// Copyright 2015-2018 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! A mutable state representation suitable to execute transactions. //! Generic over a `Backend`. Deals with `Account`s. //! Unconfirmed sub-states are managed with `checkpoint`s which may be canonicalized //! or rolled back. use std::cell::{RefCell, RefMut}; use std::collections::hash_map::Entry; use std::collections::{HashMap, BTreeMap, BTreeSet, HashSet}; use std::fmt; use std::sync::Arc; use hash::{KECCAK_NULL_RLP, KECCAK_EMPTY}; use receipt::{Receipt, TransactionOutcome}; use machine::EthereumMachine as Machine; use vm::EnvInfo; use error::Error; use executive::{Executive, TransactOptions}; use factory::Factories; use trace::{self, FlatTrace, VMTrace}; use pod_account::*; use pod_state::{self, PodState}; use types::basic_account::BasicAccount; use executed::{Executed, ExecutionError}; use types::state_diff::StateDiff; use transaction::SignedTransaction; use state_db::StateDB; use factory::VmFactory; use ethereum_types::{H256, U256, Address}; use hashdb::{HashDB, AsHashDB}; use keccak_hasher::KeccakHasher; use kvdb::DBValue; use bytes::Bytes; use trie::{Trie, TrieError, Recorder}; use ethtrie::{TrieDB, Result as TrieResult}; mod account; mod substate; pub mod backend; pub use self::account::Account; pub use self::backend::Backend; pub use self::substate::Substate; /// Used to return information about an `State::apply` operation. pub struct ApplyOutcome { /// The receipt for the applied transaction. pub receipt: Receipt, /// The output of the applied transaction. pub output: Bytes, /// The trace for the applied transaction, empty if tracing was not produced. pub trace: Vec, /// The VM trace for the applied transaction, None if tracing was not produced. pub vm_trace: Option } /// Result type for the execution ("application") of a transaction. pub type ApplyResult = Result, Error>; /// Return type of proof validity check. #[derive(Debug, Clone)] pub enum ProvedExecution { /// Proof wasn't enough to complete execution. BadProof, /// The transaction failed, but not due to a bad proof. Failed(ExecutionError), /// The transaction successfully completd with the given proof. Complete(Executed), } #[derive(Eq, PartialEq, Clone, Copy, Debug)] /// Account modification state. Used to check if the account was /// Modified in between commits and overall. enum AccountState { /// Account was loaded from disk and never modified in this state object. CleanFresh, /// Account was loaded from the global cache and never modified. CleanCached, /// Account has been modified and is not committed to the trie yet. /// This is set if any of the account data is changed, including /// storage and code. Dirty, /// Account was modified and committed to the trie. Committed, } #[derive(Debug)] /// In-memory copy of the account data. Holds the optional account /// and the modification status. /// Account entry can contain existing (`Some`) or non-existing /// account (`None`) struct AccountEntry { /// Account entry. `None` if account known to be non-existant. account: Option, /// Unmodified account balance. old_balance: Option, /// Entry state. state: AccountState, } // Account cache item. Contains account data and // modification state impl AccountEntry { fn is_dirty(&self) -> bool { self.state == AccountState::Dirty } fn exists_and_is_null(&self) -> bool { self.account.as_ref().map_or(false, |a| a.is_null()) } /// Clone dirty data into new `AccountEntry`. This includes /// basic account data and modified storage keys. /// Returns None if clean. fn clone_if_dirty(&self) -> Option { match self.is_dirty() { true => Some(self.clone_dirty()), false => None, } } /// Clone dirty data into new `AccountEntry`. This includes /// basic account data and modified storage keys. fn clone_dirty(&self) -> AccountEntry { AccountEntry { old_balance: self.old_balance, account: self.account.as_ref().map(Account::clone_dirty), state: self.state, } } // Create a new account entry and mark it as dirty. fn new_dirty(account: Option) -> AccountEntry { AccountEntry { old_balance: account.as_ref().map(|a| a.balance().clone()), account: account, state: AccountState::Dirty, } } // Create a new account entry and mark it as clean. fn new_clean(account: Option) -> AccountEntry { AccountEntry { old_balance: account.as_ref().map(|a| a.balance().clone()), account: account, state: AccountState::CleanFresh, } } // Create a new account entry and mark it as clean and cached. fn new_clean_cached(account: Option) -> AccountEntry { AccountEntry { old_balance: account.as_ref().map(|a| a.balance().clone()), account: account, state: AccountState::CleanCached, } } // Replace data with another entry but preserve storage cache. fn overwrite_with(&mut self, other: AccountEntry) { self.state = other.state; match other.account { Some(acc) => { if let Some(ref mut ours) = self.account { ours.overwrite_with(acc); } else { self.account = Some(acc); } }, None => self.account = None, } } } /// Check the given proof of execution. /// `Err(ExecutionError::Internal)` indicates failure, everything else indicates /// a successful proof (as the transaction itself may be poorly chosen). pub fn check_proof( proof: &[DBValue], root: H256, transaction: &SignedTransaction, machine: &Machine, env_info: &EnvInfo, ) -> ProvedExecution { let backend = self::backend::ProofCheck::new(proof); let mut factories = Factories::default(); factories.accountdb = ::account_db::Factory::Plain; let res = State::from_existing( backend, root, machine.account_start_nonce(env_info.number), factories ); let mut state = match res { Ok(state) => state, Err(_) => return ProvedExecution::BadProof, }; let options = TransactOptions::with_no_tracing().save_output_from_contract(); match state.execute(env_info, machine, transaction, options, true) { Ok(executed) => ProvedExecution::Complete(executed), Err(ExecutionError::Internal(_)) => ProvedExecution::BadProof, Err(e) => ProvedExecution::Failed(e), } } /// Prove a `virtual` transaction on the given state. /// Returns `None` when the transacion could not be proved, /// and a proof otherwise. pub fn prove_transaction_virtual + Send + Sync>( db: H, root: H256, transaction: &SignedTransaction, machine: &Machine, env_info: &EnvInfo, factories: Factories, ) -> Option<(Bytes, Vec)> { use self::backend::Proving; let backend = Proving::new(db); let res = State::from_existing( backend, root, machine.account_start_nonce(env_info.number), factories, ); let mut state = match res { Ok(state) => state, Err(_) => return None, }; let options = TransactOptions::with_no_tracing().dont_check_nonce().save_output_from_contract(); match state.execute(env_info, machine, transaction, options, true) { Err(ExecutionError::Internal(_)) => None, Err(e) => { trace!(target: "state", "Proved call failed: {}", e); Some((Vec::new(), state.drop().1.extract_proof())) } Ok(res) => Some((res.output, state.drop().1.extract_proof())), } } /// Representation of the entire state of all accounts in the system. /// /// `State` can work together with `StateDB` to share account cache. /// /// Local cache contains changes made locally and changes accumulated /// locally from previous commits. Global cache reflects the database /// state and never contains any changes. /// /// Cache items contains account data, or the flag that account does not exist /// and modification state (see `AccountState`) /// /// Account data can be in the following cache states: /// * In global but not local - something that was queried from the database, /// but never modified /// * In local but not global - something that was just added (e.g. new account) /// * In both with the same value - something that was changed to a new value, /// but changed back to a previous block in the same block (same State instance) /// * In both with different values - something that was overwritten with a /// new value. /// /// All read-only state queries check local cache/modifications first, /// then global state cache. If data is not found in any of the caches /// it is loaded from the DB to the local cache. /// /// **** IMPORTANT ************************************************************* /// All the modifications to the account data must set the `Dirty` state in the /// `AccountEntry`. This is done in `require` and `require_or_from`. So just /// use that. /// **************************************************************************** /// /// Upon destruction all the local cache data propagated into the global cache. /// Propagated items might be rejected if current state is non-canonical. /// /// State checkpointing. /// /// A new checkpoint can be created with `checkpoint()`. checkpoints can be /// created in a hierarchy. /// When a checkpoint is active all changes are applied directly into /// `cache` and the original value is copied into an active checkpoint. /// Reverting a checkpoint with `revert_to_checkpoint` involves copying /// original values from the latest checkpoint back into `cache`. The code /// takes care not to overwrite cached storage while doing that. /// checkpoint can be discarded with `discard_checkpoint`. All of the orignal /// backed-up values are moved into a parent checkpoint (if any). /// pub struct State { db: B, root: H256, cache: RefCell>, // The original account is preserved in checkpoints: RefCell>>>, account_start_nonce: U256, factories: Factories, } #[derive(Copy, Clone)] enum RequireCache { None, CodeSize, Code, } /// Mode of dealing with null accounts. #[derive(PartialEq)] pub enum CleanupMode<'a> { /// Create accounts which would be null. ForceCreate, /// Don't delete null accounts upon touching, but also don't create them. NoEmpty, /// Mark all touched accounts. TrackTouched(&'a mut HashSet
