// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . use std::fmt; use hashdb::*; use nibbleslice::*; use rlp::*; use super::node::{Node, OwnedNode}; use super::lookup::Lookup; use super::{Trie, TrieItem, TrieError, TrieIterator, Query}; use {ToPretty, Bytes, H256}; /// A `Trie` implementation using a generic `HashDB` backing database. /// /// Use it as a `Trie` trait object. You can use `db()` to get the backing database object. /// Use `get` and `contains` to query values associated with keys in the trie. /// /// # Example /// ``` /// extern crate ethcore_util as util; /// /// use util::trie::*; /// use util::hashdb::*; /// use util::memorydb::*; /// use util::hash::*; /// /// fn main() { /// let mut memdb = MemoryDB::new(); /// let mut root = H256::new(); /// TrieDBMut::new(&mut memdb, &mut root).insert(b"foo", b"bar").unwrap(); /// let t = TrieDB::new(&memdb, &root).unwrap(); /// assert!(t.contains(b"foo").unwrap()); /// assert_eq!(t.get(b"foo").unwrap().unwrap(), DBValue::from_slice(b"bar")); /// } /// ``` pub struct TrieDB<'db> { db: &'db HashDB, root: &'db H256, /// The number of hashes performed so far in operations on this trie. pub hash_count: usize, } #[cfg_attr(feature="dev", allow(wrong_self_convention))] impl<'db> TrieDB<'db> { /// Create a new trie with the backing database `db` and `root` /// Returns an error if `root` does not exist pub fn new(db: &'db HashDB, root: &'db H256) -> super::Result { if !db.contains(root) { Err(Box::new(TrieError::InvalidStateRoot(*root))) } else { Ok(TrieDB { db: db, root: root, hash_count: 0 }) } } /// Get the backing database. pub fn db(&'db self) -> &'db HashDB { self.db } /// Get the data of the root node. fn root_data(&self) -> super::Result { self.db.get(self.root).ok_or_else(|| Box::new(TrieError::InvalidStateRoot(*self.root))) } /// Indentation helper for `format_all`. fn fmt_indent(&self, f: &mut fmt::Formatter, size: usize) -> fmt::Result { for _ in 0..size { write!(f, " ")?; } Ok(()) } /// Recursion helper for implementation of formatting trait. fn fmt_all(&self, node: Node, f: &mut fmt::Formatter, deepness: usize) -> fmt::Result { match node { Node::Leaf(slice, value) => writeln!(f, "'{:?}: {:?}.", slice, value.pretty())?, Node::Extension(ref slice, ref item) => { write!(f, "'{:?} ", slice)?; if let Ok(node) = self.get_raw_or_lookup(&*item) { self.fmt_all(Node::decoded(&node), f, deepness)?; } }, Node::Branch(ref nodes, ref value) => { writeln!(f, "")?; if let Some(ref v) = *value { self.fmt_indent(f, deepness + 1)?; writeln!(f, "=: {:?}", v.pretty())? } for i in 0..16 { let node = self.get_raw_or_lookup(&*nodes[i]); match node.as_ref().map(|n| Node::decoded(&*n)) { Ok(Node::Empty) => {}, Ok(n) => { self.fmt_indent(f, deepness + 1)?; write!(f, "'{:x} ", i)?; self.fmt_all(n, f, deepness + 1)?; } Err(e) => { write!(f, "ERROR: {}", e)?; } } } }, // empty Node::Empty => { writeln!(f, "")?; } }; Ok(()) } /// Given some node-describing data `node`, return the actual node RLP. /// This could be a simple identity operation in the case that the node is sufficiently small, but /// may require a database lookup. fn get_raw_or_lookup(&'db self, node: &'db [u8]) -> super::Result { // check if its sha3 + len let r = Rlp::new(node); match r.is_data() && r.size() == 32 { true => { let key = r.as_val::(); self.db.get(&key).ok_or_else(|| Box::new(TrieError::IncompleteDatabase(key))) } false => Ok(DBValue::from_slice(node)) } } } impl<'db> Trie for TrieDB<'db> { fn iter<'a>(&'a self) -> super::Result + 'a>> { TrieDBIterator::new(self).map(|iter| Box::new(iter) as Box<_>) } fn root(&self) -> &H256 { self.root } fn get_with<'a, 'key, Q: Query>(&'a self, key: &'key [u8], query: Q) -> super::Result> where 'a: 'key { Lookup { db: self.db, query: query, hash: self.root.clone(), }.look_up(NibbleSlice::new(key)) } } impl<'db> fmt::Debug for TrieDB<'db> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { writeln!