// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . use std::fmt; use std::ops::Deref; use std::str::FromStr; use secp256k1::key; use bigint::hash::H256; use {Error, SECP256K1}; #[derive(Clone, PartialEq, Eq)] pub struct Secret { inner: H256, } impl fmt::Debug for Secret { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "Secret: 0x{:x}{:x}..{:x}{:x}", self.inner[0], self.inner[1], self.inner[30], self.inner[31]) } } impl Secret { fn from_slice_unchecked(key: &[u8]) -> Self { assert_eq!(32, key.len(), "Caller should provide 32-byte length slice"); let mut h = H256::default(); h.copy_from_slice(&key[0..32]); Secret { inner: h } } pub fn from_slice(key: &[u8]) -> Result { let secret = key::SecretKey::from_slice(&super::SECP256K1, key)?; Ok(secret.into()) } /// Inplace add one secret key to another (scalar + scalar) pub fn add(&mut self, other: &Secret) -> Result<(), Error> { let mut key_secret = self.to_secp256k1_secret()?; let other_secret = other.to_secp256k1_secret()?; key_secret.add_assign(&SECP256K1, &other_secret)?; *self = key_secret.into(); Ok(()) } /// Inplace subtract one secret key from another (scalar - scalar) pub fn sub(&mut self, other: &Secret) -> Result<(), Error> { let mut key_secret = self.to_secp256k1_secret()?; let mut other_secret = other.to_secp256k1_secret()?; other_secret.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?; key_secret.add_assign(&SECP256K1, &other_secret)?; *self = key_secret.into(); Ok(()) } /// Inplace multiply one secret key to another (scalar * scalar) pub fn mul(&mut self, other: &Secret) -> Result<(), Error> { let mut key_secret = self.to_secp256k1_secret()?; let other_secret = other.to_secp256k1_secret()?; key_secret.mul_assign(&SECP256K1, &other_secret)?; *self = key_secret.into(); Ok(()) } /// Inplace inverse secret key (1 / scalar) pub fn inv(&mut self) -> Result<(), Error> { let mut key_secret = self.to_secp256k1_secret()?; key_secret.inv_assign(&SECP256K1)?; *self = key_secret.into(); Ok(()) } /// Compute power of secret key inplace (secret ^ pow). /// This function is not intended to be used with large powers. pub fn pow(&mut self, pow: usize) -> Result<(), Error> { match pow { 0 => *self = key::ONE_KEY.into(), 1 => (), _ => { let c = self.clone(); for _ in 1..pow { self.mul(&c)?; } }, } Ok(()) } /// Create `secp256k1::key::SecretKey` based on this secret pub fn to_secp256k1_secret(&self) -> Result { Ok(key::SecretKey::from_slice(&SECP256K1, &self[..])?) } } impl FromStr for Secret { type Err = Error; fn from_str(s: &str) -> Result { let hash = H256::from_str(s).map_err(|e| Error::Custom(format!("{:?}", e)))?; Self::from_slice(&hash) } } impl From for Secret { fn from(key: key::SecretKey) -> Self { Self::from_slice_unchecked(&key[0..32]) } } impl Deref for Secret { type Target = H256; fn deref(&self) -> &Self::Target { &self.inner } } #[cfg(test)] mod tests { use std::str::FromStr; use super::super::{Random, Generator}; use super::Secret; #[test] fn multiplicating_secret_inversion_with_secret_gives_one() { let secret = Random.generate().unwrap().secret().clone(); let mut inversion = secret.clone(); inversion.inv().unwrap(); inversion.mul(&secret).unwrap(); assert_eq!(inversion, Secret::from_str("0000000000000000000000000000000000000000000000000000000000000001").unwrap()); } #[test] fn secret_inversion_is_reversible_with_inversion() { let secret = Random.generate().unwrap().secret().clone(); let mut inversion = secret.clone(); inversion.inv().unwrap(); inversion.inv().unwrap(); assert_eq!(inversion, secret); } #[test] fn secret_pow() { let secret = Random.generate().unwrap().secret().clone(); let mut pow0 = secret.clone(); pow0.pow(0).unwrap(); assert_eq!(pow0, Secret::from_str("0000000000000000000000000000000000000000000000000000000000000001").unwrap()); let mut pow1 = secret.clone(); pow1.pow(1).unwrap(); assert_eq!(pow1, secret); let mut pow2 = secret.clone(); pow2.pow(2).unwrap(); let mut pow2_expected = secret.clone(); pow2_expected.mul(&secret).unwrap(); assert_eq!(pow2, pow2_expected); let mut pow3 = secret.clone(); pow3.pow(3).unwrap(); let mut pow3_expected = secret.clone(); pow3_expected.mul(&secret).unwrap(); pow3_expected.mul(&secret).unwrap(); assert_eq!(pow3, pow3_expected); } }