use util::*; use client::{BlockChainClient, BlockStatus, TreeRoute, BlockQueueStatus, BlockChainInfo}; use header::{Header as BlockHeader, BlockNumber}; use error::*; use sync::io::SyncIo; use sync::chain::ChainSync; struct TestBlockChainClient { blocks: HashMap, numbers: HashMap, genesis_hash: H256, last_hash: H256, difficulty: U256 } impl TestBlockChainClient { fn new() -> TestBlockChainClient { let mut client = TestBlockChainClient { blocks: HashMap::new(), numbers: HashMap::new(), genesis_hash: H256::new(), last_hash: H256::new(), difficulty: From::from(0), }; client.add_blocks(1, true); // add genesis block client.genesis_hash = client.last_hash.clone(); client } pub fn add_blocks(&mut self, count: usize, empty: bool) { for n in self.numbers.len()..(self.numbers.len() + count) { let mut header = BlockHeader::new(); header.difficulty = From::from(n); header.parent_hash = self.last_hash.clone(); header.number = n as BlockNumber; let mut uncles = RlpStream::new_list(if empty {0} else {1}); if !empty { uncles.append(&H256::from(&U256::from(n))); header.uncles_hash = uncles.as_raw().sha3(); } let mut rlp = RlpStream::new_list(3); rlp.append(&header); rlp.append_raw(&rlp::NULL_RLP, 1); rlp.append_raw(uncles.as_raw(), 1); self.import_block(rlp.as_raw()).unwrap(); } } } impl BlockChainClient for TestBlockChainClient { fn block_header(&self, h: &H256) -> Option { self.blocks.get(h).map(|r| Rlp::new(r).at(0).as_raw().to_vec()) } fn block_body(&self, h: &H256) -> Option { self.blocks.get(h).map(|r| { let mut stream = RlpStream::new_list(2); stream.append_raw(Rlp::new(&r).at(1).as_raw(), 1); stream.append_raw(Rlp::new(&r).at(2).as_raw(), 1); stream.out() }) } fn block(&self, h: &H256) -> Option { self.blocks.get(h).map(|b| b.clone()) } fn block_status(&self, h: &H256) -> BlockStatus { match self.blocks.get(h) { Some(_) => BlockStatus::InChain, None => BlockStatus::Unknown } } fn block_header_at(&self, n: BlockNumber) -> Option { self.numbers.get(&(n as usize)).and_then(|h| self.block_header(h)) } fn block_body_at(&self, n: BlockNumber) -> Option { self.numbers.get(&(n as usize)).and_then(|h| self.block_body(h)) } fn block_at(&self, n: BlockNumber) -> Option { self.numbers.get(&(n as usize)).map(|h| self.blocks.get(h).unwrap().clone()) } fn block_status_at(&self, n: BlockNumber) -> BlockStatus { if (n as usize) < self.blocks.len() { BlockStatus::InChain } else { BlockStatus::Unknown } } fn tree_route(&self, _from: &H256, _to: &H256) -> Option { Some(TreeRoute { blocks: Vec::new(), ancestor: H256::new(), index: 0 }) } fn state_data(&self, _h: &H256) -> Option { None } fn block_receipts(&self, _h: &H256) -> Option { None } fn import_block(&mut self, b: &[u8]) -> ImportResult { let header = Rlp::new(&b).val_at::(0); let number: usize = header.number as usize; if number > self.blocks.len() { panic!("Unexpected block number. Expected {}, got {}", self.blocks.len(), number); } if number > 0 { match self.blocks.get(&header.parent_hash) { Some(parent) => { let parent = Rlp::new(parent).val_at::(0); if parent.number != (header.number - 1) { panic!("Unexpected block parent"); } }, None => { panic!("Unknown block parent {:?} for block {}", header.parent_hash, number); } } } if number == self.numbers.len() { self.difficulty = self.difficulty + header.difficulty; self.last_hash = header.hash(); self.blocks.insert(header.hash(), b.to_vec()); self.numbers.insert(number, header.hash()); let mut parent_hash = header.parent_hash; if number > 0 { let mut n = number - 1; while n > 0 && self.numbers[&n] != parent_hash { *self.numbers.get_mut(&n).unwrap() = parent_hash.clone(); n -= 1; parent_hash = Rlp::new(&self.blocks[&parent_hash]).val_at::(0).parent_hash; } } } else { self.blocks.insert(header.hash(), b.to_vec()); } Ok(()) } fn queue_status(&self) -> BlockQueueStatus { BlockQueueStatus { full: false, } } fn clear_queue(&mut self) { } fn chain_info(&self) -> BlockChainInfo { BlockChainInfo { total_difficulty: self.difficulty, pending_total_difficulty: