { Some(s) => Ok(s), None => { let s = Address::from(try!(ec::recover(&self.signature(), &self.unsigned.hash())).sha3()); self.sender.set(Some(s)); Ok(s) } } } /// Do basic validation, checking for valid signature and minimum gas, // TODO: consider use in block validation. #[cfg(test)] #[cfg(feature = "json-tests")] pub fn validate(self, schedule: &Schedule, require_low: bool) -> Result { if require_low && !ec::is_low_s(&self.s) { return Err(Error::Util(UtilError::Crypto(CryptoError::InvalidSignature))); } try!(self.sender()); if self.gas < U256::from(self.gas_required(&schedule)) { Err(From::from(TransactionError::InvalidGasLimit(::util::OutOfBounds{min: Some(U256::from(self.gas_required(&schedule))), max: None, found: self.gas}))) } else { Ok(self) } } } /// Signed Transaction that is a part of canon blockchain. #[derive(Debug, PartialEq, Eq, Binary)] pub struct LocalizedTransaction { /// Signed part. pub signed: SignedTransaction, /// Block number. pub block_number: BlockNumber, /// Block hash. pub block_hash: H256, /// Transaction index within block. pub transaction_index: usize } impl Deref for LocalizedTransaction { type Target = SignedTransaction; fn deref(&self) -> &Self::Target { &self.signed } } #[test] fn sender_test() { let t: SignedTransaction = decode(&::rustc_serialize::hex::FromHex::from_hex("f85f800182520894095e7baea6a6c7c4c2dfeb977efac326af552d870a801ba048b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353a0efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c804").unwrap()); assert_eq!(t.data, b""); assert_eq!(t.gas, U256::from(0x5208u64)); assert_eq!(t.gas_price, U256::from(0x01u64)); assert_eq!(t.nonce, U256::from(0x00u64)); if let Action::Call(ref to) = t.action { assert_eq!(*to, address_from_hex("095e7baea6a6c7c4c2dfeb977efac326af552d87")); } else { panic!(); } assert_eq!(t.value, U256::from(0x0au64)); assert_eq!(t.sender().unwrap(), address_from_hex("0f65fe9276bc9a24ae7083ae28e2660ef72df99e")); } #[test] fn signing() { let key = ::util::crypto::KeyPair::create().unwrap(); let t = Transaction { action: Action::Create, nonce: U256::from(42), gas_price: U256::from(3000), gas: U256::from(50_000), value: U256::from(1), data: b"Hello!".to_vec() }.sign(&key.secret()); assert_eq!(Address::from(key.public().sha3()), t.sender().unwrap()); } #[test] fn fake_signing() { let t = Transaction { action: Action::Create, nonce: U256::from(42), gas_price: U256::from(3000), gas: U256::from(50_000), value: U256::from(1), data: b"Hello!".to_vec() }.fake_sign(Address::from(0x69)); assert_eq!(Address::from(0x69), t.sender().unwrap()); let t = t.clone(); assert_eq!(Address::from(0x69), t.sender().unwrap()); }