// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! LES Protocol Version 1 implementation. //! //! This uses a "Provider" to answer requests. //! See https://github.com/ethcore/parity/wiki/Light-Ethereum-Subprotocol-(LES) use ethcore::transaction::UnverifiedTransaction; use ethcore::receipt::Receipt; use io::TimerToken; use network::{NetworkProtocolHandler, NetworkContext, PeerId}; use rlp::{RlpStream, Stream, UntrustedRlp, View}; use util::hash::H256; use util::{Bytes, Mutex, RwLock, U256}; use time::{Duration, SteadyTime}; use std::collections::HashMap; use std::fmt; use std::sync::Arc; use std::sync::atomic::{AtomicUsize, Ordering}; use provider::Provider; use request::{self, HashOrNumber, Request}; use self::buffer_flow::{Buffer, FlowParams}; use self::context::{Ctx, TickCtx}; use self::error::Punishment; use self::request_set::RequestSet; use self::id_guard::IdGuard; mod context; mod error; mod status; mod request_set; #[cfg(test)] mod tests; pub mod buffer_flow; pub use self::error::Error; pub use self::context::{BasicContext, EventContext, IoContext}; pub use self::status::{Status, Capabilities, Announcement}; const TIMEOUT: TimerToken = 0; const TIMEOUT_INTERVAL_MS: u64 = 1000; const TICK_TIMEOUT: TimerToken = 1; const TICK_TIMEOUT_INTERVAL_MS: u64 = 5000; // minimum interval between updates. const UPDATE_INTERVAL_MS: i64 = 5000; /// Supported protocol versions. pub const PROTOCOL_VERSIONS: &'static [u8] = &[1]; /// Max protocol version. pub const MAX_PROTOCOL_VERSION: u8 = 1; /// Packet count for LES. pub const PACKET_COUNT: u8 = 15; // packet ID definitions. mod packet { // the status packet. pub const STATUS: u8 = 0x00; // announcement of new block hashes or capabilities. pub const ANNOUNCE: u8 = 0x01; // request and response for block headers pub const GET_BLOCK_HEADERS: u8 = 0x02; pub const BLOCK_HEADERS: u8 = 0x03; // request and response for block bodies pub const GET_BLOCK_BODIES: u8 = 0x04; pub const BLOCK_BODIES: u8 = 0x05; // request and response for transaction receipts. pub const GET_RECEIPTS: u8 = 0x06; pub const RECEIPTS: u8 = 0x07; // request and response for merkle proofs. pub const GET_PROOFS: u8 = 0x08; pub const PROOFS: u8 = 0x09; // request and response for contract code. pub const GET_CONTRACT_CODES: u8 = 0x0a; pub const CONTRACT_CODES: u8 = 0x0b; // relay transactions to peers. pub const SEND_TRANSACTIONS: u8 = 0x0c; // request and response for header proofs in a CHT. pub const GET_HEADER_PROOFS: u8 = 0x0d; pub const HEADER_PROOFS: u8 = 0x0e; } // timeouts for different kinds of requests. all values are in milliseconds. // TODO: variable timeouts based on request count. mod timeout { pub const HANDSHAKE: i64 = 2500; pub const HEADERS: i64 = 5000; pub const BODIES: i64 = 5000; pub const RECEIPTS: i64 = 3500; pub const PROOFS: i64 = 4000; pub const CONTRACT_CODES: i64 = 5000; pub const HEADER_PROOFS: i64 = 3500; } /// A request id. #[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd, Hash)] pub struct ReqId(usize); impl fmt::Display for ReqId { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Request #{}", self.0) } } // A pending peer: one we've sent our status to but // may not have received one for. struct PendingPeer { sent_head: H256, last_update: SteadyTime, } /// Relevant data to each peer. Not accessible publicly, only `pub` due to /// limitations of the privacy system. pub struct Peer { local_buffer: Buffer, // their buffer relative to us status: Status, capabilities: Capabilities, remote_flow: Option<(Buffer, FlowParams)>, sent_head: H256, // last chain head we've given them. last_update: SteadyTime, pending_requests: RequestSet, failed_requests: Vec, } impl Peer { // check the maximum cost of a request, returning an error if there's // not enough buffer left. // returns the calculated maximum cost. fn deduct_max(&mut self, flow_params: &FlowParams, kind: request::Kind, max: usize) -> Result { flow_params.recharge(&mut self.local_buffer); let max_cost = flow_params.compute_cost(kind, max); self.local_buffer.deduct_cost(max_cost)?; Ok(max_cost) } // refund buffer for a request. returns new buffer amount. fn refund(&mut self, flow_params: &FlowParams, amount: U256) -> U256 { flow_params.refund(&mut self.local_buffer, amount); self.local_buffer.current() } } /// An LES event handler. /// /// Each handler function takes a context which describes the relevant peer /// and gives references to the IO layer and protocol structure so new messages /// can be dispatched immediately. /// /// Request responses are not guaranteed to be complete or valid, but passed IDs will be correct. /// Response handlers are not given a copy of the original request; it is assumed /// that relevant data will be stored by interested handlers. pub trait Handler: Send + Sync { /// Called when a peer connects. fn on_connect(&self, _ctx: &EventContext, _status: &Status, _capabilities: &Capabilities) { } /// Called when a peer disconnects, with a list of unfulfilled request IDs as /// of yet. fn on_disconnect(&self, _ctx: &EventContext, _unfulfilled: &[ReqId]) { } /// Called when a peer makes an announcement. fn on_announcement(&self, _ctx: &EventContext, _announcement: &Announcement) { } /// Called when a peer requests relay of some transactions. fn on_transactions(&self, _ctx: &EventContext, _relay: &[UnverifiedTransaction]) { } /// Called when a peer responds with block bodies. fn on_block_bodies(&self, _ctx: &EventContext, _req_id: ReqId, _bodies: &[Bytes]) { } /// Called when a peer responds with block headers. fn on_block_headers(&self, _ctx: &EventContext, _req_id: ReqId, _headers: &[Bytes]) { } /// Called when a peer responds with block receipts. fn on_receipts(&self, _ctx: &EventContext, _req_id: ReqId, _receipts: &[Vec]) { } /// Called when a peer responds with state proofs. Each proof should be a series of trie /// nodes in ascending order by distance from the root. fn on_state_proofs(&self, _ctx: &EventContext, _req_id: ReqId, _proofs: &[Vec]) { } /// Called when a peer responds with contract code. fn on_code(&self, _ctx: &EventContext, _req_id: ReqId, _codes: &[Bytes]) { } /// Called when a peer responds with header proofs. Each proof should be a block header coupled /// with a series of trie nodes is ascending order by distance from the root. fn on_header_proofs(&self, _ctx: &EventContext, _req_id: ReqId, _proofs: &[(Bytes, Vec)]) { } /// Called to "tick" the handler periodically. fn tick(&self, _ctx: &BasicContext) { } /// Called on abort. This signals to handlers that they should clean up /// and ignore peers. // TODO: coreresponding `on_activate`? fn on_abort(&self) { } } /// Protocol parameters. pub struct Params { /// Network id. pub network_id: u64, /// Buffer flow parameters. pub flow_params: FlowParams, /// Initial capabilities. pub capabilities: Capabilities, } /// Type alias for convenience. pub type PeerMap = HashMap>; mod id_guard { use network::PeerId; use util::RwLockReadGuard; use super::{PeerMap, ReqId}; // Guards success or failure of given request. // On drop, inserts the req_id into the "failed requests" // set for the peer unless defused. In separate module to enforce correct usage. pub struct IdGuard<'a> { peers: RwLockReadGuard<'a, PeerMap>, peer_id: PeerId, req_id: ReqId, active: bool, } impl<'a> IdGuard<'a> { /// Create a new `IdGuard`, which will prevent access of the inner ReqId /// (for forming responses, triggering handlers) until defused pub fn new(peers: RwLockReadGuard<'a, PeerMap>, peer_id: PeerId, req_id: ReqId) -> Self { IdGuard { peers: peers, peer_id: peer_id, req_id: req_id, active: true, } } /// Defuse the guard, signalling that the request has been successfully decoded. pub fn defuse(mut self) -> ReqId { // can't use the mem::forget trick here since we need the // read guard to drop. self.active = false; self.req_id } } impl<'a> Drop for IdGuard<'a> { fn drop(&mut self) { if !self.active { return } if let Some(p) = self.peers.get(&self.peer_id) { p.lock().failed_requests.push(self.req_id); } } } } /// This is an implementation of the light ethereum network protocol, abstracted /// over a `Provider` of data and a p2p network. /// /// This is simply designed for request-response purposes. Higher level uses /// of the protocol, such as synchronization, will function as wrappers around /// this system. // // LOCK ORDER: // Locks must be acquired in the order declared, and when holding a read lock // on the peers, only one peer may be held at a time. pub struct LightProtocol { provider: Arc, genesis_hash: H256, network_id: u64, pending_peers: RwLock>, peers: RwLock, capabilities: RwLock, flow_params: FlowParams, // assumed static and same for every peer. handlers: Vec>, req_id: AtomicUsize, } impl LightProtocol { /// Create a new instance of the protocol manager. pub fn new(provider: Arc, params: Params) -> Self { debug!