// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
use ethkey::{Public, Secret, Random, Generator, math};
use bigint::prelude::U256;
use bigint::hash::H256;
use hash::keccak;
use key_server_cluster::Error;
/// Encryption result.
#[derive(Debug)]
pub struct EncryptedSecret {
/// Common encryption point.
pub common_point: Public,
/// Ecnrypted point.
pub encrypted_point: Public,
}
/// Generate random scalar
pub fn generate_random_scalar() -> Result {
Ok(Random.generate()?.secret().clone())
}
/// Generate random point
pub fn generate_random_point() -> Result {
Ok(Random.generate()?.public().clone())
}
/// Compute publics sum.
pub fn compute_public_sum<'a, I>(mut publics: I) -> Result where I: Iterator- {
let mut sum = publics.next().expect("compute_public_sum is called when there's at least one public; qed").clone();
while let Some(public) = publics.next() {
math::public_add(&mut sum, &public)?;
}
Ok(sum)
}
/// Compute secrets sum.
pub fn compute_secret_sum<'a, I>(mut secrets: I) -> Result where I: Iterator
- {
let mut sum = secrets.next().expect("compute_secret_sum is called when there's at least one secret; qed").clone();
while let Some(secret) = secrets.next() {
sum.add(secret)?;
}
Ok(sum)
}
/// Compute secrets 'shadow' multiplication: coeff * multiplication(s[j] / (s[i] - s[j])) for every i != j
pub fn compute_shadow_mul<'a, I>(coeff: &Secret, self_secret: &Secret, mut other_secrets: I) -> Result where I: Iterator
- {
// when there are no other secrets, only coeff is left
let other_secret = match other_secrets.next() {
Some(other_secret) => other_secret,
None => return Ok(coeff.clone()),
};
let mut shadow_mul = self_secret.clone();
shadow_mul.sub(other_secret)?;
shadow_mul.inv()?;
shadow_mul.mul(other_secret)?;
while let Some(other_secret) = other_secrets.next() {
let mut shadow_mul_element = self_secret.clone();
shadow_mul_element.sub(other_secret)?;
shadow_mul_element.inv()?;
shadow_mul_element.mul(other_secret)?;
shadow_mul.mul(&shadow_mul_element)?;
}
shadow_mul.mul(coeff)?;
Ok(shadow_mul)
}
/// Update point by multiplying to random scalar
pub fn update_random_point(point: &mut Public) -> Result<(), Error> {
Ok(math::public_mul_secret(point, &generate_random_scalar()?)?)
}
/// Generate random polynom of threshold degree
pub fn generate_random_polynom(threshold: usize) -> Result, Error> {
(0..threshold + 1)
.map(|_| generate_random_scalar())
.collect()
}
/// Compute value of polynom, using `node_number` as argument
pub fn compute_polynom(polynom: &[Secret], node_number: &Secret) -> Result {
debug_assert!(!polynom.is_empty());
let mut result = polynom[0].clone();
for i in 1..polynom.len() {
// calculate pow(node_number, i)
let mut appendum = node_number.clone();
appendum.pow(i)?;
// calculate coeff * pow(point, i)
appendum.mul(&polynom[i])?;
// calculate result + coeff * pow(point, i)
result.add(&appendum)?;
}
Ok(result)
}
/// Generate public keys for other participants.
pub fn public_values_generation(threshold: usize, derived_point: &Public, polynom1: &[Secret], polynom2: &[Secret]) -> Result, Error> {
debug_assert_eq!(polynom1.len(), threshold + 1);
debug_assert_eq!(polynom2.len(), threshold + 1);
// compute t+1 public values
let mut publics = Vec::with_capacity(threshold + 1);
for i in 0..threshold + 1 {
let coeff1 = &polynom1[i];
let mut multiplication1 = math::generation_point();
math::public_mul_secret(&mut multiplication1, &coeff1)?;
let coeff2 = &polynom2[i];
let mut multiplication2 = derived_point.clone();
math::public_mul_secret(&mut multiplication2, &coeff2)?;
math::public_add(&mut multiplication1, &multiplication2)?;
publics.push(multiplication1);
}
debug_assert_eq!(publics.len(), threshold + 1);
Ok(publics)
}
/// Check keys passed by other participants.
