// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Blockchain database. use bloomchain as bc; use util::*; use rlp::*; use header::*; use super::extras::*; use transaction::*; use views::*; use log_entry::{LogEntry, LocalizedLogEntry}; use receipt::Receipt; use blooms::{Bloom, BloomGroup}; use blockchain::block_info::{BlockInfo, BlockLocation, BranchBecomingCanonChainData}; use blockchain::best_block::{BestBlock, BestAncientBlock}; use types::blockchain_info::BlockChainInfo; use types::tree_route::TreeRoute; use blockchain::update::ExtrasUpdate; use blockchain::{CacheSize, ImportRoute, Config}; use db::{self, Writable, Readable, CacheUpdatePolicy}; use cache_manager::CacheManager; use encoded; const LOG_BLOOMS_LEVELS: usize = 3; const LOG_BLOOMS_ELEMENTS_PER_INDEX: usize = 16; /// Interface for querying blocks by hash and by number. pub trait BlockProvider { /// Returns true if the given block is known /// (though not necessarily a part of the canon chain). fn is_known(&self, hash: &H256) -> bool; /// Get the first block of the best part of the chain. /// Return `None` if there is no gap and the first block is the genesis. /// Any queries of blocks which precede this one are not guaranteed to /// succeed. fn first_block(&self) -> Option; /// Get the number of the first block. fn first_block_number(&self) -> Option { self.first_block().map(|b| self.block_number(&b).expect("First block is always set to an existing block or `None`. Existing block always has a number; qed")) } /// Get the best block of an first block sequence if there is a gap. fn best_ancient_block(&self) -> Option; /// Get the number of the first block. fn best_ancient_number(&self) -> Option { self.best_ancient_block().map(|h| self.block_number(&h).expect("Ancient block is always set to an existing block or `None`. Existing block always has a number; qed")) } /// Get raw block data fn block(&self, hash: &H256) -> Option; /// Get the familial details concerning a block. fn block_details(&self, hash: &H256) -> Option; /// Get the hash of given block's number. fn block_hash(&self, index: BlockNumber) -> Option; /// Get the address of transaction with given hash. fn transaction_address(&self, hash: &H256) -> Option; /// Get receipts of block with given hash. fn block_receipts(&self, hash: &H256) -> Option; /// Get the partial-header of a block. fn block_header(&self, hash: &H256) -> Option
{ self.block_header_data(hash).map(|header| header.decode()) } /// Get the header RLP of a block. fn block_header_data(&self, hash: &H256) -> Option; /// Get the block body (uncles and transactions). fn block_body(&self, hash: &H256) -> Option; /// Get a list of uncles for a given block. /// Returns None if block does not exist. fn uncles(&self, hash: &H256) -> Option> { self.block_body(hash).map(|body| body.uncles()) } /// Get a list of uncle hashes for a given block. /// Returns None if block does not exist. fn uncle_hashes(&self, hash: &H256) -> Option> { self.block_body(hash).map(|body| body.uncle_hashes()) } /// Get the number of given block's hash. fn block_number(&self, hash: &H256) -> Option { self.block_details(hash).map(|details| details.number) } /// Get transaction with given transaction hash. fn transaction(&self, address: &TransactionAddress) -> Option { self.block_body(&address.block_hash) .and_then(|body| self.block_number(&address.block_hash) .and_then(|n| body.view().localized_transaction_at(&address.block_hash, n, address.index))) } /// Get transaction receipt. fn transaction_receipt(&self, address: &TransactionAddress) -> Option { self.block_receipts(&address.block_hash).and_then(|br| br.receipts.into_iter().nth(address.index)) } /// Get a list of transactions for a given block. /// Returns None if block does not exist. fn transactions(&self, hash: &H256) -> Option> { self.block_body(hash) .and_then(|body| self.block_number(hash) .map(|n| body.view().localized_transactions(hash, n))) } /// Returns reference to genesis hash. fn genesis_hash(&self) -> H256 { self.block_hash(0).expect("Genesis hash should always exist") } /// Returns the header of the genesis block. fn genesis_header(&self) -> Header { self.block_header(&self.genesis_hash()) .expect("Genesis header always stored; qed") } /// Returns numbers of blocks containing given bloom. fn blocks_with_bloom(&self, bloom: &H2048, from_block: BlockNumber, to_block: BlockNumber) -> Vec; /// Returns logs matching given filter. fn logs(&self, blocks: Vec, matches: F, limit: Option) -> Vec where F: Fn(&LogEntry) -> bool, Self: Sized; } #[derive(Debug, Hash, Eq, PartialEq, Clone)] enum CacheId { BlockHeader(H256), BlockBody(H256), BlockDetails(H256), BlockHashes(BlockNumber), TransactionAddresses(H256), BlocksBlooms(LogGroupPosition), BlockReceipts(H256), } impl bc::group::BloomGroupDatabase for BlockChain { fn blooms_at(&self, position: &bc::group::GroupPosition) -> Option { let position = LogGroupPosition::from(position.clone()); let result = self.db.read_with_cache(db::COL_EXTRA, &self.blocks_blooms, &position).map(Into::into); self.cache_man.lock().note_used(CacheId::BlocksBlooms(position)); result } } /// Structure providing fast access to blockchain data. /// /// **Does not do input data verification.** pub struct BlockChain { // All locks must be captured in the order declared here. blooms_config: bc::Config, best_block: RwLock, // Stores best block of the first uninterrupted sequence of blocks. `None` if there are no gaps. // Only updated with `insert_unordered_block`. best_ancient_block: RwLock>, // Stores the last block of the last sequence of blocks. `None` if there are no gaps. // This is calculated on start and does not get updated. first_block: Option, // block cache block_headers: RwLock>, block_bodies: RwLock>, // extra caches block_details: RwLock>, block_hashes: RwLock>, transaction_addresses: RwLock>, blocks_blooms: RwLock>, block_receipts: RwLock>, db: Arc, cache_man: Mutex>, pending_best_block: RwLock>, pending_block_hashes: RwLock>, pending_block_details: RwLock>, pending_transaction_addresses: RwLock>>, } impl BlockProvider for BlockChain { /// Returns true if the given block is known /// (though not necessarily a part of the canon chain). fn is_known(&self, hash: &H256) -> bool { self.db.exists_with_cache(db::COL_EXTRA, &self.block_details, hash) } fn first_block(&self) -> Option { self.first_block.clone() } fn best_ancient_block(&self) -> Option { self.best_ancient_block.read().as_ref().map(|b| b.hash.clone()) } fn best_ancient_number(&self) -> Option { self.best_ancient_block.read().as_ref().map(|b| b.number) } /// Get raw block data fn block(&self, hash: &H256) -> Option { match (self.block_header_data(hash), self.block_body(hash)) { (Some(header), Some(body)) => { let mut block = RlpStream::new_list(3); let body_rlp = body.rlp(); block.append_raw(header.rlp().as_raw(), 1); block.append_raw(body_rlp.at(0).as_raw(), 1); block.append_raw(body_rlp.at(1).as_raw(), 1); Some(encoded::Block::new(block.out())) }, _ => None, } } /// Get block header data fn block_header_data(&self, hash: &H256) -> Option { // Check cache first { let read = self.block_headers.read(); if let Some(v) = read.get(hash) { return Some(encoded::Header::new(v.clone())); } } // Check if it's the best block { let best_block = self.best_block.read(); if &best_block.hash == hash { return Some(encoded::Header::new( Rlp::new(&best_block.block).at(0).as_raw().to_vec() )) } } // Read from DB and populate cache let opt = self.db.get(db::COL_HEADERS, hash) .expect("Low level database error. Some issue with disk?"); let result = match opt { Some(b) => { let bytes: Bytes = UntrustedRlp::new(&b).decompress(RlpType::Blocks).to_vec(); let mut write = self.block_headers.write(); write.insert(hash.clone(), bytes.clone()); Some(encoded::Header::new(bytes)) }, None => None }; self.cache_man.lock().note_used(CacheId::BlockHeader(hash.clone())); result } /// Get block body data fn block_body(&self, hash: &H256) -> Option { // Check cache first { let read = self.block_bodies.read(); if let Some(v) = read.get(hash) { return Some(encoded::Body::new(v.clone())); } } // Check if it's the best block { let best_block = self.best_block.read(); if &best_block.hash == hash { return