// Copyright 2015-2020 Parity Technologies (UK) Ltd. // This file is part of OpenEthereum. // OpenEthereum is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // OpenEthereum is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with OpenEthereum. If not, see . //! Transaction data structure. use crate::{ crypto::publickey::{self, public_to_address, recover, Public, Secret, Signature}, hash::keccak, transaction::error, }; use ethereum_types::{Address, BigEndianHash, H160, H256, U256}; use parity_util_mem::MallocSizeOf; use rlp::{self, DecoderError, Rlp, RlpStream}; use std::{cmp::min, ops::Deref}; pub type AccessListItem = (H160, Vec); pub type AccessList = Vec; use super::TypedTxId; type Bytes = Vec; type BlockNumber = u64; /// Fake address for unsigned transactions as defined by EIP-86. pub const UNSIGNED_SENDER: Address = H160([0xff; 20]); /// System sender address for internal state updates. pub const SYSTEM_ADDRESS: Address = H160([ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, ]); /// Transaction action type. #[derive(Debug, Clone, PartialEq, Eq, MallocSizeOf)] pub enum Action { /// Create creates new contract. Create, /// Calls contract at given address. /// In the case of a transfer, this is the receiver's address.' Call(Address), } impl Default for Action { fn default() -> Action { Action::Create } } impl rlp::Decodable for Action { fn decode(rlp: &Rlp) -> Result { if rlp.is_empty() { if rlp.is_data() { Ok(Action::Create) } else { Err(DecoderError::RlpExpectedToBeData) } } else { Ok(Action::Call(rlp.as_val()?)) } } } impl rlp::Encodable for Action { fn rlp_append(&self, s: &mut RlpStream) { match *self { Action::Create => s.append_internal(&""), Action::Call(ref addr) => s.append_internal(addr), }; } } /// Transaction activation condition. #[derive(Debug, Clone, PartialEq, Eq)] pub enum Condition { /// Valid at this block number or later. Number(BlockNumber), /// Valid at this unix time or later. Timestamp(u64), } /// Replay protection logic for v part of transaction's signature pub mod signature { /// Adds chain id into v pub fn add_chain_replay_protection(v: u8, chain_id: Option) -> u64 { v as u64 + if let Some(n) = chain_id { 35 + n * 2 } else { 27 } } /// Returns refined v /// 0 if `v` would have been 27 under "Electrum" notation, 1 if 28 or 4 if invalid. pub fn extract_standard_v(v: u64) -> u8 { match v { v if v == 27 => 0, v if v == 28 => 1, v if v >= 35 => ((v - 1) % 2) as u8, _ => 4, } } pub fn extract_chain_id_from_legacy_v(v: u64) -> Option { if v >= 35 { Some((v - 35) / 2 as u64) } else { None } } } /// A set of information describing an externally-originating message call /// or contract creation operation. #[derive(Default, Debug, Clone, PartialEq, Eq, MallocSizeOf)] pub struct Transaction { /// Nonce. pub nonce: U256, /// Gas price for non 1559 transactions. MaxFeePerGas for 1559 transactions. pub gas_price: U256, /// Gas paid up front for transaction execution. pub gas: U256, /// Action, can be either call or contract create. pub action: Action, /// Transfered value.s pub value: U256, /// Transaction data. pub data: Bytes, } impl Transaction { /// encode raw transaction fn encode(&self, chain_id: Option, signature: Option<&SignatureComponents>) -> Vec { let mut stream = RlpStream::new(); self.encode_rlp(&mut stream, chain_id, signature); stream.drain() } pub fn rlp_append( &self, rlp: &mut RlpStream, chain_id: Option, signature: &SignatureComponents, ) { self.encode_rlp(rlp, chain_id, Some(signature)); } fn encode_rlp( &self, rlp: &mut RlpStream, chain_id: Option, signature: Option<&SignatureComponents>, ) { let list_size = if chain_id.is_some() || signature.is_some() { 9 } else { 6 }; rlp.begin_list(list_size); self.rlp_append_data_open(rlp); //append signature if given. If not, try to append chainId. if let Some(signature) = signature { signature.rlp_append_with_chain_id(rlp, chain_id); } else { if let Some(n) = chain_id { rlp.append(&n); rlp.append(&0u8); rlp.append(&0u8); } } } fn rlp_append_data_open(&self, s: &mut RlpStream) { s.append(&self.nonce); s.append(&self.gas_price); s.append(&self.gas); s.append(&self.action); s.append(&self.value); s.append(&self.data); } fn decode(d: &Rlp) -> Result { if d.item_count()? != 9 { return Err(DecoderError::RlpIncorrectListLen); } let hash = keccak(d.as_raw()); let transaction = TypedTransaction::Legacy(Self::decode_data(d, 0)?); // take V from signatuere and decompose it into chain_id and standard V. let legacy_v: u64 = d.val_at(6)?; let signature = SignatureComponents { standard_v: signature::extract_standard_v(legacy_v), r: d.val_at(7)?, s: d.val_at(8)?, }; Ok(UnverifiedTransaction::new( transaction, signature::extract_chain_id_from_legacy_v(legacy_v), signature, hash, )) } fn decode_data(d: &Rlp, offset: usize) -> Result { Ok(Transaction { nonce: d.val_at(offset)?, gas_price: d.val_at(offset + 1)?, gas: d.val_at(offset + 2)?, action: d.val_at(offset + 3)?, value: d.val_at(offset + 4)?, data: d.val_at(offset + 5)?, }) } } #[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)] pub struct AccessListTx { pub transaction: Transaction, //optional access list pub access_list: AccessList, } impl AccessListTx { pub fn new(transaction: Transaction, access_list: AccessList) -> AccessListTx { AccessListTx { transaction, access_list, } } pub fn tx_type(&self) -> TypedTxId { TypedTxId::AccessList } pub fn tx(&self) -> &Transaction { &self.transaction } pub fn tx_mut(&mut self) -> &mut Transaction { &mut self.transaction } // decode bytes by this payload spec: rlp([1, [chainId, nonce, gasPrice, gasLimit, to, value, data, access_list, senderV, senderR, senderS]]) pub fn decode(tx: &[u8]) -> Result { let tx_rlp = &Rlp::new(tx); // we need to have 11 items in this list if tx_rlp.item_count()? != 11 { return Err(DecoderError::RlpIncorrectListLen); } let chain_id = Some(tx_rlp.val_at(0)?); //let chain_id = if chain_id == 0 { None } else { Some(chain_id) }; // first part of list is same as legacy transaction and we are reusing that part. let transaction = Transaction::decode_data(&tx_rlp, 1)?; // access list we get from here let accl_rlp = tx_rlp.at(7)?; // access_list pattern: [[{20 bytes}, [{32 bytes}...]]...] let mut accl: AccessList = Vec::new(); for i in 0..accl_rlp.item_count()? { let accounts = accl_rlp.at(i)?; // check if there is list of 2 items if accounts.item_count()? != 2 { return Err(DecoderError::Custom("Unknown access list length")); } accl.push((accounts.val_at(0)?, accounts.list_at(1)?)); } // we get signature part from here let signature = SignatureComponents { standard_v: tx_rlp.val_at(8)?, r: tx_rlp.val_at(9)?, s: tx_rlp.val_at(10)?, }; // and here we create UnverifiedTransaction and calculate its hash Ok(UnverifiedTransaction::new( TypedTransaction::AccessList(AccessListTx { transaction, access_list: accl, }), chain_id, signature, H256::zero(), ) .compute_hash()) } fn encode_payload( &self, chain_id: Option, signature: Option<&SignatureComponents>, ) -> RlpStream { let mut stream = RlpStream::new(); let list_size = if signature.is_some() { 11 } else { 8 }; stream.begin_list(list_size); // append chain_id. from EIP-2930: chainId is defined to be an integer of arbitrary size. stream.append(&(if let Some(n) = chain_id { n } else { 0 })); // append legacy transaction self.transaction.rlp_append_data_open(&mut stream); // access list stream.begin_list(self.access_list.len()); for access in self.access_list.iter() { stream.begin_list(2); stream.append(&access.0); stream.begin_list(access.1.len()); for storage_key in access.1.iter() { stream.append(storage_key); } } // append signature if any if let Some(signature) = signature { signature.rlp_append(&mut stream); } stream } // encode by this payload spec: 0x01 | rlp([1, [chain_id, nonce, gasPrice, gasLimit, to, value, data, access_list, senderV, senderR, senderS]]) pub fn encode( &self, chain_id: Option, signature: Option<&SignatureComponents>, ) -> Vec { let stream = self.encode_payload(chain_id, signature); // make as vector of bytes [&[TypedTxId::AccessList as u8], stream.as_raw()].concat() } pub fn rlp_append( &self, rlp: &mut RlpStream, chain_id: Option, signature: &SignatureComponents, ) { rlp.append(&self.encode(chain_id, Some(signature))); } } #[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)] pub struct EIP1559TransactionTx { pub transaction: AccessListTx, pub max_priority_fee_per_gas: U256, } impl EIP1559TransactionTx { pub fn tx_type(&self) -> TypedTxId { TypedTxId::EIP1559Transaction } pub fn tx(&self) -> &Transaction { &self.transaction.tx() } pub fn tx_mut(&mut self) -> &mut Transaction { self.transaction.tx_mut() } // decode bytes by this payload spec: rlp([2, [chainId, nonce, maxPriorityFeePerGas, maxFeePerGas(gasPrice), gasLimit, to, value, data, access_list, senderV, senderR, senderS]]) pub fn decode(tx: &[u8]) -> Result { let tx_rlp = &Rlp::new(tx); // we need to have 12 items in this list if tx_rlp.item_count()? != 12 { return Err(DecoderError::RlpIncorrectListLen); } let chain_id = Some(tx_rlp.val_at(0)?); let max_priority_fee_per_gas = tx_rlp.val_at(2)?; let tx = Transaction { nonce: tx_rlp.val_at(1)?, gas_price: tx_rlp.val_at(3)?, //taken from max_fee_per_gas gas: tx_rlp.val_at(4)?, action: tx_rlp.val_at(5)?, value: tx_rlp.val_at(6)?, data: tx_rlp.val_at(7)?, }; // access list we get from here let accl_rlp = tx_rlp.at(8)?; // access_list pattern: [[{20 bytes}, [{32 bytes}...]]