pub fn keys_verification(threshold: usize, derived_point: &Public, number_id: &Secret, secret1: &Secret, secret2: &Secret, publics: &[Public]) -> Result {
// calculate left part
let mut multiplication1 = math::generation_point();
math::public_mul_secret(&mut multiplication1, secret1)?;
let mut multiplication2 = derived_point.clone();
math::public_mul_secret(&mut multiplication2, secret2)?;
math::public_add(&mut multiplication1, &multiplication2)?;
let left = multiplication1;
// calculate right part
let mut right = publics[0].clone();
for i in 1..threshold + 1 {
let mut secret_pow = number_id.clone();
secret_pow.pow(i)?;
let mut public_k = publics[i].clone();
math::public_mul_secret(&mut public_k, &secret_pow)?;
math::public_add(&mut right, &public_k)?;
}
Ok(left == right)
}
/// Compute secret share.
pub fn compute_secret_share<'a, I>(secret_values: I) -> Result where I: Iterator
- {
compute_secret_sum(secret_values)
}
/// Compute public key share.
pub fn compute_public_share(self_secret_value: &Secret) -> Result {
let mut public_share = math::generation_point();
math::public_mul_secret(&mut public_share, self_secret_value)?;
Ok(public_share)
}
/// Compute joint public key.
pub fn compute_joint_public<'a, I>(public_shares: I) -> Result where I: Iterator
- {
compute_public_sum(public_shares)
}
/// Compute joint secret key.
#[cfg(test)]
pub fn compute_joint_secret<'a, I>(secret_coeffs: I) -> Result where I: Iterator
- {
compute_secret_sum(secret_coeffs)
}
/// Encrypt secret with joint public key.
pub fn encrypt_secret(secret: &Public, joint_public: &Public) -> Result {
// this is performed by KS-cluster client (or KS master)
let key_pair = Random.generate()?;
// k * T
let mut common_point = math::generation_point();
math::public_mul_secret(&mut common_point, key_pair.secret())?;
// M + k * y
let mut encrypted_point = joint_public.clone();
math::public_mul_secret(&mut encrypted_point, key_pair.secret())?;
math::public_add(&mut encrypted_point, secret)?;
Ok(EncryptedSecret {
common_point: common_point,
encrypted_point: encrypted_point,
})
}
/// Compute shadow for the node.
pub fn compute_node_shadow<'a, I>(node_secret_share: &Secret, node_number: &Secret, other_nodes_numbers: I) -> Result where I: Iterator
- {
compute_shadow_mul(node_secret_share, node_number, other_nodes_numbers)
}
/// Compute shadow point for the node.
pub fn compute_node_shadow_point(access_key: &Secret, common_point: &Public, node_shadow: &Secret, decrypt_shadow: Option) -> Result<(Public, Option), Error> {
let mut shadow_key = node_shadow.clone();
let decrypt_shadow = match decrypt_shadow {
None => None,
Some(mut decrypt_shadow) => {
// update shadow key
shadow_key.mul(&decrypt_shadow)?;
// now udate decrypt shadow itself
decrypt_shadow.dec()?;
decrypt_shadow.mul(node_shadow)?;
Some(decrypt_shadow)
}
};
shadow_key.mul(access_key)?;
let mut node_shadow_point = common_point.clone();
math::public_mul_secret(&mut node_shadow_point, &shadow_key)?;
Ok((node_shadow_point, decrypt_shadow))
}
/// Compute joint shadow point.
pub fn compute_joint_shadow_point<'a, I>(nodes_shadow_points: I) -> Result where I: Iterator
- {
compute_public_sum(nodes_shadow_points)
}
/// Compute joint shadow point (version for tests).
#[cfg(test)]
pub fn compute_joint_shadow_point_test<'a, I>(access_key: &Secret, common_point: &Public, nodes_shadows: I) -> Result where I: Iterator
- {
let mut joint_shadow = compute_secret_sum(nodes_shadows)?;
joint_shadow.mul(access_key)?;
let mut joint_shadow_point = common_point.clone();
math::public_mul_secret(&mut joint_shadow_point, &joint_shadow)?;
Ok(joint_shadow_point)
}
/// Decrypt data using joint shadow point.
pub fn decrypt_with_joint_shadow(threshold: usize, access_key: &Secret, encrypted_point: &Public, joint_shadow_point: &Public) -> Result {
let mut inv_access_key = access_key.clone();
inv_access_key.inv()?;
let mut mul = joint_shadow_point.clone();
math::public_mul_secret(&mut mul, &inv_access_key)?;
let mut decrypted_point = encrypted_point.clone();
if threshold % 2 != 0 {
math::public_add(&mut decrypted_point, &mul)?;
} else {
math::public_sub(&mut decrypted_point, &mul)?;
}
Ok(decrypted_point)
}
/// Prepare common point for shadow decryption.
pub fn make_common_shadow_point(threshold: usize, mut common_point: Public) -> Result {
if threshold % 2 != 1 {
Ok(common_point)
} else {
math::public_negate(&mut common_point)?;
Ok(common_point)
}
}
/// Decrypt shadow-encrypted secret.