(target: "les", "Initializing LES handler"); let genesis_hash = provider.chain_info().genesis_hash; LightProtocol { provider: provider, genesis_hash: genesis_hash, network_id: params.network_id, pending_peers: RwLock::new(HashMap::new()), peers: RwLock::new(HashMap::new()), capabilities: RwLock::new(params.capabilities), flow_params: params.flow_params, handlers: Vec::new(), req_id: AtomicUsize::new(0), } } /// Attempt to get peer status. pub fn peer_status(&self, peer: &PeerId) -> Option { self.peers.read().get(&peer) .map(|peer| peer.lock().status.clone()) } /// Check the maximum amount of requests of a specific type /// which a peer would be able to serve. Returns zero if the /// peer is unknown or has no buffer flow parameters. fn max_requests(&self, peer: PeerId, kind: request::Kind) -> usize { self.peers.read().get(&peer).and_then(|peer| { let mut peer = peer.lock(); match peer.remote_flow { Some((ref mut buf, ref flow)) => { flow.recharge(buf); Some(flow.max_amount(&*buf, kind)) } None => None, } }).unwrap_or(0) } /// Make a request to a peer. /// /// Fails on: nonexistent peer, network error, peer not server, /// insufficient buffer. Does not check capabilities before sending. /// On success, returns a request id which can later be coordinated /// with an event. pub fn request_from(&self, io: &IoContext, peer_id: &PeerId, request: Request) -> Result { let peers = self.peers.read(); let peer = peers.get(peer_id).ok_or_else(|| Error::UnknownPeer)?; let mut peer = peer.lock(); match peer.remote_flow { Some((ref mut buf, ref flow)) => { flow.recharge(buf); let max = flow.compute_cost(request.kind(), request.amount()); buf.deduct_cost(max)?; } None => return Err(Error::NotServer), } let req_id = self.req_id.fetch_add(1, Ordering::SeqCst); let packet_data = encode_request(&request, req_id); trace!(target: "les", "Dispatching request {} to peer {}", req_id, peer_id); let packet_id = match request.kind() { request::Kind::Headers => packet::GET_BLOCK_HEADERS, request::Kind::Bodies => packet::GET_BLOCK_BODIES, request::Kind::Receipts => packet::GET_RECEIPTS, request::Kind::StateProofs => packet::GET_PROOFS, request::Kind::Codes => packet::GET_CONTRACT_CODES, request::Kind::HeaderProofs => packet::GET_HEADER_PROOFS, }; io.send(*peer_id, packet_id, packet_data); peer.pending_requests.insert(ReqId(req_id), request, SteadyTime::now()); Ok(ReqId(req_id)) } /// Make an announcement of new chain head and capabilities to all peers. /// The announcement is expected to be valid. pub fn make_announcement(&self, io: &IoContext, mut announcement: Announcement) { let mut reorgs_map = HashMap::new(); let now = SteadyTime::now(); // update stored capabilities self.capabilities.write().update_from(&announcement); // calculate reorg info and send packets for (peer_id, peer_info) in self.peers.read().iter() { let mut peer_info = peer_info.lock(); // TODO: "urgent" announcements like new blocks? // the timer approach will skip 1 (possibly 2) in rare occasions. if peer_info.sent_head == announcement.head_hash || peer_info.status.head_num >= announcement.head_num || now - peer_info.last_update < Duration::milliseconds(UPDATE_INTERVAL_MS) { continue } peer_info.last_update = now; let reorg_depth = reorgs_map.entry(peer_info.sent_head) .or_insert_with(|| { match self.provider.reorg_depth(&announcement.head_hash, &peer_info.sent_head) { Some(depth) => depth, None => { // both values will always originate locally -- this means something // has gone really wrong debug!(target: "les", "couldn't compute reorganization depth between {:?} and {:?