Some(encoded::Body::new(Self::block_to_body(&best_block.block))); } } // Read from DB and populate cache let opt = self.db.get(db::COL_BODIES, hash) .expect("Low level database error. Some issue with disk?"); let result = match opt { Some(b) => { let bytes: Bytes = UntrustedRlp::new(&b).decompress(RlpType::Blocks).to_vec(); let mut write = self.block_bodies.write(); write.insert(hash.clone(), bytes.clone()); Some(encoded::Body::new(bytes)) }, None => None }; self.cache_man.lock().note_used(CacheId::BlockBody(hash.clone())); result } /// Get the familial details concerning a block. fn block_details(&self, hash: &H256) -> Option { let result = self.db.read_with_cache(db::COL_EXTRA, &self.block_details, hash); self.cache_man.lock().note_used(CacheId::BlockDetails(hash.clone())); result } /// Get the hash of given block's number. fn block_hash(&self, index: BlockNumber) -> Option { let result = self.db.read_with_cache(db::COL_EXTRA, &self.block_hashes, &index); self.cache_man.lock().note_used(CacheId::BlockHashes(index)); result } /// Get the address of transaction with given hash. fn transaction_address(&self, hash: &H256) -> Option { let result = self.db.read_with_cache(db::COL_EXTRA, &self.transaction_addresses, hash); self.cache_man.lock().note_used(CacheId::TransactionAddresses(hash.clone())); result } /// Get receipts of block with given hash. fn block_receipts(&self, hash: &H256) -> Option { let result = self.db.read_with_cache(db::COL_EXTRA, &self.block_receipts, hash); self.cache_man.lock().note_used(CacheId::BlockReceipts(hash.clone())); result } /// Returns numbers of blocks containing given bloom. fn blocks_with_bloom(&self, bloom: &H2048, from_block: BlockNumber, to_block: BlockNumber) -> Vec { let range = from_block as bc::Number..to_block as bc::Number; let chain = bc::group::BloomGroupChain::new(self.blooms_config, self); chain.with_bloom(&range, &Bloom::from(bloom.clone()).into()) .into_iter() .map(|b| b as BlockNumber) .collect() } fn logs(&self, mut blocks: Vec, matches: F, limit: Option) -> Vec where F: Fn(&LogEntry) -> bool, Self: Sized { // sort in reverse order blocks.sort_by(|a, b| b.cmp(a)); let mut log_index = 0; let mut logs = blocks.into_iter() .filter_map(|number| self.block_hash(number).map(|hash| (number, hash))) .filter_map(|(number, hash)| self.block_receipts(&hash).map(|r| (number, hash, r.receipts))) .filter_map(|(number, hash, receipts)| self.block_body(&hash).map(|ref b| (number, hash, receipts, b.transaction_hashes()))) .flat_map(|(number, hash, mut receipts, mut hashes)| { if receipts.len() != hashes.len() { warn!("Block {} ({}) has different number of receipts ({}) to transactions ({}). Database corrupt?", number, hash, receipts.len(), hashes.len()); assert!(false); } log_index = receipts.iter().fold(0, |sum, receipt| sum + receipt.logs.len()); let receipts_len = receipts.len(); hashes.reverse(); receipts.reverse(); receipts.into_iter() .map(|receipt| receipt.logs) .zip(hashes) .enumerate() .flat_map(move |(index, (mut logs, tx_hash))| { let current_log_index = log_index; let no_of_logs = logs.len(); log_index -= no_of_logs; logs.reverse(); logs.into_iter() .enumerate() .map(move |(i, log)| LocalizedLogEntry { entry: log, block_hash: hash, block_number: number, transaction_hash: tx_hash, // iterating in reverse order transaction_index: receipts_len - index - 1, transaction_log_index: no_of_logs - i - 1, log_index: current_log_index - i - 1, }) }) }) .filter(|log_entry| matches(&log_entry.entry)) .take(limit.unwrap_or(::std::usize::MAX)) .collect::>(); logs.reverse(); logs } } /// An iterator which walks the blockchain towards the genesis. #[derive(Clone)] pub struct AncestryIter<'a> { current: H256, chain: &'a BlockChain, } impl<'a> Iterator for AncestryIter<'a> { type Item = H256; fn next(&mut self) -> Option { if self.current.is_zero() { None } else { self.chain.block_details(&self.current) .map(|details| mem::replace(&mut self.current, details.parent)) } } } impl BlockChain { /// Create new instance of blockchain from given Genesis. pub fn new(config: Config, genesis: &[u8], db: Arc) -> BlockChain { // 400 is the avarage size of the key let cache_man = CacheManager::new(config.pref_cache_size, config.max_cache_size, 400); let mut bc = BlockChain { blooms_config: bc::Config { levels: LOG_BLOOMS_LEVELS, elements_per_index: LOG_BLOOMS_ELEMENTS_PER_INDEX, }, first_block: None, best_block: RwLock::new(BestBlock::default()), best_ancient_block: RwLock::new(None), block_headers: RwLock::new(HashMap::new()), block_bodies: RwLock::new(HashMap::new()), block_details: RwLock::new(HashMap::new()), block_hashes: RwLock::new(HashMap::new()), transaction_addresses: RwLock::new(HashMap::new()), blocks_blooms: RwLock::new(HashMap::new()), block_receipts: RwLock::new(HashMap::new()), db: db.clone(), cache_man: Mutex::new(cache_man), pending_best_block: RwLock::new(None), pending_block_hashes: RwLock::new(HashMap::new()), pending_block_details: RwLock::new(HashMap::new()), pending_transaction_addresses: RwLock::new(HashMap::new()), }; // load best block let best_block_hash = match bc.db.get(db::COL_EXTRA, b"best").unwrap() { Some(best) => { H256::from_slice(&best) } None => { // best block does not exist // we need to insert genesis into the cache let block = BlockView::new(genesis); let header = block.header_view(); let hash = block.sha3(); let details = BlockDetails { number: header.number(), total_difficulty: header.difficulty(), parent: header.parent_hash(), children: vec![] }; let mut batch = DBTransaction::new(&db); batch.put(db::COL_HEADERS, &hash, block.header_rlp().as_raw()); batch.put(db::COL_BODIES, &hash, &Self::block_to_body(genesis)); batch.write(db::COL_EXTRA, &hash, &details); batch.write(db::COL_EXTRA, &header.number(), &hash); batch.put(db::COL_EXTRA, b"best", &hash); bc.db.write(batch).expect("Low level database error. Some issue with disk?"); hash } }; { // Fetch best block details let best_block_number = bc.block_number(&best_block_hash).unwrap(); let best_block_total_difficulty = bc.block_details(&best_block_hash).unwrap().total_difficulty; let best_block_rlp = bc.block(&best_block_hash).unwrap().into_inner(); let raw_first = bc.db.get(db::COL_EXTRA, b"first").unwrap().map(|v| v.to_vec()); let mut best_ancient = bc.db.get(db::COL_EXTRA, b"ancient").unwrap().map(|h| H256::from_slice(&h)); let best_ancient_number; if best_ancient.is_none() && best_block_number > 1 && bc.block_hash(1).is_none() { best_ancient = Some(bc.genesis_hash()); best_ancient_number = Some(0); } else { best_ancient_number = best_ancient.as_ref().and_then(|h| bc.block_number(h)); } // binary search for the first block. match raw_first { None => { let (mut f, mut hash) = (best_block_number, best_block_hash); let mut l = best_ancient_number.unwrap_or(0); loop { if l >= f { break; } let step = (f - l) >> 1; let m = l + step; match bc.block_hash(m) { Some(h) => { f = m; hash = h }, None => { l = m + 1 }, } } if hash != bc.genesis_hash() { trace!("First block calculated: {:?}", hash); let mut batch = db.transaction(); batch.put(db::COL_EXTRA, b"first", &hash); db.write(batch).expect("Low level database error."); bc.first_block = Some(hash); } }, Some(raw_first) => { bc.first_block = Some(H256::from_slice(&raw_first)); }, } // and write them let mut best_block = bc.best_block.write(); *best_block = BestBlock { number: best_block_number, total_difficulty: best_block_total_difficulty, hash: best_block_hash, block: best_block_rlp, }; if let (Some(hash), Some(number)) = (best_ancient, best_ancient_number) { let mut best_ancient_block = bc.best_ancient_block.write(); *best_ancient_block = Some(BestAncientBlock { hash: hash, number: number, }); } } bc } /// Returns true if the given parent block has given child /// (though not necessarily a part of the canon chain). fn is_known_child(&self, parent: &H256, hash: &H256) -> bool { self.db.read_with_cache(db::COL_EXTRA, &self.block_details, parent).map_or(false, |d| d.children.contains(hash)) } /// Rewind to a previous block #[cfg(test)] fn rewind(&self) -> Option { use db::Key; let mut batch =self.db.transaction(); // track back to the best block we have in the blocks database if let Some(best_block_hash) = self.db.get(db::COL_EXTRA, b"best").unwrap() { let