...] let mut accl: AccessList = Vec::new(); for i in 0..accl_rlp.item_count()? { let accounts = accl_rlp.at(i)?; // check if there is list of 2 items if accounts.item_count()? != 2 { return Err(DecoderError::Custom("Unknown access list length")); } accl.push((accounts.val_at(0)?, accounts.list_at(1)?)); } // we get signature part from here let signature = SignatureComponents { standard_v: tx_rlp.val_at(9)?, r: tx_rlp.val_at(10)?, s: tx_rlp.val_at(11)?, }; // and here we create UnverifiedTransaction and calculate its hash Ok(UnverifiedTransaction::new( TypedTransaction::EIP1559Transaction(EIP1559TransactionTx { transaction: AccessListTx::new(tx, accl), max_priority_fee_per_gas, }), chain_id, signature, H256::zero(), ) .compute_hash()) } fn encode_payload( &self, chain_id: Option, signature: Option<&SignatureComponents>, ) -> RlpStream { let mut stream = RlpStream::new(); let list_size = if signature.is_some() { 12 } else { 9 }; stream.begin_list(list_size); // append chain_id. from EIP-2930: chainId is defined to be an integer of arbitrary size. stream.append(&(if let Some(n) = chain_id { n } else { 0 })); stream.append(&self.tx().nonce); stream.append(&self.max_priority_fee_per_gas); stream.append(&self.tx().gas_price); stream.append(&self.tx().gas); stream.append(&self.tx().action); stream.append(&self.tx().value); stream.append(&self.tx().data); // access list stream.begin_list(self.transaction.access_list.len()); for access in self.transaction.access_list.iter() { stream.begin_list(2); stream.append(&access.0); stream.begin_list(access.1.len()); for storage_key in access.1.iter() { stream.append(storage_key); } } // append signature if any if let Some(signature) = signature { signature.rlp_append(&mut stream); } stream } // encode by this payload spec: 0x02 | rlp([2, [chainId, nonce, maxPriorityFeePerGas, maxFeePerGas(gasPrice), gasLimit, to, value, data, access_list, senderV, senderR, senderS]]) pub fn encode( &self, chain_id: Option, signature: Option<&SignatureComponents>, ) -> Vec { let stream = self.encode_payload(chain_id, signature); // make as vector of bytes [&[TypedTxId::EIP1559Transaction as u8], stream.as_raw()].concat() } pub fn rlp_append( &self, rlp: &mut RlpStream, chain_id: Option, signature: &SignatureComponents, ) { rlp.append(&self.encode(chain_id, Some(signature))); } } #[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)] pub enum TypedTransaction { Legacy(Transaction), // old legacy RLP encoded transaction AccessList(AccessListTx), // EIP-2930 Transaction with a list of addresses and storage keys that the transaction plans to access. // Accesses outside the list are possible, but become more expensive. EIP1559Transaction(EIP1559TransactionTx), } impl TypedTransaction { pub fn tx_type(&self) -> TypedTxId { match self { Self::Legacy(_) => TypedTxId::Legacy, Self::AccessList(_) => TypedTxId::AccessList, Self::EIP1559Transaction(_) => TypedTxId::EIP1559Transaction, } } /// The message hash of the transaction. pub fn signature_hash(&self, chain_id: Option) -> H256 { keccak(match self { Self::Legacy(tx) => tx.encode(chain_id, None), Self::AccessList(tx) => tx.encode(chain_id, None), Self::EIP1559Transaction(tx) => tx.encode(chain_id, None), }) } /// Signs the transaction as coming from `sender`. pub fn sign(self, secret: &Secret, chain_id: Option) -> SignedTransaction { let sig = publickey::sign(secret, &self.signature_hash(chain_id)) .expect("data is valid and context has signing capabilities; qed"); SignedTransaction::new(self.with_signature(sig, chain_id)) .expect("secret is valid so it's recoverable") } /// Signs the transaction with signature. pub fn with_signature(self, sig: Signature, chain_id: Option) -> UnverifiedTransaction { UnverifiedTransaction { unsigned: self, chain_id, signature: SignatureComponents { r: sig.r().into(), s: sig.s().into(), standard_v: sig.v().into(), }, hash: H256::zero(), } .compute_hash() } /// Specify the sender; this won't survive the serialize/deserialize process, but can be cloned. pub fn fake_sign(self, from: Address) -> SignedTransaction { SignedTransaction { transaction: UnverifiedTransaction { unsigned: self, chain_id: None, signature: SignatureComponents { r: U256::one(), s: U256::one(), standard_v: 4, }, hash: H256::zero(), } .compute_hash(), sender: from, public: None, } } /// Legacy