}", &announcement.head_hash, &peer_info.sent_head); 0 } } }); peer_info.sent_head = announcement.head_hash; announcement.reorg_depth = *reorg_depth; io.send(*peer_id, packet::ANNOUNCE, status::write_announcement(&announcement)); } } /// Add an event handler. /// /// These are intended to be added when the protocol structure /// is initialized as a means of customizing its behavior, /// and dispatching requests immediately upon events. pub fn add_handler(&mut self, handler: Arc) { self.handlers.push(handler); } /// Signal to handlers that network activity is being aborted /// and clear peer data. pub fn abort(&self) { for handler in &self.handlers { handler.on_abort(); } // acquire in order and hold. let mut pending_peers = self.pending_peers.write(); let mut peers = self.peers.write(); pending_peers.clear(); peers.clear(); } // Does the common pre-verification of responses before the response itself // is actually decoded: // - check whether peer exists // - check whether request was made // - check whether request kinds match fn pre_verify_response(&self, peer: &PeerId, kind: request::Kind, raw: &UntrustedRlp) -> Result { let req_id = ReqId(raw.val_at(0)?); let cur_buffer: U256 = raw.val_at(1)?; trace!(target: "les", "pre-verifying response from peer {}, kind={:?}", peer, kind); let mut had_req = false; let peers = self.peers.read(); let maybe_err = match peers.get(peer) { Some(peer_info) => { let mut peer_info = peer_info.lock(); let req_info = peer_info.pending_requests.remove(&req_id, SteadyTime::now()); let flow_info = peer_info.remote_flow.as_mut(); match (req_info, flow_info) { (Some(request), Some(flow_info)) => { had_req = true; let &mut (ref mut buf, ref mut flow) = flow_info; let actual_buffer = ::std::cmp::min(cur_buffer, *flow.limit()); buf.update_to(actual_buffer); if request.kind() != kind { Some(Error::UnsolicitedResponse) } else { None } } (None, _) => Some(Error::UnsolicitedResponse), (_, None) => Some(Error::NotServer), // really should be impossible. } } None => Some(Error::UnknownPeer), // probably only occurs in a race of some kind. }; if had_req { let id_guard = IdGuard::new(peers, *peer, req_id); match maybe_err { Some(err) => Err(err), None => Ok(id_guard) } } else { Err(maybe_err.expect("every branch without a request leads to error; qed")) } } /// Handle an LES packet using the given io context. /// Packet data is _untrusted_, which means that invalid data won't lead to /// issues. pub fn handle_packet(&self, io: &IoContext, peer: &PeerId, packet_id: u8, data: &[u8]) { let rlp = UntrustedRlp::new(data); trace!(target: "les", "Incoming packet {} from peer {}", packet_id, peer); // handle the packet let res = match packet_id { packet::STATUS => self.status(peer, io, rlp), packet::ANNOUNCE => self.announcement(peer, io, rlp), packet::GET_BLOCK_HEADERS => self.get_block_headers(peer, io, rlp), packet::BLOCK_HEADERS => self.block_headers(peer, io, rlp), packet::GET_BLOCK_BODIES => self.get_block_bodies(peer, io, rlp), packet::BLOCK_BODIES => self.block_bodies(peer, io, rlp), packet::GET_RECEIPTS => self.get_receipts(peer, io, rlp), packet::RECEIPTS => self.receipts(peer, io, rlp), packet::GET_PROOFS => self.get_proofs(peer, io, rlp), packet::PROOFS => self.proofs(peer, io, rlp), packet::GET_CONTRACT_CODES => self.get_contract_code(peer, io, rlp), packet::CONTRACT_CODES => self.contract_code(peer, io, rlp), packet::GET_HEADER_PROOFS => self.get_header_proofs(peer, io, rlp), packet::HEADER_PROOFS => self.header_proofs(peer, io, rlp), packet::SEND_TRANSACTIONS => self.relay_transactions(peer, io, rlp), other => { Err(Error::UnrecognizedPacket(other)) } }; if let Err(e) = res { punish(*peer, io, e); } } // check timeouts and punish peers. fn timeout_check(&self, io: &IoContext) { let now = SteadyTime::now(); // handshake timeout { let mut pending = self.pending_peers.write(); let slowpokes: Vec<_> = pending.iter() .filter(|&(_, ref peer)| { peer.last_update + Duration::milliseconds(timeout::HANDSHAKE) <= now }) .map(|(&p, _)| p) .collect(); for slowpoke in slowpokes { debug!(target: "les", "Peer {} handshake timed out", slowpoke); pending.remove(&slowpoke); io.disconnect_peer(slowpoke); } } // request timeouts { for (peer_id, peer) in self.peers.read().iter() { if peer.lock().pending_requests.check_timeout(now) { debug!