// Copyright 2015, 2016 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Light client synchronization. //! //! This will synchronize the header chain using LES messages. //! Dataflow is largely one-directional as headers are pushed into //! the light client queue for import. Where possible, they are batched //! in groups. //! //! This is written assuming that the client and sync service are running //! in the same binary; unlike a full node which might communicate via IPC. use std::collections::HashMap; use std::mem; use std::sync::Arc; use light::client::LightChainClient; use light::net::{ Announcement, Handler, BasicContext, EventContext, Capabilities, ReqId, Status, }; use light::request; use network::PeerId; use util::{Bytes, U256, H256, Mutex, RwLock}; use rand::{Rng, OsRng}; use self::sync_round::{AbortReason, SyncRound, ResponseContext}; mod response; mod sync_round; /// Peer chain info. #[derive(Clone)] struct ChainInfo { head_td: U256, head_hash: H256, head_num: u64, } struct Peer { status: ChainInfo, } impl Peer { // Create a new peer. fn new(chain_info: ChainInfo) -> Self { Peer { status: chain_info, } } } // search for a common ancestor with the best chain. enum AncestorSearch { Queued(u64), // queued to search for blocks starting from here. Awaiting(ReqId, u64, request::Headers), // awaiting response for this request. Prehistoric, // prehistoric block found. TODO: start to roll back CHTs. FoundCommon(u64, H256), // common block found. Genesis, // common ancestor is the genesis. } impl AncestorSearch { fn begin(best_num: u64) -> Self { match best_num { 0 => AncestorSearch::Genesis, _ => AncestorSearch::Queued(best_num), } } fn process_response(self, ctx: &ResponseContext, client: &L) -> AncestorSearch where L: LightChainClient { let first_num = client.chain_info().first_block_number.unwrap_or(0); match self { AncestorSearch::Awaiting(id, start, req) => { if &id == ctx.req_id() { match response::decode_and_verify(ctx.data(), &req) { Ok(headers) => { for header in &headers { if client.is_known(&header.hash()) { debug!(target: "sync", "Found common ancestor with best chain"); return AncestorSearch::FoundCommon(header.number(), header.hash()); } if header.number() <= first_num { debug!(target: "sync", "Prehistoric common ancestor with best chain."); return AncestorSearch::Prehistoric; } } AncestorSearch::Queued(start - headers.len() as u64) } Err(e) => { trace!(target: "sync", "Bad headers response from {}: {}", ctx.responder(), e); ctx.punish_responder(); AncestorSearch::Queued(start) } } } else { AncestorSearch::Awaiting(id, start, req) } } other => other, } } fn dispatch_request(self, mut dispatcher: F) -> AncestorSearch where F: FnMut(request::Headers) -> Option { const BATCH_SIZE: usize = 64; match self { AncestorSearch::Queued(start) => { let req = request::Headers { start: start.into(), max: ::std::cmp::min(start as usize, BATCH_SIZE), skip: 0, reverse: true, }; match dispatcher(req.clone()) { Some(req_id) => AncestorSearch::Awaiting(req_id, start, req), None => AncestorSearch::Queued(start), } } other => other, } } } // synchronization state machine. enum SyncState { // Idle (waiting for peers) Idle, // searching for common ancestor with best chain. // queue should be cleared at this phase. AncestorSearch(AncestorSearch), // Doing sync rounds. Rounds(SyncRound), } struct ResponseCtx<'a> { peer: PeerId, req_id: ReqId, ctx: &'a BasicContext, data: &'a [Bytes], } impl<'a> ResponseContext for ResponseCtx<'a> { fn responder(&self) -> PeerId { self.peer } fn req_id(&self) -> &ReqId { &self.req_id } fn data(&self) -> &[Bytes] { self.data } fn punish_responder(&self) { self.ctx.disable_peer(self.peer) } } /// Light client synchronization manager. See module docs for more details. pub struct LightSync { best_seen: Mutex>, // best seen block on the network. peers: RwLock>>, // peers which are relevant to synchronization. client: Arc, rng: Mutex, state: Mutex, } impl Handler for LightSync { fn on_connect(&self, ctx: &EventContext, status: &Status, capabilities: &Capabilities) { let our_best = self.client.chain_info().best_block_number; if !capabilities.serve_headers || status.head_num <= our_best { trace!