EIP-86 compatible empty signature. /// This method is used in json tests as well as /// signature verification tests. pub fn null_sign(self, chain_id: u64) -> SignedTransaction { SignedTransaction { transaction: UnverifiedTransaction { unsigned: self, chain_id: Some(chain_id), signature: SignatureComponents { r: U256::zero(), s: U256::zero(), standard_v: 0, }, hash: H256::zero(), } .compute_hash(), sender: UNSIGNED_SENDER, public: None, } } /// Useful for test incorrectly signed transactions. #[cfg(test)] pub fn invalid_sign(self) -> UnverifiedTransaction { UnverifiedTransaction { unsigned: self, chain_id: None, signature: SignatureComponents { r: U256::one(), s: U256::one(), standard_v: 0, }, hash: H256::zero(), } .compute_hash() } // Next functions are for encoded/decode pub fn tx(&self) -> &Transaction { match self { Self::Legacy(tx) => tx, Self::AccessList(ocl) => ocl.tx(), Self::EIP1559Transaction(tx) => tx.tx(), } } pub fn tx_mut(&mut self) -> &mut Transaction { match self { Self::Legacy(tx) => tx, Self::AccessList(ocl) => ocl.tx_mut(), Self::EIP1559Transaction(tx) => tx.tx_mut(), } } pub fn access_list(&self) -> Option<&AccessList> { match self { Self::EIP1559Transaction(tx) => Some(&tx.transaction.access_list), Self::AccessList(tx) => Some(&tx.access_list), Self::Legacy(_) => None, } } pub fn effective_gas_price(&self, block_base_fee: Option) -> U256 { match self { Self::EIP1559Transaction(tx) => min( self.tx().gas_price, tx.max_priority_fee_per_gas + block_base_fee.unwrap_or_default(), ), Self::AccessList(_) => self.tx().gas_price, Self::Legacy(_) => self.tx().gas_price, } } pub fn max_priority_fee_per_gas(&self) -> U256 { match self { Self::EIP1559Transaction(tx) => tx.max_priority_fee_per_gas, Self::AccessList(tx) => tx.tx().gas_price, Self::Legacy(tx) => tx.gas_price, } } pub fn effective_priority_fee(&self, block_base_fee: Option) -> U256 { self.effective_gas_price(block_base_fee) .checked_sub(block_base_fee.unwrap_or_default()) .unwrap_or_default() } pub fn is_service(&self) -> bool { match self { Self::EIP1559Transaction(tx) => { tx.tx().gas_price == 0.into() && tx.max_priority_fee_per_gas == 0.into() } Self::AccessList(tx) => tx.tx().gas_price == 0.into(), Self::Legacy(tx) => tx.gas_price == 0.into(), } } fn decode_new(tx: &[u8]) -> Result { if tx.is_empty() { // at least one byte needs to be present return Err(DecoderError::RlpIncorrectListLen); } let id = TypedTxId::try_from_wire_byte(tx[0]); if id.is_err() { return Err(DecoderError::Custom("Unknown transaction")); } // other transaction types match id.unwrap() { TypedTxId::EIP1559Transaction => EIP1559TransactionTx::decode(&tx[1..]), TypedTxId::AccessList => AccessListTx::decode(&tx[1..]), TypedTxId::Legacy => return Err(DecoderError::Custom("Unknown transaction legacy")), } } pub fn decode(tx: &[u8]) -> Result { if tx.is_empty() { // at least one byte needs to be present return Err(DecoderError::RlpIncorrectListLen); } let header = tx[0]; // type of transaction can be obtained from first byte. If first bit is 1 it means we are dealing with RLP list. // if it is 0 it means that we are dealing with custom transaction defined in EIP-2718. if (header & 0x80) != 0x00 { Transaction::decode(&Rlp::new(tx)) } else { Self::decode_new(tx) } } pub fn decode_rlp_list(rlp: &Rlp) -> Result, DecoderError> { if !rlp.is_list() { // at least one byte needs to be present return Err(DecoderError::RlpIncorrectListLen); } let mut output = Vec::with_capacity(rlp.item_count()?); for tx in rlp.iter() { output.push(Self::decode_rlp(&tx)?); } Ok(output) } pub fn decode_rlp(tx: &Rlp) -> Result { if tx.is_list() { //legacy transaction wrapped around RLP encoding Transaction::decode(tx) } else { Self::decode_new(tx.data()?) } } fn rlp_append( &self, s: &mut RlpStream, chain_id: Option, signature: &SignatureComponents, ) { match self { Self::Legacy(tx) => tx.rlp_append(s, chain_id, signature), Self::AccessList(opt) => opt.rlp_append(s, chain_id, signature), Self::EIP1559Transaction(tx) => tx.rlp_append(s, chain_id, signature), } } pub fn rlp_append_list(s: &mut RlpStream, tx_list: &[UnverifiedTransaction]) { s.begin_list(tx_list.len()); for tx in tx_list.iter() { tx.unsigned.rlp_append(s, tx.chain_id, &tx.signature); } } fn encode(&self, chain_id: Option, signature: &SignatureComponents) -> Vec { let signature = Some(signature); match self { Self::Legacy(tx) => tx.encode(chain_id, signature), Self::AccessList(opt) => opt.encode(chain_id, signature), Self::EIP1559Transaction(tx) => tx.encode(chain_id, signature), } } } /// Components that constitute