(target: "les", "Peer {} request timeout", peer_id); io.disconnect_peer(*peer_id); } } } } /// called when a peer connects. pub fn on_connect(&self, peer: &PeerId, io: &IoContext) { let proto_version = match io.protocol_version(*peer).ok_or(Error::WrongNetwork) { Ok(pv) => pv, Err(e) => { punish(*peer, io, e); return } }; if PROTOCOL_VERSIONS.iter().find(|x| **x == proto_version).is_none() { punish(*peer, io, Error::UnsupportedProtocolVersion(proto_version)); return; } let chain_info = self.provider.chain_info(); let status = Status { head_td: chain_info.total_difficulty, head_hash: chain_info.best_block_hash, head_num: chain_info.best_block_number, genesis_hash: chain_info.genesis_hash, protocol_version: proto_version as u32, // match peer proto version network_id: self.network_id, last_head: None, }; let capabilities = self.capabilities.read().clone(); let status_packet = status::write_handshake(&status, &capabilities, Some(&self.flow_params)); self.pending_peers.write().insert(*peer, PendingPeer { sent_head: chain_info.best_block_hash, last_update: SteadyTime::now(), }); io.send(*peer, packet::STATUS, status_packet); } /// called when a peer disconnects. pub fn on_disconnect(&self, peer: PeerId, io: &IoContext) { trace!(target: "les", "Peer {} disconnecting", peer); self.pending_peers.write().remove(&peer); let unfulfilled = match self.peers.write().remove(&peer) { None => return, Some(peer_info) => { let peer_info = peer_info.into_inner(); let mut unfulfilled: Vec<_> = peer_info.pending_requests.collect_ids(); unfulfilled.extend(peer_info.failed_requests); unfulfilled } }; for handler in &self.handlers { handler.on_disconnect(&Ctx { peer: peer, io: io, proto: self, }, &unfulfilled) } } /// Execute the given closure with a basic context derived from the I/O context. pub fn with_context(&self, io: &IoContext, f: F) -> T where F: FnOnce(&BasicContext) -> T { f(&TickCtx { io: io, proto: self, }) } fn tick_handlers(&self, io: &IoContext) { for handler in &self.handlers { handler.tick(&TickCtx { io: io, proto: self, }) } } } impl LightProtocol { // Handle status message from peer. fn status(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { let pending = match self.pending_peers.write().remove(peer) { Some(pending) => pending, None => { return Err(Error::UnexpectedHandshake); } }; let (status, capabilities, flow_params) = status::parse_handshake(data)?; trace!(target: "les", "Connected peer with chain head {:?}", (status.head_hash, status.head_num)); if (status.network_id, status.genesis_hash) != (self.network_id, self.genesis_hash) { return Err(Error::WrongNetwork); } if Some(status.protocol_version as u8) != io.protocol_version(*peer) { return Err(Error::BadProtocolVersion); } let remote_flow = flow_params.map(|params| (params.create_buffer(), params)); self.peers.write().insert(*peer, Mutex::new(Peer { local_buffer: self.flow_params.create_buffer(), status: status.clone(), capabilities: capabilities.clone(), remote_flow: remote_flow, sent_head: pending.sent_head, last_update: pending.last_update, pending_requests: RequestSet::default(), failed_requests: Vec::new(), })); for handler in &self.handlers { handler.on_connect(&Ctx { peer: *peer, io: io, proto: self, }, &status, &capabilities) } Ok(()) } // Handle an announcement. fn announcement(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { if !self.peers.read().contains_key(peer) { debug!(target: "les", "Ignoring announcement from unknown peer"); return Ok(()) } let announcement = status::parse_announcement(data)?; // scope to ensure locks are dropped before moving into handler-space. { let peers = self.peers.read(); let peer_info = match peers.get(peer) { Some(info) => info, None => return Ok(()), }; let mut peer_info = peer_info.lock(); // update status. { // TODO: punish peer if they've moved backwards. let status = &mut peer_info.status; let last_head = status.head_hash; status.head_hash = announcement.head_hash; status.head_td = announcement.head_td; status.head_num = announcement.head_num; status.last_head = Some((last_head, announcement.reorg_depth)); } // update