(f, "c={:?} [", self.hash_count)?; let root_rlp = self.db.get(self.root).expect("Trie root not found!"); self.fmt_all(Node::decoded(&root_rlp), f, 0)?; writeln!(f, "]") } } #[derive(Clone, Eq, PartialEq)] enum Status { Entering, At, AtChild(usize), Exiting, } #[derive(Clone, Eq, PartialEq)] struct Crumb { node: OwnedNode, status: Status, } impl Crumb { /// Move on to next status in the node's sequence. fn increment(&mut self) { self.status = match (&self.status, &self.node) { (_, &OwnedNode::Empty) => Status::Exiting, (&Status::Entering, _) => Status::At, (&Status::At, &OwnedNode::Branch(_, _)) => Status::AtChild(0), (&Status::AtChild(x), &OwnedNode::Branch(_, _)) if x < 15 => Status::AtChild(x + 1), _ => Status::Exiting, } } } /// Iterator for going through all values in the trie. #[derive(Clone)] pub struct TrieDBIterator<'a> { db: &'a TrieDB<'a>, trail: Vec, key_nibbles: Bytes, } impl<'a> TrieDBIterator<'a> { /// Create a new iterator. pub fn new(db: &'a TrieDB) -> super::Result> { let mut r = TrieDBIterator { db: db, trail: vec![], key_nibbles: Vec::new(), }; db.root_data().and_then(|root| r.descend(&root))?; Ok(r) } fn seek_descend<'key>(&mut self, node_data: DBValue, key: &NibbleSlice<'key>) -> super::Result<()> { let node = Node::decoded(&node_data); match node { Node::Leaf(ref slice, _) => { if slice == key { self.trail.push(Crumb { status: Status::At, node: node.clone().into(), }); } else { self.trail.push(Crumb { status: Status::Exiting, node: node.clone().into(), }); } self.key_nibbles.extend(slice.iter()); Ok(()) }, Node::Extension(ref slice, ref item) => { if key.starts_with(slice) { self.trail.push(Crumb { status: Status::At, node: node.clone().into(), }); self.key_nibbles.extend(slice.iter()); let data = self.db.get_raw_or_lookup(&*item)?; self.seek_descend(data, &key.mid(slice.len())) } else { self.descend(&node_data)?; Ok(()) } }, Node::Branch(ref nodes, _) => match key.is_empty() { true => { self.trail.push(Crumb { status: Status::At, node: node.clone().into(), }); Ok(()) }, false => { let i = key.at(0); self.trail.push(Crumb { status: Status::AtChild(i as usize), node: node.clone().into(), }); self.key_nibbles.push(i); let child = self.db.get_raw_or_lookup(&*nodes[i as usize])?; self.seek_descend(child, &key.mid(1)) } }, _ => Ok(()) } } /// Descend into a payload. fn descend(&mut self, d: &[u8]) -> super::Result<()> { let node = Node::decoded(&self.db.get_raw_or_lookup(d)?).into(); Ok(self.descend_into_node(node)) } /// Descend into a payload. fn descend_into_node(&mut self, node: OwnedNode) { self.trail.push(Crumb { status: Status::Entering, node: node, }); match &self.trail.last().expect("just pushed item; qed").node { &OwnedNode::Leaf(ref n, _) | &OwnedNode::Extension(ref n, _) => { self.key_nibbles.extend((0..n.len()).map(|i| n.at(i))); }, _ => {} } } /// The present key. fn key(&self) -> Bytes { // collapse the key_nibbles down to bytes. let nibbles = &self.key_nibbles; let mut i = 1; let mut result = Bytes::with_capacity(nibbles.len() / 2); let len = nibbles.len(); while i < len { result.push(nibbles[i - 1] * 16 + nibbles[i]); i += 2; } result } } impl<'a> TrieIterator for TrieDBIterator<'a> { /// Position the iterator on the first element with key >= `key` fn seek(&mut self, key: &[u8]) -> super::Result<()> { self.trail.clear(); self.key_nibbles.clear(); let root_rlp = self.db.root_data()?; self.seek_descend(root_rlp, &NibbleSlice::new(key)) } } impl<'a> Iterator for TrieDBIterator<'a> { type Item = TrieItem<'a>; fn next(&mut self) -> Option { enum IterStep { Continue, PopTrail, Descend(super::Result), } loop { let iter_step = { match self.trail.last_mut() { Some(b) => { b.increment(); }, None => return None, } let b = self.trail.last().expect("trail.last_mut().is_some(); qed"); match (b.status.clone(), &b.node) { (Status::Exiting, n) => { match *n { OwnedNode::Leaf(ref n, _) | OwnedNode::Extension(ref n, _) => { let l = self.key_nibbles.len(); self.key_nibbles.truncate(l - n.len()); }, OwnedNode::Branch(_, _) => { self.key_nibbles.pop(); }, _ => {} } IterStep::PopTrail }, (Status::At, &OwnedNode::Leaf(_, ref v)) | (Status::At, &OwnedNode::Branch(_, Some(ref v))) => { return Some(Ok((self.key(), v.clone()))); }, (Status::At, &OwnedNode::Extension(_, ref d)) => IterStep::Descend(self.db.get_raw_or_lookup(&*d)), (Status::At, &OwnedNode::Branch(_, _)) => IterStep::Continue, (Status::AtChild(i), &OwnedNode::Branch(ref children, _)) if children[i].len() > 0 => { match i { 0 => self.key_nibbles.push(0), i => *self.key_nibbles.last_mut() .expect("pushed as 0; moves sequentially; removed afterwards; qed") = i as u8, } IterStep::Descend(self.db.get_raw_or_lookup(&*children[i])) }, (Status::AtChild(i), &OwnedNode::Branch(_, _)) => { if i == 0 { self.key_nibbles.push(0); } IterStep::Continue }, _ => panic!() // Should never see Entering or AtChild without a Branch here. } }; match iter_step { IterStep::PopTrail => { self.trail.pop(); }, IterStep::Descend(Ok(d)) => { self.descend_into_node(Node::decoded(&d).into()) }, IterStep::Descend(Err(e)) => { return Some(Err(e)) } IterStep::Continue => {}, } } } } #[test] fn iterator() { use memorydb::*; use super::TrieMut; use super::triedbmut::*; let d = vec![ DBValue::from_slice(b"A"), DBValue::from_slice(b"AA"), DBValue::from_slice(b"AB"), DBValue::from_slice(b"B") ]; let mut memdb = MemoryDB::new(); let mut root = H256::new(); { let mut t = TrieDBMut::new(&mut memdb, &mut root); for x in &d { t.insert(x, x).unwrap(); } } let t = TrieDB::new(&memdb, &root).unwrap(); assert_eq!(d.iter().map(|i| i.clone().into_vec()).collect::>(), t.iter().unwrap().map(|x| x.unwrap().0).collect::>()); assert_eq!(d, t.iter().unwrap().map(|x| x.unwrap().1).collect::>()); } #[test] fn iterator_seek() { use memorydb::*; use super::TrieMut; use super::triedbmut::*; let d = vec![ DBValue::from_slice(b"A"), DBValue::from_slice(b"AA"), DBValue::from_slice(b"AB"), DBValue::from_slice(b"B") ]; let mut memdb = MemoryDB::new(); let mut root = H256::new(); { let mut t = TrieDBMut::new(&mut memdb, &mut root); for x in &d { t.insert(x, x).unwrap(); } } let t = TrieDB::new(&memdb, &root).unwrap(); let mut iter = t.iter().unwrap(); assert_eq!(iter.next(), Some(Ok((b"A".to_vec(), DBValue::from_slice(b"A"))))); iter.seek(b"!").unwrap(); assert_eq!(d, iter.map(|x| x.unwrap().1).collect::>()); let mut iter = t.iter().unwrap(); iter.seek(b"A").unwrap(); assert_eq!(&d[1..], &iter.map(|x| x.unwrap().1).collect::>()[..]); let mut iter = t.iter().unwrap(); iter.seek(b"AA").unwrap(); assert_eq!(&d[2..], &iter.map(|x| x.unwrap().1).collect::>()[..]); let mut iter = t.iter().unwrap(); iter.seek(b"A!").unwrap(); assert_eq!(&d[1..], &iter.map(|x| x.unwrap().1).collect::>()[..]); let mut iter = t.iter().unwrap(); iter.seek(b"AB").unwrap(); assert_eq!(&d[3..], &iter.map(|x| x.unwrap().1).collect::>()[..]); let mut iter = t.iter().unwrap(); iter.seek(b"AB!").unwrap(); assert_eq!(&d[3..], &iter.map(|x| x.unwrap().1).collect::>()[..]); let mut iter = t.iter().unwrap(); iter.seek(b"B").unwrap(); assert_eq!(&d[4..], &iter.map(|x| x.unwrap().1).collect::>()[..]); let mut iter = t.iter().unwrap(); iter.seek(b"C").unwrap(); assert_eq!(&d[4..], &iter.map(|x| x.unwrap().1).collect::>()[..]); } #[test] fn get_len() { use memorydb::*; use super::TrieMut; use super::triedbmut::*; let mut memdb = MemoryDB::new(); let mut root = H256::new(); { let mut t = TrieDBMut::new(&mut memdb, &mut root); t.insert(b"A", b"ABC").unwrap(); t.insert(b"B", b"ABCBA").unwrap(); } let t = TrieDB::new(&memdb, &root).unwrap(); assert_eq!(t.get_with(b"A", |x: &[u8]| x.len()), Ok(Some(3))); assert_eq!(t.get_with(b"B", |x: &[u8]| x.len()), Ok(Some(5))); assert_eq!(t.get_with(b"C", |x: &[u8]| x.len()), Ok(None)); }