best_block_hash = H256::from_slice(&best_block_hash); if best_block_hash == self.genesis_hash() { return None; } if let Some(extras) = self.db.read(db::COL_EXTRA, &best_block_hash) as Option { type DetailsKey = Key; batch.delete(db::COL_EXTRA, &(DetailsKey::key(&best_block_hash))); let hash = extras.parent; let range = extras.number as bc::Number .. extras.number as bc::Number; let chain = bc::group::BloomGroupChain::new(self.blooms_config, self); let changes = chain.replace(&range, vec![]); for (k, v) in changes { batch.write(db::COL_EXTRA, &LogGroupPosition::from(k), &BloomGroup::from(v)); } batch.put(db::COL_EXTRA, b"best", &hash); let best_block_total_difficulty = self.block_details(&hash).unwrap().total_difficulty; let best_block_rlp = self.block(&hash).unwrap().into_inner(); let mut best_block = self.best_block.write(); *best_block = BestBlock { number: extras.number - 1, total_difficulty: best_block_total_difficulty, hash: hash, block: best_block_rlp, }; // update parent extras if let Some(mut details) = self.db.read(db::COL_EXTRA, &hash) as Option { details.children.clear(); batch.write(db::COL_EXTRA, &hash, &details); } self.db.write(batch).expect("Writing to db failed"); self.block_details.write().clear(); self.block_hashes.write().clear(); self.block_headers.write().clear(); self.block_bodies.write().clear(); self.block_receipts.write().clear(); return Some(hash); } } None } /// Returns a tree route between `from` and `to`, which is a tuple of: /// /// - a vector of hashes of all blocks, ordered from `from` to `to`. /// /// - common ancestor of these blocks. /// /// - an index where best common ancestor would be /// /// 1.) from newer to older /// /// - bc: `A1 -> A2 -> A3 -> A4 -> A5` /// - from: A5, to: A4 /// - route: /// /// ```json /// { blocks: [A5], ancestor: A4, index: 1 } /// ``` /// /// 2.) from older to newer /// /// - bc: `A1 -> A2 -> A3 -> A4 -> A5` /// - from: A3, to: A4 /// - route: /// /// ```json /// { blocks: [A4], ancestor: A3, index: 0 } /// ``` /// /// 3.) fork: /// /// - bc: /// /// ```text /// A1 -> A2 -> A3 -> A4 /// -> B3 -> B4 /// ``` /// - from: B4, to: A4 /// - route: /// /// ```json /// { blocks: [B4, B3, A3, A4], ancestor: A2, index: 2 } /// ``` pub fn tree_route(&self, from: H256, to: H256) -> TreeRoute { let mut from_branch = vec![]; let mut to_branch = vec![]; let mut from_details = self.block_details(&from).unwrap_or_else(|| panic!("0. Expected to find details for block {:?}", from)); let mut to_details = self.block_details(&to).unwrap_or_else(|| panic!("1. Expected to find details for block {:?}", to)); let mut current_from = from; let mut current_to = to; // reset from && to to the same level while from_details.number > to_details.number { from_branch.push(current_from); current_from = from_details.parent.clone(); from_details = self.block_details(&from_details.parent).unwrap_or_else(|| panic!("2. Expected to find details for block {:?}", from_details.parent)); } while to_details.number > from_details.number { to_branch.push(current_to); current_to = to_details.parent.clone(); to_details = self.block_details(&to_details.parent).unwrap_or_else(|| panic!("3. Expected to find details for block {:?}", to_details.parent)); } assert_eq!(from_details.number, to_details.number); // move to shared parent while current_from != current_to { from_branch.push(current_from); current_from = from_details.parent.clone(); from_details = self.block_details(&from_details.parent).unwrap_or_else(|| panic!("4. Expected to find details for block {:?}", from_details.parent)); to_branch.push(current_to); current_to = to_details.parent.clone(); to_details = self.block_details(&to_details.parent).unwrap_or_else(|| panic!("5. Expected to find details for block {:?}", from_details.parent)); } let index = from_branch.len(); from_branch.extend(to_branch.into_iter().rev()); TreeRoute { blocks: from_branch, ancestor: current_from, index: index } } /// Inserts a verified, known block from the canonical chain. /// /// Can be performed out-of-order, but care must be taken that the final chain is in a correct state. /// This is used by snapshot restoration and when downloading missing blocks for the chain gap. /// `is_best` forces the best block to be updated to this block. /// `is_ancient` forces the best block of the first block sequence to be updated to this block. /// Supply a dummy parent total difficulty when the parent block may not be in the chain. /// Returns true if the block is disconnected. pub fn insert_unordered_block(&self, batch: &mut DBTransaction, bytes: &[u8], receipts: Vec, parent_td: Option, is_best: bool, is_ancient: bool) -> bool { let block = BlockView::new(bytes); let header = block.header_view(); let hash = header.sha3(); if self.is_known(&hash) { return false; } assert!(self.pending_best_block.read().is_none()); let block_rlp = UntrustedRlp::new(bytes); let compressed_header = block_rlp.at(0).unwrap().compress(RlpType::Blocks); let compressed_body = UntrustedRlp::new(&Self::block_to_body(bytes)).compress(RlpType::Blocks); // store block in db batch.put(db::COL_HEADERS, &hash, &compressed_header); batch.put(db::COL_BODIES, &hash, &compressed_body); let maybe_parent = self.block_details(&header.parent_hash()); if let Some(parent_details) = maybe_parent { // parent known to be in chain. let info = BlockInfo { hash: hash.clone(), number: header.number(), total_difficulty: parent_details.total_difficulty + header.difficulty(), location: BlockLocation::CanonChain, }; self.prepare_update(batch, ExtrasUpdate { block_hashes: self.prepare_block_hashes_update(bytes, &info), block_details: self.prepare_block_details_update(bytes, &info), block_receipts: self.prepare_block_receipts_update(receipts, &info), blocks_blooms: self.prepare_block_blooms_update(bytes, &info), transactions_addresses: self.prepare_transaction_addresses_update(bytes, &info), info: info, block: bytes }, is_best); if is_ancient { let mut best_ancient_block = self.best_ancient_block.write(); let ancient_number = best_ancient_block.as_ref().map_or(0, |b| b.number); if self.block_hash(header.number() + 1).is_some() { batch.delete(db::COL_EXTRA, b"ancient"); *best_ancient_block = None; } else if header.number() > ancient_number { batch.put(db::COL_EXTRA, b"ancient", &hash); *best_ancient_block = Some(BestAncientBlock { hash: hash, number: header.number(), }); } } false } else { // parent not in the chain yet. we need the parent difficulty to proceed. let d = parent_td .expect("parent total difficulty always supplied for first block in chunk. only first block can have missing parent; qed"); let info = BlockInfo { hash: hash, number: header.number(), total_difficulty: d + header.difficulty(), location: BlockLocation::CanonChain, }; let block_details = BlockDetails { number: header.number(), total_difficulty: info.total_difficulty, parent: header.parent_hash(), children: Vec::new(), }; let mut update = HashMap::new(); update.insert(hash, block_details); self.prepare_update(batch, ExtrasUpdate { block_hashes: self.prepare_block_hashes_update(bytes, &info), block_details: update, block_receipts: self.prepare_block_receipts_update(receipts, &info), blocks_blooms: self.prepare_block_blooms_update(bytes, &info), transactions_addresses: self.prepare_transaction_addresses_update(bytes, &info), info: info, block: bytes, }, is_best); true } } /// Add a child to a given block. Assumes that the block hash is in /// the chain and the child's parent is this block. /// /// Used in snapshots to glue the chunks together at the end. pub fn add_child(&self, batch: &mut DBTransaction, block_hash: H256, child_hash: H256) { let mut parent_details = self.block_details(&block_hash) .unwrap_or_else(|| panic!("Invalid block hash: {:?}", block_hash)); parent_details.children.push(child_hash); let mut update = HashMap::new(); update.insert(block_hash, parent_details); let mut write_details = self.block_details.write(); batch.extend_with_cache(db::COL_EXTRA, &mut *write_details, update, CacheUpdatePolicy::Overwrite); self.cache_man.lock().note_used(CacheId::BlockDetails(block_hash)); } #[cfg_attr(feature="dev", allow(similar_names))] /// Inserts the block into backing cache database. /// Expects the block to be valid and already verified. /// If the block is already known, does nothing. pub fn insert_block(&self, batch: &mut DBTransaction, bytes: &[u8], receipts: Vec) -> ImportRoute { // create views onto rlp let block = BlockView::new(bytes); let header = block.header_view(); let hash = header.sha3(); if self.is_known_child(&header.parent_hash(), &hash) { return ImportRoute::none(); } assert!