capabilities. peer_info.capabilities.update_from(&announcement); } for handler in &self.handlers { handler.on_announcement(&Ctx { peer: *peer, io: io, proto: self, }, &announcement); } Ok(()) } // Handle a request for block headers. fn get_block_headers(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_HEADERS: usize = 512; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = data.val_at(0)?; let data = data.at(1)?; let start_block = { if data.at(0)?.size() == 32 { HashOrNumber::Hash(data.val_at(0)?) } else { HashOrNumber::Number(data.val_at(0)?) } }; let req = request::Headers { start: start_block, max: ::std::cmp::min(MAX_HEADERS, data.val_at(1)?), skip: data.val_at(2)?, reverse: data.val_at(3)?, }; let max_cost = peer.deduct_max(&self.flow_params, request::Kind::Headers, req.max)?; let response = self.provider.block_headers(req); let actual_cost = self.flow_params.compute_cost(request::Kind::Headers, response.len()); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::BLOCK_HEADERS, { let mut stream = RlpStream::new_list(3); stream.append(&req_id).append(&cur_buffer).begin_list(response.len()); for header in response { stream.append_raw(&header.into_inner(), 1); } stream.out() }); Ok(()) } // Receive a response for block headers. fn block_headers(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let id_guard = self.pre_verify_response(peer, request::Kind::Headers, &raw)?; let raw_headers: Vec<_> = raw.at(2)?.iter().map(|x| x.as_raw().to_owned()).collect(); let req_id = id_guard.defuse(); for handler in &self.handlers { handler.on_block_headers(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_headers); } Ok(()) } // Handle a request for block bodies. fn get_block_bodies(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_BODIES: usize = 256; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = data.val_at(0)?; let req = request::Bodies { block_hashes: data.at(1)?.iter() .take(MAX_BODIES) .map(|x| x.as_val()) .collect::>()? }; let max_cost = peer.deduct_max(&self.flow_params, request::Kind::Bodies, req.block_hashes.len())?; let response = self.provider.block_bodies(req); let response_len = response.iter().filter(|x| x.is_some()).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::Bodies, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::BLOCK_BODIES, { let mut stream = RlpStream::new_list(3); stream.append(&req_id).append(&cur_buffer).begin_list(response.len()); for body in response { match body { Some(body) => stream.append_raw(&body.into_inner(), 1), None => stream.append_empty_data(), }; } stream.out() }); Ok(()) } // Receive a response for block bodies. fn block_bodies(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let id_guard = self.pre_verify_response(peer, request::Kind::Bodies, &raw)?; let raw_bodies: Vec = raw.at(2)?.iter().map(|x| x.as_raw().to_owned()).collect(); let req_id = id_guard.defuse(); for handler in &self.handlers { handler.on_block_bodies(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_bodies); } Ok(()) } // Handle a request for receipts. fn get_receipts(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_RECEIPTS: usize = 256; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = data.val_at(0)?; let req = request::Receipts { block_hashes: data.at(1)?.iter() .take(MAX_RECEIPTS) .map(|x| x.as_val()) .collect::>()? }; let max_cost = peer.deduct_max(&self.flow_params, request::Kind::Receipts, req.block_hashes.len())?; let response = self.provider.receipts(req); let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::Receipts, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::RECEIPTS, { let mut stream = RlpStream::new_list(3); stream.append(&req_id).append(&cur_buffer).begin_list(response.len()); for receipts in response { stream.append_raw(&receipts, 1); } stream.out() }); Ok(()) } // Receive a response for receipts. fn receipts(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let id_guard = self.pre_verify_response(peer, request::Kind::Receipts, &raw)?; let raw_receipts: Vec> = raw.at(2)? .iter() .map(|x| x.as_val()) .collect::>()?; let req_id = id_guard.defuse(); for handler in &self.handlers { handler.on_receipts(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_receipts); } Ok(()) } // Handle a request for proofs. fn get_proofs(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_PROOFS: usize = 128; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = data.val_at(0)?; let req = { let requests: Result, Error> = data.at(1)?.iter().take(MAX_PROOFS).map(|x| { Ok(request::StateProof { block: x.val_at(0)?, key1: x.val_at(1)?, key2: if x.at(2)?.is_empty() { None } else { Some(x.val_at(2)?) }, from_level: x.val_at(3)?, }) }).collect(); request::StateProofs { requests: requests?, } }; let max_cost = peer.deduct_max(&self.flow_params, request::Kind::StateProofs, req.requests.len())?; let response = self.provider.proofs(req); let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::StateProofs, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::PROOFS, { let mut stream = RlpStream::new_list(3); stream.append(&req_id).append(&cur_buffer).begin_list(response.len()); for proof in response { stream.append_raw(&proof, 1); } stream.out() }); Ok(()) } // Receive a response for proofs. fn proofs(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let id_guard = self.pre_verify_response(peer, request::Kind::StateProofs, &raw)?; let raw_proofs: Vec> = raw.at(2)?.iter() .map(|x| x.iter().map(|node| node.as_raw().to_owned()).collect()) .collect(); let req_id = id_guard.defuse(); for handler in &self.handlers { handler.on_state_proofs(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_proofs); } Ok(()) } // Handle a request for contract code. fn get_contract_code(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_CODES: usize = 256; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = data.val_at(0)?; let req = { let requests: Result, Error> = data.at(1)?.iter().take(MAX_CODES).map(|x| { Ok(request::ContractCode { block_hash: x.val_at(0)?, account_key: x.val_at(1)?, }) }).collect(); request::ContractCodes { code_requests: requests?, } }; let max_cost = peer.deduct_max(&self.flow_params, request::Kind::Codes, req.code_requests.len())?; let response = self.provider.contract_codes(req); let response_len = response.iter().filter(|x| !x.is_empty()).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::Codes, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::CONTRACT_CODES, { let mut stream = RlpStream::new_list(3); stream.append(&req_id).append(&cur_buffer).begin_list(response.len()); for code in response { stream.append(&code); } stream.out() }); Ok(()) } // Receive a response for contract code. fn contract_code(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let id_guard = self.pre_verify_response(peer, request::Kind::Codes, &raw)?; let raw_code: Vec = raw.at(2)?.iter() .map(|x| x.as_val()) .collect::>()?; let req_id = id_guard.defuse(); for handler in &self.handlers { handler.on_code(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_code); } Ok(()) } // Handle a request for header proofs fn get_header_proofs(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_PROOFS: usize = 256; let peers = self.peers.read(); let peer = match peers.get(peer) { Some(peer) => peer, None => { debug!(target: "les", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let req_id: u64 = data.val_at(0)?; let req = { let requests: Result, Error> = data.at(1)?.iter().take(MAX_PROOFS).map(|x| { Ok(request::HeaderProof { cht_number: x.val_at(0)?, block_number: x.val_at(1)?, from_level: x.val_at(2)?, }) }).collect(); request::HeaderProofs { requests: requests?, } }; let max_cost = peer.deduct_max(&self.flow_params, request::Kind::HeaderProofs, req.requests.len())?; let response = self.provider.header_proofs(req); let response_len = response.iter().filter(|x| &x[..] != ::rlp::EMPTY_LIST_RLP).count(); let actual_cost = self.flow_params.compute_cost(request::Kind::HeaderProofs, response_len); assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost."); let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost); io.respond(packet::HEADER_PROOFS, { let mut stream = RlpStream::new_list(3); stream.append(&req_id).append(&cur_buffer).begin_list(response.len()); for proof in response { stream.append_raw(&proof, 1); } stream.out() }); Ok(()) } // Receive