#[cfg(test)]
pub fn decrypt_with_shadow_coefficients(mut decrypted_shadow: Public, mut common_shadow_point: Public, shadow_coefficients: Vec) -> Result {
let shadow_coefficients_sum = compute_secret_sum(shadow_coefficients.iter())?;
math::public_mul_secret(&mut common_shadow_point, &shadow_coefficients_sum)?;
math::public_add(&mut decrypted_shadow, &common_shadow_point)?;
Ok(decrypted_shadow)
}
/// Decrypt data using joint secret (version for tests).
#[cfg(test)]
pub fn decrypt_with_joint_secret(encrypted_point: &Public, common_point: &Public, joint_secret: &Secret) -> Result {
let mut common_point_mul = common_point.clone();
math::public_mul_secret(&mut common_point_mul, joint_secret)?;
let mut decrypted_point = encrypted_point.clone();
math::public_sub(&mut decrypted_point, &common_point_mul)?;
Ok(decrypted_point)
}
/// Combine message hash with public key X coordinate.
pub fn combine_message_hash_with_public(message_hash: &H256, public: &Public) -> Result {
// buffer is just [message_hash | public.x]
let mut buffer = [0; 64];
buffer[0..32].copy_from_slice(&message_hash[0..32]);
buffer[32..64].copy_from_slice(&public[0..32]);
// calculate hash of buffer
let hash = keccak(&buffer[..]);
// map hash to EC finite field value
let hash: U256 = hash.into();
let hash: H256 = (hash % math::curve_order()).into();
let hash = Secret::from_slice(&*hash);
hash.check_validity()?;
Ok(hash)
}
/// Compute signature share.
pub fn compute_signature_share<'a, I>(threshold: usize, combined_hash: &Secret, one_time_secret_coeff: &Secret, node_secret_share: &Secret, node_number: &Secret, other_nodes_numbers: I)
-> Result where I: Iterator
- {
let mut sum = one_time_secret_coeff.clone();
let mut subtrahend = compute_shadow_mul(combined_hash, node_number, other_nodes_numbers)?;
subtrahend.mul(node_secret_share)?;
if threshold % 2 == 0 {
sum.sub(&subtrahend)?;
} else {
sum.add(&subtrahend)?;
}
Ok(sum)
}
/// Check signature share.
pub fn _check_signature_share<'a, I>(_combined_hash: &Secret, _signature_share: &Secret, _public_share: &Public, _one_time_public_share: &Public, _node_numbers: I)
-> Result where I: Iterator
- {
// TODO: in paper partial signature is checked using comparison:
// sig[i] * T = r[i] - c * lagrange_coeff(i) * y[i]
// => (k[i] - c * lagrange_coeff(i) * s[i]) * T = r[i] - c * lagrange_coeff(i) * y[i]
// => k[i] * T - c * lagrange_coeff(i) * s[i] * T = k[i] * T - c * lagrange_coeff(i) * y[i]
// => this means that y[i] = s[i] * T
// but when verifying signature (for t = 1), nonce public (r) is restored using following expression:
// r = (sig[0] + sig[1]) * T - c * y
// r = (k[0] - c * lagrange_coeff(0) * s[0] + k[1] - c * lagrange_coeff(1) * s[1]) * T - c * y
// r = (k[0] + k[1]) * T - c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T - c * y
// r = r - c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T - c * y
// => -c * y = c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T
// => -y = (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T
// => y[i] != s[i] * T
// => some other way is required
Ok(true)
}
/// Compute signature.
pub fn compute_signature<'a, I>(signature_shares: I) -> Result where I: Iterator
- {
compute_secret_sum(signature_shares)
}
/// Locally compute Schnorr signature as described in https://en.wikipedia.org/wiki/Schnorr_signature#Signing.
#[cfg(test)]
pub fn local_compute_signature(nonce: &Secret, secret: &Secret, message_hash: &Secret) -> Result<(Secret, Secret), Error> {
let mut nonce_public = math::generation_point();
math::public_mul_secret(&mut nonce_public, &nonce).unwrap();
let combined_hash = combine_message_hash_with_public(message_hash, &nonce_public)?;
let mut sig_subtrahend = combined_hash.clone();
sig_subtrahend.mul(secret)?;
let mut sig = nonce.clone();
sig.sub(&sig_subtrahend)?;
Ok((combined_hash, sig))
}
/// Verify signature as described in https://en.wikipedia.org/wiki/Schnorr_signature#Verifying.