transaction signature #[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)] pub struct SignatureComponents { /// The V field of the signature; the LS bit described which half of the curve our point falls /// in. It can be 0 or 1. pub standard_v: u8, /// The R field of the signature; helps describe the point on the curve. pub r: U256, /// The S field of the signature; helps describe the point on the curve. pub s: U256, } impl SignatureComponents { pub fn rlp_append(&self, s: &mut RlpStream) { s.append(&self.standard_v); s.append(&self.r); s.append(&self.s); } pub fn rlp_append_with_chain_id(&self, s: &mut RlpStream, chain_id: Option) { s.append(&signature::add_chain_replay_protection( self.standard_v, chain_id, )); s.append(&self.r); s.append(&self.s); } } /// Signed transaction information without verified signature. #[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)] pub struct UnverifiedTransaction { /// Plain Transaction. pub unsigned: TypedTransaction, /// Transaction signature pub signature: SignatureComponents, /// chain_id recover from signature in legacy transaction. For TypedTransaction it is probably separate field. pub chain_id: Option, /// Hash of the transaction pub hash: H256, } impl Deref for UnverifiedTransaction { type Target = TypedTransaction; fn deref(&self) -> &Self::Target { &self.unsigned } } impl UnverifiedTransaction { pub fn rlp_append(&self, s: &mut RlpStream) { self.unsigned.rlp_append(s, self.chain_id, &self.signature); } pub fn rlp_append_list(s: &mut RlpStream, tx_list: &[UnverifiedTransaction]) { s.begin_list(tx_list.len()); for tx in tx_list.iter() { tx.unsigned.rlp_append(s, tx.chain_id, &tx.signature); } } pub fn encode(&self) -> Vec { self.unsigned.encode(self.chain_id, &self.signature) } /// Used to compute hash of created transactions. pub fn compute_hash(mut self) -> UnverifiedTransaction { let hash = keccak(&*self.encode()); self.hash = hash; self } /// Used by TypedTransaction to create UnverifiedTransaction. fn new( transaction: TypedTransaction, chain_id: Option, signature: SignatureComponents, hash: H256, ) -> UnverifiedTransaction { UnverifiedTransaction { unsigned: transaction, chain_id, signature, hash, } } /// Checks if the signature is empty. pub fn is_unsigned(&self) -> bool { self.signature.r.is_zero() && self.signature.s.is_zero() } /// Reference to unsigned part of this transaction. pub fn as_unsigned(&self) -> &TypedTransaction { &self.unsigned } /// Returns standardized `v` value (0, 1 or 4 (invalid)) pub fn standard_v(&self) -> u8 { self.signature.standard_v } /// The legacy `v` value that contains signatures v and chain_id for replay protection. pub fn legacy_v(&self) -> u64 { signature::add_chain_replay_protection(self.signature.standard_v, self.chain_id) } /// The `v` value that appears in the RLP. pub fn v(&self) -> u64 { match self.unsigned { TypedTransaction::Legacy(_) => self.legacy_v(), _ => self.signature.standard_v as u64, } } /// The chain ID, or `None` if this is a global transaction. pub fn chain_id(&self) -> Option { self.chain_id } /// Construct a signature object from the sig. pub fn signature(&self) -> Signature { let r: H256 = BigEndianHash::from_uint(&self.signature.r); let s: H256 = BigEndianHash::from_uint(&self.signature.s); Signature::from_rsv(&r, &s, self.standard_v()) } /// Checks whether the signature has a low 's' value. pub fn check_low_s(&self) -> Result<(), publickey::Error> { if !self.signature().is_low_s() { Err(publickey::Error::InvalidSignature.into()) } else { Ok(()) } } /// Get the hash of this transaction (keccak of the RLP). pub fn hash(&self) -> H256 { self.hash } /// Recovers the public key of the sender. pub fn recover_public(&self) -> Result { Ok(recover( &self.signature(), &self.unsigned.signature_hash(self.chain_id()), )?) } /// Verify basic signature params. Does not attempt sender recovery. pub fn verify_basic( &self, check_low_s: bool, chain_id: Option, ) -> Result<(), error::Error> { if self.is_unsigned() { return Err(publickey::Error::InvalidSignature.into()); } if check_low_s { self.check_low_s()?; } match (self.chain_id(), chain_id) { (None, _) => {} (Some(n), Some(m)) if n == m => {} _ => return Err(error::Error::InvalidChainId), }; Ok(()) } } /// A `UnverifiedTransaction` with successfully recovered `sender`. #[derive(Debug, Clone, Eq, PartialEq, MallocSizeOf)] pub struct SignedTransaction { transaction: UnverifiedTransaction, sender: Address, public: Option, } impl Deref for SignedTransaction { type Target = UnverifiedTransaction; fn deref(&self) -> &Self::Target { &self.transaction } } impl From for UnverifiedTransaction { fn from(tx: SignedTransaction) -> Self { tx.transaction } } impl SignedTransaction { // t_nb 5.3.1 Try to verify transaction and recover sender. pub fn new(transaction: UnverifiedTransaction) -> Result { if transaction.is_unsigned() { return Err(publickey::Error::InvalidSignature); } let public = transaction.recover_public()?; let sender = public_to_address(&public); Ok(SignedTransaction { transaction, sender, public: Some(public), }) } /// Returns transaction sender. pub fn sender(&self) -> Address { self.sender } /// Returns a public key of the sender. pub fn public_key(&self) -> Option { self.public } /// Checks is signature is empty. pub fn is_unsigned(&self) -> bool { self.transaction.is_unsigned() } /// Deconstructs this transaction back into `UnverifiedTransaction` pub fn deconstruct(self) -> (UnverifiedTransaction, Address, Option) { (self.transaction, self.sender, self.public) } pub fn rlp_append_list(s: &mut RlpStream, tx_list: &[SignedTransaction]) { s.begin_list(tx_list.len()); for tx in tx_list.iter() { tx.unsigned.rlp_append(s, tx.chain_id, &tx.signature); } } } /// Signed Transaction that is a part of canon blockchain. #[derive(Debug, Clone, PartialEq, Eq)] pub struct LocalizedTransaction { /// Signed part. pub signed: UnverifiedTransaction, /// Block number. pub block_number: BlockNumber, /// Block hash. pub block_hash: H256, /// Transaction index within block. pub transaction_index: usize, /// Cached sender pub cached_sender: Option
, } impl LocalizedTransaction { /// Returns transaction sender. /// Panics if `LocalizedTransaction` is constructed using invalid `UnverifiedTransaction`. pub fn sender(&mut self) -> Address { if let Some(sender) = self.cached_sender { return sender; } if self.is_unsigned() { return UNSIGNED_SENDER.clone(); } let sender = public_to_address(&self.recover_public() .expect("LocalizedTransaction is always constructed from transaction from blockchain; Blockchain only stores verified transactions; qed")); self.cached_sender = Some(sender); sender } } impl Deref for LocalizedTransaction { type Target = UnverifiedTransaction; fn deref(&self) -> &Self::Target { &self.signed } } /// Queued transaction with additional information. #[derive(Debug, Clone, PartialEq, Eq)] pub struct PendingTransaction { /// Signed transaction data. pub transaction: SignedTransaction, /// To be activated at this condition. `None` for immediately. pub condition: Option, } impl PendingTransaction { /// Create a new pending transaction from signed transaction. pub fn new(signed: SignedTransaction, condition: Option) -> Self { PendingTransaction { transaction: signed, condition: condition, } } } impl Deref for PendingTransaction { type Target = SignedTransaction; fn deref(&self) -> &SignedTransaction { &self.transaction } } impl From for PendingTransaction { fn from(t: SignedTransaction) -> Self { PendingTransaction { transaction: t, condition: None, } } } #[cfg(test)] mod tests { use super::*; use crate::hash::keccak; use ethereum_types::{H160, U256}; use std::str::FromStr; #[test] fn sender_test() { let bytes = ::rustc_hex::FromHex::from_hex("f85f800182520894095e7baea6a6c7c4c2dfeb977efac326af552d870a801ba048b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353a0efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c804").unwrap(); let t = TypedTransaction::decode(&bytes).expect("decoding UnverifiedTransaction failed"); assert_eq!(t.tx().data, b""); assert_eq!(t.tx().gas, U256::from(0x5208u64)); assert_eq!(t.tx().gas_price, U256::from(0x01u64)); assert_eq!(t.tx().nonce, U256::from(0x00u64)); if let Action::Call(ref to) = t.tx().action { assert_eq!( *to, H160::from_str("095e7baea6a6c7c4c2dfeb977efac326af552d87").unwrap() ); } else { panic!(); } assert_eq!(t.tx().value, U256::from(0x0au64)); assert_eq!( public_to_address(&t.recover_public().unwrap()), H160::from_str("0f65fe9276bc9a24ae7083ae28e2660ef72df99e").unwrap() ); assert_eq!(t.chain_id(), None); } #[test] fn empty_atom_as_create_action() { let empty_atom = [0x80]; let action: Action = rlp::decode(&empty_atom).unwrap(); assert_eq!(action, Action::Create); } #[test] fn empty_list_as_create_action_rejected() { let empty_list = [0xc0]; let action: Result = rlp::decode(&empty_list); assert_eq!(action, Err(DecoderError::RlpExpectedToBeData)); } #[test] fn signing_eip155_zero_chainid() { use self::publickey::{Generator, Random}; let key = Random.generate(); let t = TypedTransaction::Legacy(Transaction { action: Action::Create, nonce: U256::from(42), gas_price: U256::from(3000), gas: U256::from(50_000), value: U256::from(1), data: b"Hello!".to_vec(), }); let hash = t.signature_hash(Some(0)); let sig = publickey::sign(&key.secret(), &hash).unwrap(); let u = t.with_signature(sig, Some(0)); assert!