(target: "sync", "Disconnecting irrelevant peer: {}", ctx.peer()); ctx.disconnect_peer(ctx.peer()); return; } let chain_info = ChainInfo { head_td: status.head_td, head_hash: status.head_hash, head_num: status.head_num, }; { let mut best = self.best_seen.lock(); if best.as_ref().map_or(true, |b| status.head_td > b.1) { *best = Some((status.head_hash, status.head_td)); } } self.peers.write().insert(ctx.peer(), Mutex::new(Peer::new(chain_info))); self.maintain_sync(ctx.as_basic()); } fn on_disconnect(&self, ctx: &EventContext, unfulfilled: &[ReqId]) { let peer_id = ctx.peer(); let peer = match self.peers.write().remove(&peer_id).map(|p| p.into_inner()) { Some(peer) => peer, None => return, }; trace!(target: "sync", "peer {} disconnecting", peer_id); let new_best = { let mut best = self.best_seen.lock(); let peer_best = (peer.status.head_hash, peer.status.head_td); if best.as_ref().map_or(false, |b| b == &peer_best) { // search for next-best block. let next_best: Option<(H256, U256)> = self.peers.read().values() .map(|p| p.lock()) .map(|p| (p.status.head_hash, p.status.head_td)) .fold(None, |acc, x| match acc { Some(acc) => if x.1 > acc.1 { Some(x) } else { Some(acc) }, None => Some(x), }); *best = next_best; } best.clone() }; if new_best.is_none() { debug!(target: "sync", "No peers remain. Reverting to idle"); *self.state.lock() = SyncState::Idle; } else { let mut state = self.state.lock(); *state = match mem::replace(&mut *state, SyncState::Idle) { SyncState::Idle => SyncState::Idle, SyncState::AncestorSearch(search) => SyncState::AncestorSearch(search), SyncState::Rounds(round) => SyncState::Rounds(round.requests_abandoned(unfulfilled)), }; } self.maintain_sync(ctx.as_basic()); } fn on_announcement(&self, ctx: &EventContext, announcement: &Announcement) { let last_td = { let peers = self.peers.read(); match peers.get(&ctx.peer()) { None => return, Some(peer) => { let mut peer = peer.lock(); let last_td = peer.status.head_td; peer.status = ChainInfo { head_td: announcement.head_td, head_hash: announcement.head_hash, head_num: announcement.head_num, }; last_td } } }; trace!(target: "sync", "Announcement from peer {}: new chain head {:?}, reorg depth {}", ctx.peer(), (announcement.head_hash, announcement.head_num), announcement.reorg_depth); if last_td > announcement.head_td { trace!(target: "sync", "Peer {} moved backwards.", ctx.peer()); self.peers.write().remove(&ctx.peer()); ctx.disconnect_peer(ctx.peer()); } { let mut best = self.best_seen.lock(); if best.as_ref().map_or(true, |b| announcement.head_td > b.1) { *best = Some((announcement.head_hash, announcement.head_td)); } } self.maintain_sync(ctx.as_basic()); } fn on_block_headers(&self, ctx: &EventContext, req_id: ReqId, headers: &[Bytes]) { if !self.peers.read().contains_key(&ctx.peer()) { return } { let mut state = self.state.lock(); let ctx = ResponseCtx { peer: ctx.peer(), req_id: req_id, ctx: ctx.as_basic(), data: headers, }; *state = match mem::replace(&mut *state, SyncState::Idle) { SyncState::Idle => SyncState::Idle, SyncState::AncestorSearch(search) => SyncState::AncestorSearch(search.process_response(&ctx, &*self.client)), SyncState::Rounds(round) => SyncState::Rounds(round.process_response(&ctx)), }; } self.maintain_sync(ctx.as_basic()); } fn tick(&self, ctx: &BasicContext) { self.maintain_sync(ctx); } } // private helpers impl LightSync { // Begins a search for the common ancestor and our best block. // does not lock state, instead has a mutable reference to it passed. fn begin_search(&self, state: &mut SyncState) { if let None = *self.best_seen.lock() { // no peers. *state = SyncState::Idle; return; } trace!