(self.pending_best_block.read().is_none()); // store block in db batch.put_compressed(db::COL_HEADERS, &hash, block.header_rlp().as_raw().to_vec()); batch.put_compressed(db::COL_BODIES, &hash, Self::block_to_body(bytes)); let info = self.block_info(&header); if let BlockLocation::BranchBecomingCanonChain(ref d) = info.location { info!(target: "reorg", "Reorg to {} ({} {} {})", Colour::Yellow.bold().paint(format!("#{} {}", info.number, info.hash)), Colour::Red.paint(d.retracted.iter().join(" ")), Colour::White.paint(format!("#{} {}", self.block_details(&d.ancestor).expect("`ancestor` is in the route; qed").number, d.ancestor)), Colour::Green.paint(d.enacted.iter().join(" ")) ); } self.prepare_update(batch, ExtrasUpdate { block_hashes: self.prepare_block_hashes_update(bytes, &info), block_details: self.prepare_block_details_update(bytes, &info), block_receipts: self.prepare_block_receipts_update(receipts, &info), blocks_blooms: self.prepare_block_blooms_update(bytes, &info), transactions_addresses: self.prepare_transaction_addresses_update(bytes, &info), info: info.clone(), block: bytes, }, true); ImportRoute::from(info) } /// Get inserted block info which is critical to prepare extras updates. fn block_info(&self, header: &HeaderView) -> BlockInfo { let hash = header.sha3(); let number = header.number(); let parent_hash = header.parent_hash(); let parent_details = self.block_details(&parent_hash).unwrap_or_else(|| panic!("Invalid parent hash: {:?}", parent_hash)); let is_new_best = parent_details.total_difficulty + header.difficulty() > self.best_block_total_difficulty(); BlockInfo { hash: hash, number: number, total_difficulty: parent_details.total_difficulty + header.difficulty(), location: if is_new_best { // on new best block we need to make sure that all ancestors // are moved to "canon chain" // find the route between old best block and the new one let best_hash = self.best_block_hash(); let route = self.tree_route(best_hash, parent_hash); assert_eq!(number, parent_details.number + 1); match route.blocks.len() { 0 => BlockLocation::CanonChain, _ => { let retracted = route.blocks.iter().take(route.index).cloned().collect::>().into_iter().collect::>(); let enacted = route.blocks.into_iter().skip(route.index).collect::>(); BlockLocation::BranchBecomingCanonChain(BranchBecomingCanonChainData { ancestor: route.ancestor, enacted: enacted, retracted: retracted, }) } } } else { BlockLocation::Branch } } } /// Prepares extras update. fn prepare_update(&self, batch: &mut DBTransaction, update: ExtrasUpdate, is_best: bool) { { let mut write_receipts = self.block_receipts.write(); batch.extend_with_cache(db::COL_EXTRA, &mut *write_receipts, update.block_receipts, CacheUpdatePolicy::Remove); } { let mut write_blocks_blooms = self.blocks_blooms.write(); batch.extend_with_cache(db::COL_EXTRA, &mut *write_blocks_blooms, update.blocks_blooms, CacheUpdatePolicy::Remove); } // These cached values must be updated last with all four locks taken to avoid // cache decoherence { let mut best_block = self.pending_best_block.write(); // update best block match update.info.location { BlockLocation::Branch => (), _ => if is_best { batch.put(db::COL_EXTRA, b"best", &update.info.hash); *best_block = Some(BestBlock { hash: update.info.hash, number: update.info.number, total_difficulty: update.info.total_difficulty, block: update.block.to_vec(), }); }, } let mut write_hashes = self.pending_block_hashes.write(); let mut write_details = self.pending_block_details.write(); let mut write_txs = self.pending_transaction_addresses.write(); batch.extend_with_cache(db::COL_EXTRA, &mut *write_details, update.block_details, CacheUpdatePolicy::Overwrite); batch.extend_with_cache(db::COL_EXTRA, &mut *write_hashes, update.block_hashes, CacheUpdatePolicy::Overwrite); batch.extend_with_option_cache(db::COL_EXTRA, &mut *write_txs, update.transactions_addresses, CacheUpdatePolicy::Overwrite); } } /// Apply pending insertion updates pub fn commit(&self) { let mut pending_best_block = self.pending_best_block.write(); let mut pending_write_hashes = self.pending_block_hashes.write(); let mut pending_block_details = self.pending_block_details.write(); let mut pending_write_txs = self.pending_transaction_addresses.write(); let mut best_block = self.best_block.write(); let mut write_block_details = self.block_details.write(); let mut write_hashes = self.block_hashes.write(); let mut write_txs = self.transaction_addresses.write(); // update best block if let Some(block) = pending_best_block.take() { *best_block = block; } let pending_txs = mem::replace(&mut *pending_write_txs, HashMap::new()); let (retracted_txs, enacted_txs) = pending_txs.into_iter().partition::, _>(|&(_, ref value)| value.is_none()); let pending_hashes_keys: Vec<_> = pending_write_hashes.keys().cloned().collect(); let enacted_txs_keys: Vec<_> = enacted_txs.keys().cloned().collect(); let pending_block_hashes: Vec<_> = pending_block_details.keys().cloned().collect(); write_hashes.extend(mem::replace(&mut *pending_write_hashes, HashMap::new())); write_txs.extend(enacted_txs.into_iter().map(|(k, v)| (k, v.expect("Transactions were partitioned; qed")))); write_block_details.extend(mem::replace(&mut *pending_block_details, HashMap::new())); for hash in retracted_txs.keys() { write_txs.remove(hash); } let mut cache_man = self.cache_man.lock(); for n in pending_hashes_keys { cache_man.note_used(CacheId::BlockHashes(n)); } for hash in enacted_txs_keys { cache_man.note_used(CacheId::TransactionAddresses(hash)); } for hash in pending_block_hashes { cache_man.note_used(CacheId::BlockDetails(hash)); } } /// Iterator that lists `first` and then all of `first`'s ancestors, by hash. pub fn ancestry_iter(&self, first: H256) -> Option { if self.is_known(&first) { Some(AncestryIter { current: first, chain: self, }) } else { None } } /// Given a block's `parent`, find every block header which represents a valid possible uncle. pub fn find_uncle_headers(&self, parent: &H256, uncle_generations: usize) -> Option> { self.find_uncle_hashes(parent, uncle_generations).map(|v| v.into_iter().filter_map(|h| self.block_header(&h)).collect()) } /// Given a block's `parent`, find every block hash which represents a valid possible uncle. pub fn find_uncle_hashes(&self, parent: &H256, uncle_generations: usize) -> Option> { if !self.is_known(parent) { return None; } let mut excluded = HashSet::new(); let ancestry = match self.ancestry_iter(parent.clone()) { Some(iter) => iter, None => return None, }; for a in ancestry.clone().take(uncle_generations) { if let Some(uncles) = self.uncle_hashes(&a) { excluded.extend(uncles); excluded.insert(a); } else { break } } let mut ret = Vec::new(); for a in ancestry.skip(1).take(uncle_generations) { if let Some(details) = self.block_details(&a) { ret.extend(details.children.iter().filter(|h| !excluded.contains(h))) } else { break } } Some(ret) } /// This function returns modified block hashes. fn prepare_block_hashes_update(&self, block_bytes: &[u8], info: &BlockInfo) -> HashMap { let mut block_hashes = HashMap::new(); let block = BlockView::new(block_bytes); let header = block.header_view(); let number = header.number(); match info.location { BlockLocation::Branch => (), BlockLocation::CanonChain => { block_hashes.insert(number, info.hash.clone()); }, BlockLocation::BranchBecomingCanonChain(ref data) => { let ancestor_number = self.block_number(&data.ancestor).expect("Block number of ancestor is always in DB"); let start_number = ancestor_number + 1; for (index, hash) in data.enacted.iter().cloned().enumerate() { block_hashes.insert(start_number + index as BlockNumber, hash); } block_hashes.insert(number, info.hash.clone()); } } block_hashes } /// This function returns modified block details. /// Uses the given parent details or attempts to load them from the database. fn prepare_block_details_update(&self, block_bytes: &[u8], info: &BlockInfo) -> HashMap { let block = BlockView::new(block_bytes); let header = block.header_view(); let parent_hash = header.parent_hash(); // update parent let mut parent_details = self.block_details(&parent_hash).unwrap_or_else(|| panic!