self.difficulty, genesis_hash: self.genesis_hash.clone(), best_block_hash: self.last_hash.clone(), best_block_number: self.blocks.len() as BlockNumber - 1, } } } struct TestIo<'p> { chain: &'p mut TestBlockChainClient, queue: &'p mut VecDeque, sender: Option, } impl<'p> TestIo<'p> { fn new(chain: &'p mut TestBlockChainClient, queue: &'p mut VecDeque, sender: Option) -> TestIo<'p> { TestIo { chain: chain, queue: queue, sender: sender } } } impl<'p> SyncIo for TestIo<'p> { fn disable_peer(&mut self, _peer_id: PeerId) { } fn respond(&mut self, packet_id: PacketId, data: Vec) -> Result<(), UtilError> { self.queue.push_back(TestPacket { data: data, packet_id: packet_id, recipient: self.sender.unwrap() }); Ok(()) } fn send(&mut self, peer_id: PeerId, packet_id: PacketId, data: Vec) -> Result<(), UtilError> { self.queue.push_back(TestPacket { data: data, packet_id: packet_id, recipient: peer_id, }); Ok(()) } fn chain<'a>(&'a mut self) -> &'a mut BlockChainClient { self.chain } } struct TestPacket { data: Bytes, packet_id: PacketId, recipient: PeerId, } struct TestPeer { chain: TestBlockChainClient, sync: ChainSync, queue: VecDeque, } struct TestNet { peers: Vec } impl TestNet { pub fn new(n: usize) -> TestNet { let mut net = TestNet { peers: Vec::new(), }; for _ in 0..n { net.peers.push(TestPeer { chain: TestBlockChainClient::new(), sync: ChainSync::new(), queue: VecDeque::new(), }); } net } pub fn peer(&self, i: usize) -> &TestPeer { self.peers.get(i).unwrap() } pub fn peer_mut(&mut self, i: usize) -> &mut TestPeer { self.peers.get_mut(i).unwrap() } pub fn start(&mut self) { for peer in 0..self.peers.len() { for client in 0..self.peers.len() { if peer != client { let mut p = self.peers.get_mut(peer).unwrap(); p.sync.on_peer_connected(&mut TestIo::new(&mut p.chain, &mut p.queue, Some(client as PeerId)), client as PeerId); } } } } pub fn sync_step(&mut self) { for peer in 0..self.peers.len() { match self.peers[peer].queue.pop_front() { Some(packet) => { let mut p = self.peers.get_mut(packet.recipient).unwrap(); trace!("--- {} -> {} ---", peer, packet.recipient); p.sync.on_packet(&mut TestIo::new(&mut p.chain, &mut p.queue, Some(peer as PeerId)), peer as PeerId, packet.packet_id, &packet.data); trace!("----------------"); }, None => {} } let mut p = self.peers.get_mut(peer).unwrap(); p.sync.maintain_sync(&mut TestIo::new(&mut p.chain, &mut p.queue, None)); } } pub fn sync(&mut self) { self.start(); while !self.done() { self.sync_step() } } pub fn done(&self) -> bool { self.peers.iter().all(|p| p.queue.is_empty()) } } #[test] fn full_sync_two_peers() { ::env_logger::init().ok(); let mut net = TestNet::new(3); net.peer_mut(1).chain.add_blocks(1000, false); net.peer_mut(2).chain.add_blocks(1000, false); net.sync(); assert!(net.peer(0).chain.block_at(1000).is_some()); assert_eq!(net.peer(0).chain.blocks, net.peer(1).chain.blocks); } #[test] fn full_sync_empty_blocks() { ::env_logger::init().ok(); let mut net = TestNet::new(3); for n in 0..200 { net.peer_mut(1).chain.add_blocks(5, n % 2 == 0); net.peer_mut(2).chain.add_blocks(5, n % 2 == 0); } net.sync(); assert!(net.peer(0).chain.block_at(1000).is_some()); assert_eq!(net.peer(0).chain.blocks, net.peer(1).chain.blocks); } #[test] fn forked_sync() { ::env_logger::init().ok(); let mut net = TestNet::new(3); net.peer_mut(0).chain.add_blocks(300, false); net.peer_mut(1).chain.add_blocks(300, false); net.peer_mut(2).chain.add_blocks(300, false); net.peer_mut(0).chain.add_blocks(100, true); //fork net.peer_mut(1).chain.add_blocks(200, false); net.peer_mut(2).chain.add_blocks(200, false); net.peer_mut(1).chain.add_blocks(100, false); //fork between 1 and 2 net.peer_mut(2).chain.add_blocks(10, true); // peer 1 has the best chain of 601 blocks let peer1_chain = net.peer(1).chain.numbers.clone(); net.sync(); assert_eq!(net.peer(0).chain.numbers, peer1_chain); assert_eq!(net.peer(1).chain.numbers, peer1_chain); assert_eq!(net.peer(2).chain.numbers, peer1_chain); }