#[cfg(test)]
pub fn verify_signature(public: &Public, signature: &(Secret, Secret), message_hash: &H256) -> Result {
let mut addendum = math::generation_point();
math::public_mul_secret(&mut addendum, &signature.1)?;
let mut nonce_public = public.clone();
math::public_mul_secret(&mut nonce_public, &signature.0)?;
math::public_add(&mut nonce_public, &addendum)?;
let combined_hash = combine_message_hash_with_public(message_hash, &nonce_public)?;
Ok(combined_hash == signature.0)
}
#[cfg(test)]
pub mod tests {
use std::iter::once;
use ethkey::KeyPair;
use super::*;
#[derive(Clone)]
struct KeyGenerationArtifacts {
id_numbers: Vec,
polynoms1: Vec>,
secrets1: Vec>,
public_shares: Vec,
secret_shares: Vec,
joint_public: Public,
}
fn run_key_generation(t: usize, n: usize, id_numbers: Option>) -> KeyGenerationArtifacts {
// === PART1: DKG ===
// data, gathered during initialization
let id_numbers: Vec<_> = match id_numbers {
Some(id_numbers) => id_numbers,
None => (0..n).map(|_| generate_random_scalar().unwrap()).collect(),
};
// data, generated during keys dissemination
let polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
let secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms1[i], &id_numbers[j]).unwrap()).collect::>()).collect();
// data, generated during keys generation
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&polynoms1[i][0]).unwrap()).collect();
let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(secrets1.iter().map(|s| &s[i])).unwrap()).collect();
// joint public key, as a result of DKG
let joint_public = compute_joint_public(public_shares.iter()).unwrap();
KeyGenerationArtifacts {
id_numbers: id_numbers,
polynoms1: polynoms1,
secrets1: secrets1,
public_shares: public_shares,
secret_shares: secret_shares,
joint_public: joint_public,
}
}
pub fn do_encryption_and_decryption(t: usize, joint_public: &Public, id_numbers: &[Secret], secret_shares: &[Secret], joint_secret: Option<&Secret>, document_secret_plain: Public) -> (Public, Public) {
// === PART2: encryption using joint public key ===
// the next line is executed on KeyServer-client
let encrypted_secret = encrypt_secret(&document_secret_plain, &joint_public).unwrap();
// === PART3: decryption ===
// next line is executed on KeyServer client
let access_key = generate_random_scalar().unwrap();
// use t + 1 nodes to compute joint shadow point
let nodes_shadows: Vec<_> = (0..t + 1).map(|i|
compute_node_shadow(&secret_shares[i], &id_numbers[i], id_numbers.iter()
.enumerate()
.filter(|&(j, _)| j != i)
.take(t)
.map(|(_, id_number)| id_number)).unwrap()).collect();
let nodes_shadow_points: Vec<_> = nodes_shadows.iter()
.map(|s| compute_node_shadow_point(&access_key, &encrypted_secret.common_point, s, None).unwrap())
.map(|sp| sp.0)
.collect();
assert_eq!(nodes_shadows.len(), t + 1);
assert_eq!(nodes_shadow_points.len(), t + 1);
let joint_shadow_point = compute_joint_shadow_point(nodes_shadow_points.iter()).unwrap();
let joint_shadow_point_test = compute_joint_shadow_point_test(&access_key, &encrypted_secret.common_point, nodes_shadows.iter()).unwrap();
assert_eq!(joint_shadow_point, joint_shadow_point_test);
// decrypt encrypted secret using joint shadow point
let document_secret_decrypted = decrypt_with_joint_shadow(t, &access_key, &encrypted_secret.encrypted_point, &joint_shadow_point).unwrap();
// decrypt encrypted secret using joint secret [just for test]
let document_secret_decrypted_test = match joint_secret {
Some(joint_secret) => decrypt_with_joint_secret(&encrypted_secret.encrypted_point, &encrypted_secret.common_point, joint_secret).unwrap(),
None => document_secret_decrypted.clone(),
};
(document_secret_decrypted, document_secret_decrypted_test)
}
#[test]
fn full_encryption_math_session() {
let test_cases = [(0, 2), (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5),
(1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10)];
for &(t, n) in &test_cases {
let artifacts = run_key_generation(t, n, None);
// compute joint private key [just for test]
let joint_secret = compute_joint_secret(artifacts.polynoms1.iter().map(|p| &p[0])).unwrap();