("Invalid parent hash: {:?}", parent_hash)); parent_details.children.push(info.hash.clone()); // create current block details let details = BlockDetails { number: header.number(), total_difficulty: info.total_difficulty, parent: parent_hash.clone(), children: vec![] }; // write to batch let mut block_details = HashMap::new(); block_details.insert(parent_hash, parent_details); block_details.insert(info.hash.clone(), details); block_details } /// This function returns modified block receipts. fn prepare_block_receipts_update(&self, receipts: Vec, info: &BlockInfo) -> HashMap { let mut block_receipts = HashMap::new(); block_receipts.insert(info.hash.clone(), BlockReceipts::new(receipts)); block_receipts } /// This function returns modified transaction addresses. fn prepare_transaction_addresses_update(&self, block_bytes: &[u8], info: &BlockInfo) -> HashMap> { let block = BlockView::new(block_bytes); let transaction_hashes = block.transaction_hashes(); match info.location { BlockLocation::CanonChain => { transaction_hashes.into_iter() .enumerate() .map(|(i ,tx_hash)| { (tx_hash, Some(TransactionAddress { block_hash: info.hash.clone(), index: i })) }) .collect() }, BlockLocation::BranchBecomingCanonChain(ref data) => { let addresses = data.enacted.iter() .flat_map(|hash| { let body = self.block_body(hash).expect("Enacted block must be in database."); let hashes = body.transaction_hashes(); hashes.into_iter() .enumerate() .map(|(i, tx_hash)| (tx_hash, Some(TransactionAddress { block_hash: hash.clone(), index: i, }))) .collect::>>() }); let current_addresses = transaction_hashes.into_iter() .enumerate() .map(|(i ,tx_hash)| { (tx_hash, Some(TransactionAddress { block_hash: info.hash.clone(), index: i })) }); let retracted = data.retracted.iter().flat_map(|hash| { let body = self.block_body(hash).expect("Retracted block must be in database."); let hashes = body.transaction_hashes(); hashes.into_iter().map(|hash| (hash, None)).collect::>>() }); // The order here is important! Don't remove transaction if it was part of enacted blocks as well. retracted.chain(addresses).chain(current_addresses).collect() }, BlockLocation::Branch => HashMap::new(), } } /// This functions returns modified blocks blooms. /// /// To accelerate blooms lookups, blomms are stored in multiple /// layers (BLOOM_LEVELS, currently 3). /// ChainFilter is responsible for building and rebuilding these layers. /// It returns them in HashMap, where values are Blooms and /// keys are BloomIndexes. BloomIndex represents bloom location on one /// of these layers. /// /// To reduce number of queries to databse, block blooms are stored /// in BlocksBlooms structure which contains info about several /// (BLOOM_INDEX_SIZE, currently 16) consecutive blocks blooms. /// /// Later, BloomIndexer is used to map bloom location on filter layer (BloomIndex) /// to bloom location in database (BlocksBloomLocation). /// fn prepare_block_blooms_update(&self, block_bytes: &[u8], info: &BlockInfo) -> HashMap { let block = BlockView::new(block_bytes); let header = block.header_view(); let log_blooms = match info.location { BlockLocation::Branch => HashMap::new(), BlockLocation::CanonChain => { let log_bloom = header.log_bloom(); if log_bloom.is_zero() { HashMap::new() } else { let chain = bc::group::BloomGroupChain::new(self.blooms_config, self); chain.insert(info.number as bc::Number, Bloom::from(log_bloom).into()) } }, BlockLocation::BranchBecomingCanonChain(ref data) => { let ancestor_number = self.block_number(&data.ancestor).unwrap(); let start_number = ancestor_number + 1; let range = start_number as bc::Number..self.best_block_number() as bc::Number; let mut blooms: Vec = data.enacted.iter() .map(|hash| self.block_header_data(hash).unwrap()) .map(|h| h.log_bloom()) .map(Bloom::from) .map(Into::into) .collect(); blooms.push(Bloom::from(header.log_bloom()).into()); let chain = bc::group::BloomGroupChain::new(self.blooms_config, self); chain.replace(&range, blooms) } }; log_blooms.into_iter() .map(|p| (From::from(p.0), From::from(p.1))) .collect() } /// Get best block hash. pub fn best_block_hash(&self) -> H256 { self.best_block.read().hash.clone() } /// Get best block number. pub fn best_block_number(&self) -> BlockNumber { self.best_block.read().number } /// Get best block total difficulty. pub fn best_block_total_difficulty(&self) -> U256 { self.best_block.read().total_difficulty } /// Get best block header pub fn best_block_header(&self) -> encoded::Header { let block = self.best_block.read(); let raw = BlockView::new(&block.block).header_view().rlp().as_raw().to_vec(); encoded::Header::new(raw) } /// Get current cache size. pub fn cache_size(&self) -> CacheSize { CacheSize { blocks: self.block_headers.read().heap_size_of_children() + self.block_bodies.read().heap_size_of_children(), block_details: self.block_details.read().heap_size_of_children(), transaction_addresses: self.transaction_addresses.read().heap_size_of_children(), blocks_blooms: self.blocks_blooms.read().heap_size_of_children(), block_receipts: self.block_receipts.read().heap_size_of_children(), } } /// Ticks our cache system and throws out any old data. pub fn collect_garbage(&self) { let current_size = self.cache_size().total(); let mut block_headers = self.block_headers.write(); let mut block_bodies = self.block_bodies.write(); let mut block_details = self.block_details.write(); let mut block_hashes = self.block_hashes.write(); let mut transaction_addresses = self.transaction_addresses.write(); let mut blocks_blooms = self.blocks_blooms.write(); let mut block_receipts = self.block_receipts.write(); let mut cache_man = self.cache_man.lock(); cache_man.collect_garbage(current_size, | ids | { for id in &ids { match *id { CacheId::BlockHeader(ref h) => { block_headers.remove(h); }, CacheId::BlockBody(ref h) => { block_bodies.remove(h); }, CacheId::BlockDetails(ref h) => { block_details.remove(h); } CacheId::BlockHashes(ref h) => { block_hashes.remove(h); } CacheId::TransactionAddresses(ref h) => { transaction_addresses.remove(h); } CacheId::BlocksBlooms(ref h) => { blocks_blooms.remove(h); } CacheId::BlockReceipts(ref h) => { block_receipts.remove(h); } } } block_headers.shrink_to_fit(); block_bodies.shrink_to_fit(); block_details.shrink_to_fit(); block_hashes.shrink_to_fit(); transaction_addresses.shrink_to_fit(); blocks_blooms.shrink_to_fit(); block_receipts.shrink_to_fit(); block_headers.heap_size_of_children() + block_bodies.heap_size_of_children() + block_details.heap_size_of_children() + block_hashes.heap_size_of_children() + transaction_addresses.heap_size_of_children() + blocks_blooms.heap_size_of_children() + block_receipts.heap_size_of_children() }); } /// Create a block body from a block. pub fn block_to_body(block: &[u8]) -> Bytes { let mut body = RlpStream::new_list(2); let block_rlp = Rlp::new(block); body.append_raw(block_rlp.at(1).as_raw(), 1); body.append_raw(block_rlp.at(2).as_raw(), 1); body.out() } /// Returns general blockchain information pub fn chain_info(&self) -> BlockChainInfo { // ensure data consistencly by locking everything first let best_block = self.best_block.read(); let best_ancient_block = self.best_ancient_block.read(); BlockChainInfo { total_difficulty: best_block.total_difficulty.clone(), pending_total_difficulty: best_block.total_difficulty.clone(), genesis_hash: self.genesis_hash(), best_block_hash: best_block.hash.clone(), best_block_number: best_block.number, first_block_hash: self.first_block(), first_block_number: From::from(self.first_block_number()), ancient_block_hash: best_ancient_block.as_ref().map(|b| b.hash.clone()), ancient_block_number: best_ancient_block.as_ref().map(|b| b.number), } } #[cfg(test)] pub fn db(&self) -> &Arc { &self.db } } #[cfg(test)] mod tests { #![cfg_attr(feature="dev", allow(similar_names))] use std::sync::Arc; use rustc_serialize::hex::FromHex; use util::{Database, DatabaseConfig}; use util::hash::*; use util::sha3::Hashable; use receipt::Receipt; use blockchain::{BlockProvider, BlockChain, Config, ImportRoute}; use tests::helpers::*; use devtools::*; use blockchain::generator::{ChainGenerator, ChainIterator, BlockFinalizer}; use blockchain::extras::TransactionAddress; use views::BlockView; use transaction::{Transaction, Action}; use log_entry::{LogEntry, LocalizedLogEntry}; use ethkey::Secret; fn new_db(path: &str) -> Arc { Arc::new(Database::open(&DatabaseConfig::with_columns(::db::NUM_COLUMNS), path).unwrap()) } fn new_chain(genesis: &[u8], db: Arc) -> BlockChain { BlockChain::new(Config::default(), genesis, db) } #[test] fn should_cache_best_block() { // given let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let first = canon_chain.generate(&mut finalizer).unwrap(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); assert_eq!