(SignedTransaction::new(u).is_ok()); } #[test] fn signing() { use self::publickey::{Generator, Random}; let key = Random.generate(); let t = TypedTransaction::Legacy(Transaction { action: Action::Create, nonce: U256::from(42), gas_price: U256::from(3000), gas: U256::from(50_000), value: U256::from(1), data: b"Hello!".to_vec(), }) .sign(&key.secret(), None); assert_eq!(Address::from(keccak(key.public())), t.sender()); assert_eq!(t.chain_id(), None); } #[test] fn fake_signing() { let t = TypedTransaction::Legacy(Transaction { action: Action::Create, nonce: U256::from(42), gas_price: U256::from(3000), gas: U256::from(50_000), value: U256::from(1), data: b"Hello!".to_vec(), }) .fake_sign(Address::from_low_u64_be(0x69)); assert_eq!(Address::from_low_u64_be(0x69), t.sender()); assert_eq!(t.chain_id(), None); let t = t.clone(); assert_eq!(Address::from_low_u64_be(0x69), t.sender()); assert_eq!(t.chain_id(), None); } #[test] fn should_reject_null_signature() { use std::str::FromStr; let t = TypedTransaction::Legacy(Transaction { nonce: U256::zero(), gas_price: U256::from(10000000000u64), gas: U256::from(21000), action: Action::Call( Address::from_str("d46e8dd67c5d32be8058bb8eb970870f07244567").unwrap(), ), value: U256::from(1), data: vec![], }) .null_sign(1); let res = SignedTransaction::new(t.transaction); match res { Err(publickey::Error::InvalidSignature) => {} _ => panic!("null signature should be rejected"), } } #[test] fn should_recover_from_chain_specific_signing() { use self::publickey::{Generator, Random}; let key = Random.generate(); let t = TypedTransaction::Legacy(Transaction { action: Action::Create, nonce: U256::from(42), gas_price: U256::from(3000), gas: U256::from(50_000), value: U256::from(1), data: b"Hello!".to_vec(), }) .sign(&key.secret(), Some(69)); assert_eq!(Address::from(keccak(key.public())), t.sender()); assert_eq!(t.chain_id(), Some(69)); } #[test] fn should_encode_decode_access_list_tx() { use self::publickey::{Generator, Random}; let key = Random.generate(); let t = TypedTransaction::AccessList(AccessListTx::new( Transaction { action: Action::Create, nonce: U256::from(42), gas_price: U256::from(3000), gas: U256::from(50_000), value: U256::from(1), data: b"Hello!".to_vec(), }, vec![ ( H160::from_low_u64_be(10), vec![H256::from_low_u64_be(102), H256::from_low_u64_be(103)], ), (H160::from_low_u64_be(400), vec![]), ], )) .sign(&key.secret(), Some(69)); let encoded = t.encode(); let t_new = TypedTransaction::decode(&encoded).expect("Error on UnverifiedTransaction decoder"); if t_new.unsigned != t.unsigned { assert!(true, "encoded/decoded tx differs from original"); } } #[test] fn should_encode_decode_eip1559_tx() { use self::publickey::{Generator, Random}; let key = Random.generate(); let t = TypedTransaction::EIP1559Transaction(EIP1559TransactionTx { transaction: AccessListTx::new( Transaction { action: Action::Create, nonce: U256::from(42), gas_price: U256::from(3000), gas: U256::from(50_000), value: U256::from(1), data: b"Hello!".to_vec(), }, vec![ ( H160::from_low_u64_be(10), vec![H256::from_low_u64_be(102), H256::from_low_u64_be(103)], ), (H160::from_low_u64_be(400), vec![]), ], ), max_priority_fee_per_gas: U256::from(100), }) .sign(&key.secret(), Some(69)); let encoded = t.encode(); let t_new = TypedTransaction::decode(&encoded).expect("Error on UnverifiedTransaction decoder"); if t_new.unsigned != t.unsigned { assert!(true, "encoded/decoded tx differs from original"); } } #[test] fn should_decode_access_list_in_rlp() { use rustc_hex::FromHex; let encoded_tx = "b8cb01f8a7802a820bb882c35080018648656c6c6f21f872f85994000000000000000000000000000000000000000af842a00000000000000000000000000000000000000000000000000000000000000066a00000000000000000000000000000000000000000000000000000000000000067d6940000000000000000000000000000000000000190c080a00ea0f1fda860320f51e182fe68ea90a8e7611653d3975b9301580adade6b8aa4a023530a1a96e0f15f90959baf1cd2d9114f7c7568ac7d77f4413c0a6ca6cdac74"; let _ = TypedTransaction::decode_rlp(&Rlp::new(&FromHex::from_hex(encoded_tx).unwrap())) .expect("decoding tx data failed"); } #[test] fn should_decode_eip1559_in_rlp() { use rustc_hex::FromHex; let encoded_tx = "b8cb01f8a7802a820bb882c35080018648656c6c6f21f872f85994000000000000000000000000000000000000000af842a00000000000000000000000000000000000000000000000000000000000000066a00000000000000000000000000000000000000000000000000000000000000067d6940000000000000000000000000000000000000190c080a00ea0f1fda860320f51e182fe68ea90a8e7611653d3975b9301580adade6b8aa4a023530a1a96e0f15f90959baf1cd2d9114f7c7568ac7d77f4413c0a6ca6cdac74"; let _ = TypedTransaction::decode_rlp(&Rlp::new(&FromHex::from_hex(encoded_tx).unwrap())) .expect("decoding tx data failed"); } #[test] fn should_decode_access_list_solo() { use rustc_hex::FromHex; let encoded_tx = "01f8630103018261a894b94f5374fce5edbc8e2a8697c15331677e6ebf0b0a825544c001a0cb51495c66325615bcd591505577c9dde87bd59b04be2e6ba82f6d7bdea576e3a049e4f02f37666bd91a052a56e91e71e438590df861031ee9a321ce058df3dc2b"; let _ = TypedTransaction::decode(&FromHex::from_hex(encoded_tx).unwrap()) .expect("decoding tx data failed"); } #[test] fn test_rlp_data() { let mut rlp_list = RlpStream::new(); rlp_list.begin_list(3); rlp_list.append(&100u8); rlp_list.append(&"0000000"); rlp_list.append(&5u8); let rlp_list = Rlp::new(rlp_list.as_raw()); println!("rlp list data: {:?}", rlp_list.as_raw()); let mut rlp = RlpStream::new(); rlp.append(&"1111111"); let rlp = Rlp::new(rlp.as_raw()); println!("rlp list data: {:?}", rlp.data()); } #[test] fn should_agree_with_geth_test() { use rustc_hex::FromHex; let encoded_tx = "01f8630103018261a894b94f5374fce5edbc8e2a8697c15331677e6ebf0b0a825544c001a0cb51495c66325615bcd591505577c9dde87bd59b04be2e6ba82f6d7bdea576e3a049e4f02f37666bd91a052a56e91e71e438590df861031ee9a321ce058df3dc2b"; let _ = TypedTransaction::decode(&FromHex::from_hex(encoded_tx).unwrap()) .expect("decoding tx data failed"); } #[test] fn should_agree_with_vitalik() { use rustc_hex::FromHex; let test_vector = |tx_data: &str, address: &'static str| { let signed = TypedTransaction::decode(&FromHex::from_hex(tx_data).unwrap()) .expect("decoding tx data failed"); let signed = SignedTransaction::new(signed).unwrap(); assert_eq!(signed.sender(), H160::from_str(address).unwrap()); }; test_vector("f864808504a817c800825208943535353535353535353535353535353535353535808025a0044852b2a670ade5407e78fb2863c51de9fcb96542a07186fe3aeda6bb8a116da0044852b2a670ade5407e78fb2863c51de9fcb96542a07186fe3aeda6bb8a116d", "f0f6f18bca1b28cd68e4357452947e021241e9ce"); test_vector("f864018504a817c80182a410943535353535353535353535353535353535353535018025a0489efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bcaa0489efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6", "23ef145a395ea3fa3deb533b8a9e1b4c6c25d112"); test_vector("f864028504a817c80282f618943535353535353535353535353535353535353535088025a02d7c5bef027816a800da1736444fb58a807ef4c9603b7848673f7e3a68eb14a5a02d7c5bef027816a800da1736444fb58a807ef4c9603b7848673f7e3a68eb14a5", "2e485e0c23b4c3c542628a5f672eeab0ad4888be"); test_vector("f865038504a817c803830148209435353535353535353535353535353535353535351b8025a02a80e1ef1d7842f27f2e6be0972bb708b9a135c38860dbe73c27c3486c34f4e0a02a80e1ef1d7842f27f2e6be0972bb708b9a135c38860dbe73c27c3486c34f4de", "82a88539669a3fd524d669e858935de5e5410cf0"); test_vector("f865048504a817c80483019a28943535353535353535353535353535353535353535408025a013600b294191fc92924bb3ce4b969c1e7e2bab8f4c93c3fc6d0a51733df3c063a013600b294191fc92924bb3ce4b969c1e7e2bab8f4c93c3fc6d0a51733df3c060", "f9358f2538fd5ccfeb848b64a96b743fcc930554"); test_vector("f865058504a817c8058301ec309435353535353535353535353535353535353535357d8025a04eebf77a833b30520287ddd9478ff51abbdffa30aa90a8d655dba0e8a79ce0c1a04eebf77a833b30520287ddd9478ff51abbdffa30aa90a8d655dba0e8a79ce0c1", "a8f7aba377317440bc5b26198a363ad22af1f3a4"); test_vector("f866068504a817c80683023e3894353535353535353535353535353535353535353581d88025a06455bf8ea6e7463a1046a0b52804526e119b4bf5136279614e0b1e8e296a4e2fa06455bf8ea6e7463a1046a0b52804526e119b4bf5136279614e0b1e8e296a4e2d", "f1f571dc362a0e5b2696b8e775f8491d3e50de35"); test_vector("f867078504a817c807830290409435353535353535353535353535353535353535358201578025a052f1a9b320cab38e5da8a8f97989383aab0a49165fc91c737310e4f7e9821021a052f1a9b320cab38e5da8a8f97989383aab0a49165fc91c737310e4f7e9821021", "d37922162ab7cea97c97a87551ed02c9a38b7332"); test_vector("f867088504a817c8088302e2489435353535353535353535353535353535353535358202008025a064b1702d9298fee62dfeccc57d322a463ad55ca201256d01f62b45b2e1c21c12a064b1702d9298fee62dfeccc57d322a463ad55ca201256d01f62b45b2e1c21c10", "9bddad43f934d313c2b79ca28a432dd2b7281029"); test_vector("f867098504a817c809830334509435353535353535353535353535353535353535358202d98025a052f8f61201b2b11a78d6e866abc9c3db2ae8631fa656bfe5cb53668255367afba052f8f61201b2b11a78d6e866abc9c3db2ae8631fa656bfe5cb53668255367afb", "3c24d7329e92f84f08556ceb6df1cdb0104ca49f"); } }