let joint_key_pair = KeyPair::from_secret(joint_secret.clone()).unwrap();
assert_eq!(&artifacts.joint_public, joint_key_pair.public());
// check secret shares computation [just for test]
let secret_shares_polynom: Vec<_> = (0..t + 1).map(|k| compute_secret_share(artifacts.polynoms1.iter().map(|p| &p[k])).unwrap()).collect();
let secret_shares_calculated_from_polynom: Vec<_> = artifacts.id_numbers.iter().map(|id_number| compute_polynom(&*secret_shares_polynom, id_number).unwrap()).collect();
assert_eq!(artifacts.secret_shares, secret_shares_calculated_from_polynom);
// now encrypt and decrypt data
let document_secret_plain = generate_random_point().unwrap();
let (document_secret_decrypted, document_secret_decrypted_test) =
do_encryption_and_decryption(t, &artifacts.joint_public, &artifacts.id_numbers, &artifacts.secret_shares, Some(&joint_secret), document_secret_plain.clone());
assert_eq!(document_secret_plain, document_secret_decrypted_test);
assert_eq!(document_secret_plain, document_secret_decrypted);
}
}
#[test]
fn local_signature_works() {
let key_pair = Random.generate().unwrap();
let message_hash = "0000000000000000000000000000000000000000000000000000000000000042".parse().unwrap();
let nonce = generate_random_scalar().unwrap();
let signature = local_compute_signature(&nonce, key_pair.secret(), &message_hash).unwrap();
assert_eq!(verify_signature(key_pair.public(), &signature, &message_hash), Ok(true));
}
#[test]
fn full_signature_math_session() {
let test_cases = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5),
(1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10)];
for &(t, n) in &test_cases {
// hash of the message to be signed
let message_hash: Secret = "0000000000000000000000000000000000000000000000000000000000000042".parse().unwrap();
// === MiDS-S algorithm ===
// setup: all nodes share master secret key && every node knows master public key
let artifacts = run_key_generation(t, n, None);
// in this gap (not related to math):
// master node should ask every other node if it is able to do a signing
// if there are < than t+1 nodes, able to sign => error
// select t+1 nodes for signing session
// all steps below are for this subset of nodes
let n = t + 1;
// step 1: run DKG to generate one-time secret key (nonce)
let id_numbers = artifacts.id_numbers.iter().cloned().take(n).collect();
let one_time_artifacts = run_key_generation(t, n, Some(id_numbers));
// step 2: message hash && x coordinate of one-time public value are combined
let combined_hash = combine_message_hash_with_public(&message_hash, &one_time_artifacts.joint_public).unwrap();
// step 3: compute signature shares
let partial_signatures: Vec<_> = (0..n)
.map(|i| compute_signature_share(
t,
&combined_hash,
&one_time_artifacts.polynoms1[i][0],
&artifacts.secret_shares[i],
&artifacts.id_numbers[i],
artifacts.id_numbers.iter()
.enumerate()
.filter(|&(j, _)| i != j)
.map(|(_, n)| n)
.take(t)
).unwrap())
.collect();
// step 4: receive and verify signatures shares from other nodes
let received_signatures: Vec> = (0..n)
.map(|i| (0..n)
.filter(|j| i != *j)
.map(|j| {
let signature_share = partial_signatures[j].clone();
assert!(_check_signature_share(&combined_hash,
&signature_share,
&artifacts.public_shares[j],
&one_time_artifacts.public_shares[j],
artifacts.id_numbers.iter().take(t)).unwrap_or(false));
signature_share
})
.collect())
.collect();
// step 5: compute signature
let signatures: Vec<_> = (0..n)
.map(|i| (combined_hash.clone(), compute_signature(received_signatures[i].iter().chain(once(&partial_signatures[i]))).unwrap()))
.collect();
// === verify signature ===
let master_secret = compute_joint_secret(artifacts.polynoms1.iter().map(|p| &p[0])).unwrap();
let nonce = compute_joint_secret(one_time_artifacts.polynoms1.iter().map(|p| &p[0])).unwrap();
let local_signature = local_compute_signature(&nonce, &master_secret, &message_hash).unwrap();
for signature in &signatures {
assert_eq!(signature, &local_signature);
assert_eq!(verify_signature(&artifacts.joint_public, signature, &message_hash), Ok(true));
}
}
}
}