(bc.best_block_number(), 0); // when let mut batch =db.transaction(); bc.insert_block(&mut batch, &first, vec![]); assert_eq!(bc.best_block_number(), 0); bc.commit(); // NOTE no db.write here (we want to check if best block is cached) // then assert_eq!(bc.best_block_number(), 1); assert!(bc.block(&bc.best_block_hash()).is_some(), "Best block should be queryable even without DB write."); } #[test] fn basic_blockchain_insert() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let first = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let first_hash = BlockView::new(&first).header_view().sha3(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); assert_eq!(bc.genesis_hash(), genesis_hash.clone()); assert_eq!(bc.best_block_hash(), genesis_hash.clone()); assert_eq!(bc.block_hash(0), Some(genesis_hash.clone())); assert_eq!(bc.block_hash(1), None); assert_eq!(bc.block_details(&genesis_hash).unwrap().children, vec![]); let mut batch =db.transaction(); bc.insert_block(&mut batch, &first, vec![]); db.write(batch).unwrap(); bc.commit(); assert_eq!(bc.block_hash(0), Some(genesis_hash.clone())); assert_eq!(bc.best_block_number(), 1); assert_eq!(bc.best_block_hash(), first_hash.clone()); assert_eq!(bc.block_hash(1), Some(first_hash.clone())); assert_eq!(bc.block_details(&first_hash).unwrap().parent, genesis_hash.clone()); assert_eq!(bc.block_details(&genesis_hash).unwrap().children, vec![first_hash.clone()]); assert_eq!(bc.block_hash(2), None); } #[test] fn check_ancestry_iter() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let mut block_hashes = vec![genesis_hash.clone()]; let mut batch = db.transaction(); for _ in 0..10 { let block = canon_chain.generate(&mut finalizer).unwrap(); block_hashes.push(BlockView::new(&block).header_view().sha3()); bc.insert_block(&mut batch, &block, vec![]); bc.commit(); } db.write(batch).unwrap(); block_hashes.reverse(); assert_eq!(bc.ancestry_iter(block_hashes[0].clone()).unwrap().collect::>(), block_hashes) } #[test] #[cfg_attr(feature="dev", allow(cyclomatic_complexity))] fn test_find_uncles() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let b1b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b1a = canon_chain.generate(&mut finalizer).unwrap(); let b2b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b2a = canon_chain.generate(&mut finalizer).unwrap(); let b3b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b3a = canon_chain.generate(&mut finalizer).unwrap(); let b4b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b4a = canon_chain.generate(&mut finalizer).unwrap(); let b5b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b5a = canon_chain.generate(&mut finalizer).unwrap(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let mut batch =db.transaction(); for b in &[&b1a, &b1b, &b2a, &b2b, &b3a, &b3b, &b4a, &b4b, &b5a, &b5b] { bc.insert_block(&mut batch, b, vec![]); bc.commit(); } bc.insert_block(&mut batch, &b1b, vec![]); bc.insert_block(&mut batch, &b2a, vec![]); bc.insert_block(&mut batch, &b2b, vec![]); bc.insert_block(&mut batch, &b3a, vec![]); bc.insert_block(&mut batch, &b3b, vec![]); bc.insert_block(&mut batch, &b4a, vec![]); bc.insert_block(&mut batch, &b4b, vec![]); bc.insert_block(&mut batch, &b5a, vec![]); bc.insert_block(&mut batch, &b5b, vec![]); db.write(batch).unwrap(); assert_eq!( [&b4b, &b3b, &b2b].iter().map(|b| BlockView::new(b).header()).collect::>(), bc.find_uncle_headers(&BlockView::new(&b4a).header_view().sha3(), 3).unwrap() ); // TODO: insert block that already includes one of them as an uncle to check it's not allowed. } fn secret() -> Secret { Secret::from_slice(&"".sha3()).unwrap() } #[test] fn test_fork_transaction_addresses() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let mut fork_chain = canon_chain.fork(1); let mut fork_finalizer = finalizer.fork(); let t1 = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 100.into(), data: "601080600c6000396000f3006000355415600957005b60203560003555".from_hex().unwrap(), }.sign(&secret(), None); let b1a = canon_chain .with_transaction(t1.clone()) .generate(&mut finalizer).unwrap(); // Empty block let b1b = fork_chain .generate(&mut fork_finalizer).unwrap(); let b2 = fork_chain .generate(&mut fork_finalizer).unwrap(); let b1a_hash = BlockView::new(&b1a).header_view().sha3(); let b2_hash = BlockView::new(&b2).header_view().sha3(); let t1_hash = t1.hash(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let mut batch = db.transaction(); let _ = bc.insert_block(&mut batch, &b1a, vec![]); bc.commit(); let _ = bc.insert_block(&mut batch, &b1b, vec![]); bc.commit(); db.write(batch).unwrap(); assert_eq!(bc.best_block_hash(), b1a_hash); assert_eq!(bc.transaction_address(&t1_hash), Some(TransactionAddress { block_hash: b1a_hash.clone(), index: 0, })); // now let's make forked chain the canon chain let mut batch = db.transaction(); let _ = bc.insert_block(&mut batch, &b2, vec![]); bc.commit(); db.write(batch).unwrap(); // Transaction should be retracted assert_eq!(bc.best_block_hash(), b2_hash); assert_eq!(bc.transaction_address(&t1_hash), None); } #[test] fn test_overwriting_transaction_addresses() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let mut fork_chain = canon_chain.fork(1); let mut fork_finalizer = finalizer.fork(); let t1 = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 100.into(), data: "601080600c6000396000f3006000355415600957005b60203560003555".from_hex().unwrap(), }.sign(&secret(), None); let t2 = Transaction { nonce: 1.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 100.into(), data: "601080600c6000396000f3006000355415600957005b60203560003555".from_hex().unwrap(), }.sign(&secret(), None); let t3 = Transaction { nonce: 2.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 100.into(), data: "601080600c6000396000f3006000355415600957005b60203560003555".from_hex().unwrap(), }.sign(&secret(), None); let b1a = canon_chain .with_transaction(t1.clone()) .with_transaction(t2.clone()) .generate(&mut finalizer).unwrap(); // insert transactions in different order let b1b = fork_chain .with_transaction(t2.clone()) .with_transaction(t1.clone()) .generate(&mut fork_finalizer).unwrap(); let b2 = fork_chain .with_transaction(t3.clone()) .generate(&mut fork_finalizer).unwrap(); let b1a_hash = BlockView::new(&b1a).header_view().sha3(); let b1b_hash = BlockView::new(&b1b).header_view().sha3(); let b2_hash = BlockView::new(&b2).header_view().sha3(); let t1_hash = t1.hash(); let t2_hash = t2.hash(); let t3_hash = t3.hash(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let mut batch = db.transaction(); let _ = bc.insert_block(&mut batch, &b1a, vec![]); bc.commit(); let _ = bc.insert_block(&mut batch, &b1b, vec![]); bc.commit(); db.write(batch).unwrap(); assert_eq!(bc.best_block_hash(), b1a_hash); assert_eq!(bc.transaction_address(&t1_hash), Some(TransactionAddress { block_hash: b1a_hash.clone(), index: 0, })); assert_eq!(bc.transaction_address(&t2_hash), Some(TransactionAddress { block_hash: b1a_hash.clone(), index: 1, })); // now let's make forked chain the canon chain let mut batch = db.transaction(); let _ = bc.insert_block(&mut batch, &b2, vec![]); bc.commit(); db.write(batch).unwrap(); assert_eq!(bc.best_block_hash(), b2_hash); assert_eq!(bc.transaction_address(&t1_hash), Some(TransactionAddress { block_hash: b1b_hash.clone(), index: 1, })); assert_eq!