a response for header proofs fn header_proofs(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { fn decode_res(raw: UntrustedRlp) -> Result<(Bytes, Vec), ::rlp::DecoderError> { Ok(( raw.val_at(0)?, raw.at(1)?.iter().map(|x| x.as_raw().to_owned()).collect(), )) } let id_guard = self.pre_verify_response(peer, request::Kind::HeaderProofs, &raw)?; let raw_proofs: Vec<_> = raw.at(2)?.iter() .map(decode_res) .collect::>()?; let req_id = id_guard.defuse(); for handler in &self.handlers { handler.on_header_proofs(&Ctx { peer: *peer, io: io, proto: self, }, req_id, &raw_proofs); } Ok(()) } // Receive a set of transactions to relay. fn relay_transactions(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_TRANSACTIONS: usize = 256; let txs: Vec<_> = data.iter() .take(MAX_TRANSACTIONS) .map(|x| x.as_val::()) .collect::>()?; debug!(target: "les", "Received {} transactions to relay from peer {}", txs.len(), peer); for handler in &self.handlers { handler.on_transactions(&Ctx { peer: *peer, io: io, proto: self, }, &txs); } Ok(()) } } // if something went wrong, figure out how much to punish the peer. fn punish(peer: PeerId, io: &IoContext, e: Error) { match e.punishment() { Punishment::None => {} Punishment::Disconnect => { debug!(target: "les", "Disconnecting peer {}: {}", peer, e); io.disconnect_peer(peer) } Punishment::Disable => { debug!(target: "les", "Disabling peer {}: {}", peer, e); io.disable_peer(peer) } } } impl NetworkProtocolHandler for LightProtocol { fn initialize(&self, io: &NetworkContext) { io.register_timer(TIMEOUT, TIMEOUT_INTERVAL_MS) .expect("Error registering sync timer."); io.register_timer(TICK_TIMEOUT, TICK_TIMEOUT_INTERVAL_MS) .expect("Error registering sync timer."); } fn read(&self, io: &NetworkContext, peer: &PeerId, packet_id: u8, data: &[u8]) { self.handle_packet(io, peer, packet_id, data); } fn connected(&self, io: &NetworkContext, peer: &PeerId) { self.on_connect(peer, io); } fn disconnected(&self, io: &NetworkContext, peer: &PeerId) { self.on_disconnect(*peer, io); } fn timeout(&self, io: &NetworkContext, timer: TimerToken) { match timer { TIMEOUT => self.timeout_check(io), TICK_TIMEOUT => self.tick_handlers(io), _ => warn!(target: "les", "received timeout on unknown token {}", timer), } } } // Helper for encoding the request to RLP with the given ID. fn encode_request(req: &Request, req_id: usize) -> Vec { match *req { Request::Headers(ref headers) => { let mut stream = RlpStream::new_list(2); stream.append(&req_id).begin_list(4); match headers.start { HashOrNumber::Hash(ref hash) => stream.append(hash), HashOrNumber::Number(ref num) => stream.append(num), }; stream .append(&headers.max) .append(&headers.skip) .append(&headers.reverse); stream.out() } Request::Bodies(ref request) => { let mut stream = RlpStream::new_list(2); stream.append(&req_id).begin_list(request.block_hashes.len()); for hash in &request.block_hashes { stream.append(hash); } stream.out() } Request::Receipts(ref request) => { let mut stream = RlpStream::new_list(2); stream.append(&req_id).begin_list(request.block_hashes.len()); for hash in &request.block_hashes { stream.append(hash); } stream.out() } Request::StateProofs(ref request) => { let mut stream = RlpStream::new_list(2); stream.append(&req_id).begin_list(request.requests.len()); for proof_req in &request.requests { stream.begin_list(4) .append(&proof_req.block) .append(&proof_req.key1); match proof_req.key2 { Some(ref key2) => stream.append(key2), None => stream.append_empty_data(), }; stream.append(&proof_req.from_level); } stream.out() } Request::Codes(ref request) => { let mut stream = RlpStream::new_list(2); stream.append(&req_id).begin_list(request.code_requests.len()); for code_req in &request.code_requests { stream.begin_list(2) .append(&code_req.block_hash) .append(&code_req.account_key); } stream.out() } Request::HeaderProofs(ref request) => { let mut stream = RlpStream::new_list(2); stream.append(&req_id).begin_list(request.requests.len()); for proof_req in &request.requests { stream.begin_list(3) .append(&proof_req.cht_number) .append(&proof_req.block_number) .append(&proof_req.from_level); } stream.out() } } }