(target: "sync", "Beginning search for common ancestor"); self.client.clear_queue(); let chain_info = self.client.chain_info(); *state = SyncState::AncestorSearch(AncestorSearch::begin(chain_info.best_block_number)); } fn maintain_sync(&self, ctx: &BasicContext) { const DRAIN_AMOUNT: usize = 128; debug!(target: "sync", "Maintaining sync."); let mut state = self.state.lock(); // drain any pending blocks into the queue. { let mut sink = Vec::with_capacity(DRAIN_AMOUNT); 'a: loop { let queue_info = self.client.queue_info(); if queue_info.is_full() { break } *state = match mem::replace(&mut *state, SyncState::Idle) { SyncState::Rounds(round) => SyncState::Rounds(round.drain(&mut sink, Some(DRAIN_AMOUNT))), other => other, }; if sink.is_empty() { break } for header in sink.drain(..) { if let Err(e) = self.client.queue_header(header) { debug!(target: "sync", "Found bad header ({:?}). Reset to search state.", e); self.begin_search(&mut state); break 'a; } } } } // handle state transitions. { match mem::replace(&mut *state, SyncState::Idle) { SyncState::Rounds(SyncRound::Abort(reason)) => { match reason { AbortReason::BadScaffold(bad_peers) => { debug!(target: "sync", "Disabling peers responsible for bad scaffold"); for peer in bad_peers { ctx.disable_peer(peer); } } AbortReason::NoResponses => {} } debug!(target: "sync", "Beginning search after aborted sync round"); self.begin_search(&mut state); } SyncState::AncestorSearch(AncestorSearch::FoundCommon(num, hash)) => { // TODO: compare to best block and switch to another downloading // method when close. *state = SyncState::Rounds(SyncRound::begin(num, hash)); } SyncState::AncestorSearch(AncestorSearch::Genesis) => { // Same here. let g_hash = self.client.chain_info().genesis_hash; *state = SyncState::Rounds(SyncRound::begin(0, g_hash)); } SyncState::Idle => self.begin_search(&mut state), other => *state = other, // restore displaced state. } } // allow dispatching of requests. // TODO: maybe wait until the amount of cumulative requests remaining is high enough // to avoid pumping the failure rate. { let peers = self.peers.read(); let mut peer_ids: Vec<_> = peers.keys().cloned().collect(); let mut rng = self.rng.lock(); // naive request dispatcher: just give to any peer which says it will // give us responses. let dispatcher = move |req: request::Headers| { rng.shuffle(&mut peer_ids); for peer in &peer_ids { if ctx.max_requests(*peer, request::Kind::Headers) >= req.max { match ctx.request_from(*peer, request::Request::Headers(req.clone())) { Ok(id) => { return Some(id) } Err(e) => trace!(target: "sync", "Error requesting headers from viable peer: {}", e), } } } None }; *state = match mem::replace(&mut *state, SyncState::Idle) { SyncState::Rounds(round) => SyncState::Rounds(round.dispatch_requests(dispatcher)), SyncState::AncestorSearch(search) => SyncState::AncestorSearch(search.dispatch_request(dispatcher)), other => other, }; } } } // public API impl LightSync { /// Create a new instance of `LightSync`. /// /// This won't do anything until registered as a handler /// so it can act on events. pub fn new(client: Arc) -> Result { Ok(LightSync { best_seen: Mutex::new(None), peers: RwLock::new(HashMap::new()), client: client, rng: Mutex::new(try!(OsRng::new())), state: Mutex::new(SyncState::Idle), }) } }