(bc.transaction_address(&t2_hash), Some(TransactionAddress { block_hash: b1b_hash.clone(), index: 0, })); assert_eq!(bc.transaction_address(&t3_hash), Some(TransactionAddress { block_hash: b2_hash.clone(), index: 0, })); } #[test] #[cfg_attr(feature="dev", allow(cyclomatic_complexity))] fn test_small_fork() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let b1 = canon_chain.generate(&mut finalizer).unwrap(); let b2 = canon_chain.generate(&mut finalizer).unwrap(); let b3b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b3a = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let b1_hash= BlockView::new(&b1).header_view().sha3(); let b2_hash= BlockView::new(&b2).header_view().sha3(); let b3a_hash= BlockView::new(&b3a).header_view().sha3(); let b3b_hash= BlockView::new(&b3b).header_view().sha3(); // b3a is a part of canon chain, whereas b3b is part of sidechain let best_block_hash = b3a_hash.clone(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let mut batch = db.transaction(); let ir1 = bc.insert_block(&mut batch, &b1, vec![]); bc.commit(); let ir2 = bc.insert_block(&mut batch, &b2, vec![]); bc.commit(); let ir3b = bc.insert_block(&mut batch, &b3b, vec![]); bc.commit(); db.write(batch).unwrap(); assert_eq!(bc.block_hash(3).unwrap(), b3b_hash); let mut batch =db.transaction(); let ir3a = bc.insert_block(&mut batch, &b3a, vec![]); bc.commit(); db.write(batch).unwrap(); assert_eq!(ir1, ImportRoute { enacted: vec![b1_hash], retracted: vec![], omitted: vec![], }); assert_eq!(ir2, ImportRoute { enacted: vec![b2_hash], retracted: vec![], omitted: vec![], }); assert_eq!(ir3b, ImportRoute { enacted: vec![b3b_hash], retracted: vec![], omitted: vec![], }); assert_eq!(ir3a, ImportRoute { enacted: vec![b3a_hash], retracted: vec![b3b_hash], omitted: vec![], }); assert_eq!(bc.best_block_hash(), best_block_hash); assert_eq!(bc.block_number(&genesis_hash).unwrap(), 0); assert_eq!(bc.block_number(&b1_hash).unwrap(), 1); assert_eq!(bc.block_number(&b2_hash).unwrap(), 2); assert_eq!(bc.block_number(&b3a_hash).unwrap(), 3); assert_eq!(bc.block_number(&b3b_hash).unwrap(), 3); assert_eq!(bc.block_hash(0).unwrap(), genesis_hash); assert_eq!(bc.block_hash(1).unwrap(), b1_hash); assert_eq!(bc.block_hash(2).unwrap(), b2_hash); assert_eq!(bc.block_hash(3).unwrap(), b3a_hash); // test trie route let r0_1 = bc.tree_route(genesis_hash.clone(), b1_hash.clone()); assert_eq!(r0_1.ancestor, genesis_hash); assert_eq!(r0_1.blocks, [b1_hash.clone()]); assert_eq!(r0_1.index, 0); let r0_2 = bc.tree_route(genesis_hash.clone(), b2_hash.clone()); assert_eq!(r0_2.ancestor, genesis_hash); assert_eq!(r0_2.blocks, [b1_hash.clone(), b2_hash.clone()]); assert_eq!(r0_2.index, 0); let r1_3a = bc.tree_route(b1_hash.clone(), b3a_hash.clone()); assert_eq!(r1_3a.ancestor, b1_hash); assert_eq!(r1_3a.blocks, [b2_hash.clone(), b3a_hash.clone()]); assert_eq!(r1_3a.index, 0); let r1_3b = bc.tree_route(b1_hash.clone(), b3b_hash.clone()); assert_eq!(r1_3b.ancestor, b1_hash); assert_eq!(r1_3b.blocks, [b2_hash.clone(), b3b_hash.clone()]); assert_eq!(r1_3b.index, 0); let r3a_3b = bc.tree_route(b3a_hash.clone(), b3b_hash.clone()); assert_eq!(r3a_3b.ancestor, b2_hash); assert_eq!(r3a_3b.blocks, [b3a_hash.clone(), b3b_hash.clone()]); assert_eq!(r3a_3b.index, 1); let r1_0 = bc.tree_route(b1_hash.clone(), genesis_hash.clone()); assert_eq!(r1_0.ancestor, genesis_hash); assert_eq!(r1_0.blocks, [b1_hash.clone()]); assert_eq!(r1_0.index, 1); let r2_0 = bc.tree_route(b2_hash.clone(), genesis_hash.clone()); assert_eq!(r2_0.ancestor, genesis_hash); assert_eq!(r2_0.blocks, [b2_hash.clone(), b1_hash.clone()]); assert_eq!(r2_0.index, 2); let r3a_1 = bc.tree_route(b3a_hash.clone(), b1_hash.clone()); assert_eq!(r3a_1.ancestor, b1_hash); assert_eq!(r3a_1.blocks, [b3a_hash.clone(), b2_hash.clone()]); assert_eq!(r3a_1.index, 2); let r3b_1 = bc.tree_route(b3b_hash.clone(), b1_hash.clone()); assert_eq!(r3b_1.ancestor, b1_hash); assert_eq!(r3b_1.blocks, [b3b_hash.clone(), b2_hash.clone()]); assert_eq!(r3b_1.index, 2); let r3b_3a = bc.tree_route(b3b_hash.clone(), b3a_hash.clone()); assert_eq!(r3b_3a.ancestor, b2_hash); assert_eq!(r3b_3a.blocks, [b3b_hash.clone(), b3a_hash.clone()]); assert_eq!(r3b_3a.index, 1); } #[test] fn test_reopen_blockchain_db() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let first = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let first_hash = BlockView::new(&first).header_view().sha3(); let temp = RandomTempPath::new(); { let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); assert_eq!(bc.best_block_hash(), genesis_hash); let mut batch =db.transaction(); bc.insert_block(&mut batch, &first, vec![]); db.write(batch).unwrap(); bc.commit(); assert_eq!(bc.best_block_hash(), first_hash); } { let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); assert_eq!(bc.best_block_hash(), first_hash); } } #[test] fn can_contain_arbitrary_block_sequence() { let bc_result = generate_dummy_blockchain(50); let bc = bc_result.reference(); assert_eq!(bc.best_block_number(), 49); } #[test] fn can_collect_garbage() { let bc_result = generate_dummy_blockchain(3000); let bc = bc_result.reference(); assert_eq!(bc.best_block_number(), 2999); let best_hash = bc.best_block_hash(); let mut block_header = bc.block_header(&best_hash); while !block_header.is_none() { block_header = bc.block_header(block_header.unwrap().parent_hash()); } assert!(bc.cache_size().blocks > 1024 * 1024); for _ in 0..2 { bc.collect_garbage(); } assert!(bc.cache_size().blocks < 1024 * 1024); } #[test] fn can_contain_arbitrary_block_sequence_with_extra() { let bc_result = generate_dummy_blockchain_with_extra(25); let bc = bc_result.reference(); assert_eq!(bc.best_block_number(), 24); } #[test] fn can_contain_only_genesis_block() { let bc_result = generate_dummy_empty_blockchain(); let bc = bc_result.reference(); assert_eq!(bc.best_block_number(), 0); } #[test] fn find_transaction_by_hash() { let genesis = "f901fcf901f7a00000000000000000000000000000000000000000000000000000000000000000a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347948888f1f195afa192cfee860698584c030f4c9db1a0af81e09f8c46ca322193edfda764fa7e88e81923f802f1d325ec0b0308ac2cd0a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421b9010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000830200008083023e38808454c98c8142a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421880102030405060708c0c0".from_hex().unwrap(); let b1 = "f904a8f901faa0ce1f26f798dd03c8782d63b3e42e79a64eaea5694ea686ac5d7ce3df5171d1aea01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347948888f1f195afa192cfee860698584c030f4c9db1a0a65c2364cd0f1542d761823dc0109c6b072f14c20459598c5455c274601438f4a070616ebd7ad2ed6fb7860cf7e9df00163842351c38a87cac2c1cb193895035a2a05c5b4fc43c2d45787f54e1ae7d27afdb4ad16dfc567c5692070d5c4556e0b1d7b9010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000830200000183023ec683021536845685109780a029f07836e4e59229b3a065913afc27702642c683bba689910b2b2fd45db310d3888957e6d004a31802f902a7f85f800a8255f094aaaf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ca0575da4e21b66fa764be5f74da9389e67693d066fb0d1312e19e17e501da00ecda06baf5a5327595f6619dfc2fcb3f2e6fb410b5810af3cb52d0e7508038e91a188f85f010a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ba04fa966bf34b93abc1bcd665554b7f316b50f928477b50be0f3285ead29d18c5ba017bba0eeec1625ab433746955e125d46d80b7fdc97386c51266f842d8e02192ef85f020a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ca004377418ae981cc32b1312b4a427a1d69a821b28db8584f5f2bd8c6d42458adaa053a1dba1af177fac92f3b6af0a9fa46a22adf56e686c93794b6a012bf254abf5f85f030a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ca04fe13febd28a05f4fcb2f451d7ddc2dda56486d9f8c79a62b0ba4da775122615a0651b2382dd402df9ebc27f8cb4b2e0f3cea68dda2dca0ee9603608f0b6f51668f85f040a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ba078e6a0ba086a08f8450e208a399bb2f2d2a0d984acd2517c7c7df66ccfab567da013254002cd45a97fac049ae00afbc43ed0d9961d0c56a3b2382c80ce41c198ddf85f050a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ba0a7174d8f43ea71c8e3ca9477691add8d80ac8e0ed89d8d8b572041eef81f4a54a0534ea2e28ec4da3b5b944b18c51ec84a5cf35f5b3343c5fb86521fd2d388f506f85f060a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ba034bd04065833536a10c77ee2a43a5371bc6d34837088b861dd9d4b7f44074b59a078807715786a13876d3455716a6b9cb2186b7a4887a5c31160fc877454958616c0".from_hex().unwrap(); let b1_hash: H256 = "f53f268d23a71e85c7d6d83a9504298712b84c1a2ba220441c86eeda0bf0b6e3".into(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let mut batch =db.transaction(); bc.insert_block(&mut batch, &b1, vec![]); db.write(batch).unwrap(); bc.commit(); let transactions = bc.transactions(&b1_hash).unwrap(); assert_eq!