use util::*; use basic_types::*; use error::*; use evm::Schedule; pub enum Action { Create, Call(Address), } /// A set of information describing an externally-originating message call /// or contract creation operation. pub struct Transaction { pub nonce: U256, pub gas_price: U256, pub gas: U256, pub action: Action, pub value: U256, pub data: Bytes, // signature pub v: u8, pub r: U256, pub s: U256, hash: RefCell>, //TODO: make this private } impl Transaction { /// Append object into RLP stream, optionally with or without the signature. pub fn rlp_append_opt(&self, s: &mut RlpStream, with_seal: Seal) { s.append_list(6 + match with_seal { Seal::With => 3, _ => 0 }); s.append(&self.nonce); s.append(&self.gas_price); s.append(&self.gas); match self.action { Action::Create => s.append_empty_data(), Action::Call(ref to) => s.append(to), }; s.append(&self.value); s.append(&self.data); match with_seal { Seal::With => { s.append(&(self.v as u16)).append(&self.r).append(&self.s); }, _ => {} } } /// Get the RLP serialisation of the object, optionally with or without the signature. pub fn rlp_bytes_opt(&self, with_seal: Seal) -> Bytes { let mut s = RlpStream::new(); self.rlp_append_opt(&mut s, with_seal); s.out() } } impl RlpStandard for Transaction { fn rlp_append(&self, s: &mut RlpStream) { self.rlp_append_opt(s, Seal::With) } } impl Transaction { /// Get the hash of this header (sha3 of the RLP). pub fn hash(&self) -> H256 { let mut hash = self.hash.borrow_mut(); match &mut *hash { &mut Some(ref h) => h.clone(), hash @ &mut None => { *hash = Some(self.rlp_sha3()); hash.as_ref().unwrap().clone() } } } /// Note that some fields have changed. Resets the memoised hash. pub fn note_dirty(&self) { *self.hash.borrow_mut() = None; } /// Returns transaction type. pub fn action(&self) -> &Action { &self.action } /// 0 is `v` is 27, 1 if 28, and 4 otherwise. pub fn standard_v(&self) -> u8 { match self.v { 27 => 0, 28 => 1, _ => 4 } } /// Construct a signature object from the sig. pub fn signature(&self) -> Signature { Signature::from_rsv(&From::from(&self.r), &From::from(&self.s), self.standard_v()) } /// The message hash of the transaction. pub fn message_hash(&self) -> H256 { self.rlp_bytes_opt(Seal::Without).sha3() } /// Returns transaction sender. pub fn sender(&self) -> Result { Ok(From::from(try!(ec::recover(&self.signature(), &self.message_hash())).sha3())) } /// Get the transaction cost in gas for the given params. pub fn gas_required_for(is_create: bool, data: &[u8], schedule: &Schedule) -> U256 { // CRITICAL TODO XXX FIX NEED BIGINT!!!!! data.iter().fold( U256::from(if is_create {schedule.tx_create_gas} else {schedule.tx_gas}), |g, b| g + U256::from(match *b { 0 => schedule.tx_data_zero_gas, _ => schedule.tx_data_non_zero_gas}) ) } /// Get the transaction cost in gas for this transaction. pub fn gas_required(&self, schedule: &Schedule) -> U256 { Self::gas_required_for(match self.action{Action::Create=>true, Action::Call(_)=>false}, &self.data, schedule) } /// Do basic validation, checking for valid signature and minimum gas, pub fn validate(self, schedule: &Schedule) -> Result { try!(self.sender()); if self.gas < self.gas_required(&schedule) { Err(From::from(TransactionError::InvalidGasLimit(OutOfBounds{min: Some(self.gas_required(&schedule)), max: None, found: self.gas}))) } else { Ok(self) } } } impl Decodable for Action { fn decode(decoder: &D) -> Result where D: Decoder { let rlp = decoder.as_rlp(); if rlp.is_empty() { Ok(Action::Create) } else { Ok(Action::Call(try!(rlp.as_val()))) } } } impl Decodable for Transaction { fn decode(decoder: &D) -> Result where D: Decoder { let d = try!(decoder.as_list()); if d.len() != 9 { return Err(DecoderError::RlpIncorrectListLen); } Ok(Transaction { nonce: try!