(transactions.len(), 7); for t in transactions { assert_eq!(bc.transaction(&bc.transaction_address(&t.hash()).unwrap()).unwrap(), t); } } fn insert_block(db: &Arc, bc: &BlockChain, bytes: &[u8], receipts: Vec) -> ImportRoute { let mut batch = db.transaction(); let res = bc.insert_block(&mut batch, bytes, receipts); db.write(batch).unwrap(); bc.commit(); res } #[test] fn test_logs() { // given let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); // just insert dummy transaction so that #transactions=#receipts let t1 = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 101.into(), data: "601080600c6000396000f3006000355415600957005b60203560003555".from_hex().unwrap(), }.sign(&secret(), None); let t2 = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 102.into(), data: "601080600c6000396000f3006000355415600957005b60203560003555".from_hex().unwrap(), }.sign(&secret(), None); let t3 = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 103.into(), data: "601080600c6000396000f3006000355415600957005b60203560003555".from_hex().unwrap(), }.sign(&secret(), None); let tx_hash1 = t1.hash(); let tx_hash2 = t2.hash(); let tx_hash3 = t3.hash(); let b1 = canon_chain.with_transaction(t1).with_transaction(t2).generate(&mut finalizer).unwrap(); let b2 = canon_chain.with_transaction(t3).generate(&mut finalizer).unwrap(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); insert_block(&db, &bc, &b1, vec![Receipt { state_root: H256::default(), gas_used: 10_000.into(), log_bloom: Default::default(), logs: vec![ LogEntry { address: Default::default(), topics: vec![], data: vec![1], }, LogEntry { address: Default::default(), topics: vec![], data: vec![2], }, ], }, Receipt { state_root: H256::default(), gas_used: 10_000.into(), log_bloom: Default::default(), logs: vec![ LogEntry { address: Default::default(), topics: vec![], data: vec![3], }, ], }]); insert_block(&db, &bc, &b2, vec![ Receipt { state_root: H256::default(), gas_used: 10_000.into(), log_bloom: Default::default(), logs: vec![ LogEntry { address: Default::default(), topics: vec![], data: vec![4], }, ], } ]); // when let block1 = BlockView::new(&b1); let block2 = BlockView::new(&b2); let logs1 = bc.logs(vec![1, 2], |_| true, None); let logs2 = bc.logs(vec![1, 2], |_| true, Some(1)); // then assert_eq!(logs1, vec![ LocalizedLogEntry { entry: LogEntry { address: Default::default(), topics: vec![], data: vec![1] }, block_hash: block1.hash(), block_number: block1.header().number(), transaction_hash: tx_hash1.clone(), transaction_index: 0, transaction_log_index: 0, log_index: 0, }, LocalizedLogEntry { entry: LogEntry { address: Default::default(), topics: vec![], data: vec![2] }, block_hash: block1.hash(), block_number: block1.header().number(), transaction_hash: tx_hash1.clone(), transaction_index: 0, transaction_log_index: 1, log_index: 1, }, LocalizedLogEntry { entry: LogEntry { address: Default::default(), topics: vec![], data: vec![3] }, block_hash: block1.hash(), block_number: block1.header().number(), transaction_hash: tx_hash2.clone(), transaction_index: 1, transaction_log_index: 0, log_index: 2, }, LocalizedLogEntry { entry: LogEntry { address: Default::default(), topics: vec![], data: vec![4] }, block_hash: block2.hash(), block_number: block2.header().number(), transaction_hash: tx_hash3.clone(), transaction_index: 0, transaction_log_index: 0, log_index: 0, } ]); assert_eq!(logs2, vec![ LocalizedLogEntry { entry: LogEntry { address: Default::default(), topics: vec![], data: vec![4] }, block_hash: block2.hash(), block_number: block2.header().number(), transaction_hash: tx_hash3.clone(), transaction_index: 0, transaction_log_index: 0, log_index: 0, } ]); } #[test] fn test_bloom_filter_simple() { // TODO: From here let bloom_b1: H2048 = "00000020000000000000000000000000000000000000000002000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000040000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008000400000000000000000000002000".into(); let bloom_b2: H2048 = "00000000000000000000000000000000000000000000020000001000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000008000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000000000000000000000".into(); let bloom_ba: H2048 = "00000000000000000000000000000000000000000000020000000800000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000008000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000000000000000000000".into(); let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let mut fork = canon_chain.fork(1); let mut fork_finalizer = finalizer.fork(); let b1 = fork.with_bloom(bloom_b1.clone()).generate(&mut fork_finalizer).unwrap(); let b2 = fork.with_bloom(bloom_b2.clone()).generate(&mut fork_finalizer).unwrap(); let b3 = fork.with_bloom(bloom_ba.clone()).generate(&mut fork_finalizer).unwrap(); let b1a = canon_chain.with_bloom(bloom_ba.clone()).generate(&mut finalizer).unwrap(); let b2a = canon_chain.with_bloom(bloom_ba.clone()).generate(&mut finalizer).unwrap(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); assert_eq!(blocks_b1, vec![]); assert_eq!(blocks_b2, vec![]); insert_block(&db, &bc, &b1, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); assert_eq!(blocks_b1, vec![1]); assert_eq!(blocks_b2, vec![]); insert_block(&db, &bc, &b2, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); assert_eq!(blocks_b1, vec![1]); assert_eq!(blocks_b2, vec![2]); // hasn't been forked yet insert_block(&db, &bc, &b1a, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); let blocks_ba = bc.blocks_with_bloom(&bloom_ba, 0, 5); assert_eq!(blocks_b1, vec![1]); assert_eq!(blocks_b2, vec![2]); assert_eq!(blocks_ba, vec![]); // fork has happend insert_block(&db, &bc, &b2a, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); let blocks_ba = bc.blocks_with_bloom(&bloom_ba, 0, 5); assert_eq!(blocks_b1, vec![]); assert_eq!(blocks_b2, vec![]); assert_eq!(blocks_ba, vec![1, 2]); // fork back insert_block(&db, &bc, &b3, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); let blocks_ba = bc.blocks_with_bloom(&bloom_ba, 0, 5); assert_eq!(blocks_b1, vec![1]); assert_eq!(blocks_b2, vec![2]); assert_eq!(blocks_ba, vec![3]); } #[test] fn test_best_block_update() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let temp = RandomTempPath::new(); { let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let uncle = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let mut batch =db.transaction(); // create a longer fork for _ in 0..5 { let canon_block = canon_chain.generate(&mut finalizer).unwrap(); bc.insert_block(&mut batch, &canon_block, vec![]); bc.commit(); } assert_eq!(bc.best_block_number(), 5); bc.insert_block(&mut batch, &uncle, vec![]); db.write(batch).unwrap(); bc.commit(); } // re-loading the blockchain should load the correct best block. let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); assert_eq!(bc.best_block_number(), 5); } #[test] fn test_rewind() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let first = canon_chain.generate(&mut finalizer).unwrap(); let second = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let first_hash = BlockView::new(&first).header_view().sha3(); let second_hash = BlockView::new(&second).header_view().sha3(); let temp = RandomTempPath::new(); let db = new_db(temp.as_str()); let bc = new_chain(&genesis, db.clone()); let mut batch =db.transaction(); bc.insert_block(&mut batch, &first, vec![]); bc.commit(); bc.insert_block(&mut batch, &second, vec![]); bc.commit(); db.write(batch).unwrap(); assert_eq!(bc.rewind(), Some(first_hash.clone())); assert!(!bc.is_known(&second_hash)); assert_eq!(bc.best_block_number(), 1); assert_eq!(bc.best_block_hash(), first_hash.clone()); assert_eq!(bc.rewind(), Some(genesis_hash.clone())); assert_eq!(bc.rewind(), None); } }