(Decodable::decode(&d[0])), gas_price: try!(Decodable::decode(&d[1])), gas: try!(Decodable::decode(&d[2])), action: try!(Decodable::decode(&d[3])), value: try!(Decodable::decode(&d[4])), data: try!(Decodable::decode(&d[5])), v: try!(u16::decode(&d[6])) as u8, r: try!(Decodable::decode(&d[7])), s: try!(Decodable::decode(&d[8])), hash: RefCell::new(None) }) } } pub fn clean(s: &str) -> &str { if s.len() >= 2 && &s[0..2] == "0x" { &s[2..] } else { s } } pub fn bytes_from_json(json: &Json) -> Bytes { let s = json.as_string().unwrap(); if s.len() % 2 == 1 { FromHex::from_hex(&("0".to_string() + &(clean(s).to_string()))[..]).unwrap_or(vec![]) } else { FromHex::from_hex(clean(s)).unwrap_or(vec![]) } } pub fn address_from_json(json: &Json) -> Address { let s = json.as_string().unwrap(); if s.len() % 2 == 1 { address_from_hex(&("0".to_string() + &(clean(s).to_string()))[..]) } else { address_from_hex(clean(s)) } } pub fn u256_from_json(json: &Json) -> U256 { let s = json.as_string().unwrap(); if s.len() >= 2 && &s[0..2] == "0x" { // hex U256::from_str(&s[2..]).unwrap() } else { // dec U256::from_dec_str(s).unwrap() } } #[cfg(test)] mod tests { use util::*; use evm::Schedule; use header::BlockNumber; use super::*; #[test] fn sender_test() { let t: Transaction = decode(&FromHex::from_hex("f85f800182520894095e7baea6a6c7c4c2dfeb977efac326af552d870a801ba048b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353a0efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c804").unwrap()); assert_eq!(t.data, b""); assert_eq!(t.gas, U256::from(0x5208u64)); assert_eq!(t.gas_price, U256::from(0x01u64)); assert_eq!(t.nonce, U256::from(0x00u64)); if let Action::Call(ref to) = t.action { assert_eq!(*to, address_from_hex("095e7baea6a6c7c4c2dfeb977efac326af552d87")); } else { panic!(); } assert_eq!(t.value, U256::from(0x0au64)); assert_eq!(t.sender().unwrap(), address_from_hex("0f65fe9276bc9a24ae7083ae28e2660ef72df99e")); } fn do_json_test(json_data: &[u8]) -> Vec { let json = Json::from_str(::std::str::from_utf8(json_data).unwrap()).expect("Json is invalid"); let mut failed = Vec::new(); let schedule = Schedule::new_frontier(); for (name, test) in json.as_object().unwrap() { let mut fail = false; let mut fail_unless = |cond: bool| if !cond && fail { failed.push(name.to_string()); fail = true }; let _ = BlockNumber::from_str(test["blocknumber"].as_string().unwrap()).unwrap(); let rlp = bytes_from_json(&test["rlp"]); let res = UntrustedRlp::new(&rlp).as_val().map_err(|e| From::from(e)).and_then(|t: Transaction| t.validate(&schedule)); fail_unless(test.find("transaction").is_none() == res.is_err()); if let (Some(&Json::Object(ref tx)), Some(&Json::String(ref expect_sender))) = (test.find("transaction"), test.find("sender")) { let t = res.unwrap(); fail_unless(t.sender().unwrap() == address_from_hex(clean(expect_sender))); fail_unless(t.data == bytes_from_json(&tx["data"])); fail_unless(t.gas == u256_from_json(&tx["gasLimit"])); fail_unless(t.gas_price == u256_from_json(&tx["gasPrice"])); fail_unless(t.nonce == u256_from_json(&tx["nonce"])); fail_unless(t.value == u256_from_json(&tx["value"])); if let Action::Call(ref to) = t.action { fail_unless(to == &address_from_json(&tx["to"])); } else { fail_unless(bytes_from_json(&tx["to"]).len() == 0); } } } for f in failed.iter() { println!("FAILED: {:?}", f); } failed } macro_rules! declare_test { ($test_set_name: ident/$name: ident) => { #[test] #[allow(non_snake_case)] fn $name() { assert!(do_json_test(include_bytes!(concat!("../res/ethereum/tests/", stringify!($test_set_name), "/", stringify!($name), ".json"))).len() == 0); } } } declare_test!{TransactionTests/ttTransactionTest} declare_test!{TransactionTests/tt10mbDataField} declare_test!{TransactionTests/ttWrongRLPTransaction} }