), } /// Provides subset of `State` methods to query state information pub trait StateInfo { /// Get the nonce of account `a`. fn nonce(&self, a: &Address) -> TrieResult; /// Get the balance of account `a`. fn balance(&self, a: &Address) -> TrieResult; /// Mutate storage of account `address` so that it is `value` for `key`. fn storage_at(&self, address: &Address, key: &H256) -> TrieResult; /// Get accounts' code. fn code(&self, a: &Address) -> TrieResult>>; } impl StateInfo for State { fn nonce(&self, a: &Address) -> TrieResult { State::nonce(self, a) } fn balance(&self, a: &Address) -> TrieResult { State::balance(self, a) } fn storage_at(&self, address: &Address, key: &H256) -> TrieResult { State::storage_at(self, address, key) } fn code(&self, address: &Address) -> TrieResult>> { State::code(self, address) } } const SEC_TRIE_DB_UNWRAP_STR: &'static str = "A state can only be created with valid root. Creating a SecTrieDB with a valid root will not fail. \ Therefore creating a SecTrieDB with this state's root will not fail."; impl State { /// Creates new state with empty state root /// Used for tests. pub fn new(mut db: B, account_start_nonce: U256, factories: Factories) -> State { let mut root = H256::new(); { // init trie and reset root to null let _ = factories.trie.create(db.as_hashdb_mut(), &mut root); } State { db: db, root: root, cache: RefCell::new(HashMap::new()), checkpoints: RefCell::new(Vec::new()), account_start_nonce: account_start_nonce, factories: factories, } } /// Creates new state with existing state root pub fn from_existing(db: B, root: H256, account_start_nonce: U256, factories: Factories) -> TrieResult> { if !db.as_hashdb().contains(&root) { return Err(Box::new(TrieError::InvalidStateRoot(root))); } let state = State { db: db, root: root, cache: RefCell::new(HashMap::new()), checkpoints: RefCell::new(Vec::new()), account_start_nonce: account_start_nonce, factories: factories }; Ok(state) } /// Get a VM factory that can execute on this state. pub fn vm_factory(&self) -> VmFactory { self.factories.vm.clone() } /// Create a recoverable checkpoint of this state. Return the checkpoint index. pub fn checkpoint(&mut self) -> usize { let checkpoints = self.checkpoints.get_mut(); let index = checkpoints.len(); checkpoints.push(HashMap::new()); index } /// Merge last checkpoint with previous. pub fn discard_checkpoint(&mut self) { // merge with previous checkpoint let last = self.checkpoints.get_mut().pop(); if let Some(mut checkpoint) = last { if let Some(ref mut prev) = self.checkpoints.get_mut().last_mut() { if prev.is_empty() { **prev = checkpoint; } else { for (k, v) in checkpoint.drain() { prev.entry(k).or_insert(v); } } } } } /// Revert to the last checkpoint and discard it. pub fn revert_to_checkpoint(&mut self) { if let Some(mut checkpoint) = self.checkpoints.get_mut().pop() { for (k, v) in checkpoint.drain() { match v { Some(v) => { match self.cache.get_mut().entry(k) { Entry::Occupied(mut e) => { // Merge checkpointed changes back into the main account // storage preserving the cache. e.get_mut().overwrite_with(v); }, Entry::Vacant(e) => { e.insert(v); } } }, None => { if let Entry::Occupied(e) = self.cache.get_mut().entry(k) { if e.get().is_dirty() { e.remove(); } } } } } } } fn insert_cache(&self, address: &Address, account: AccountEntry) { // Dirty account which is not in the cache means this is a new account. // It goes directly into the checkpoint as there's nothing to rever to. // // In all other cases account is read as clean first, and after that made // dirty in and added to the checkpoint with `note_cache`. let is_dirty = account.is_dirty(); let old_value = self.cache.borrow_mut().insert(*address, account); if is_dirty { if let Some(ref mut checkpoint) = self.checkpoints.borrow_mut().last_mut() { checkpoint.entry(*address).or_insert(old_value); } } } fn note_cache(&self, address: &Address) { if let Some(ref mut checkpoint) = self.checkpoints.borrow_mut().last_mut() { checkpoint.entry(*address) .or_insert_with(|| self.cache.borrow().get(address).map(AccountEntry::clone_dirty)); } } /// Destroy the current object and return root and database. pub fn drop(mut self) -> (H256, B) { self.propagate_to_global_cache(); (self.root, self.db) } /// Destroy the current object and return single account data. pub fn into_account(self, account: &Address) -> TrieResult<(Option>, HashMap)> { // TODO: deconstruct without cloning. let account = self.require(account, true)?; Ok((account.code().clone(), account.storage_changes().clone())) } /// Return reference to root pub fn root(&self) -> &H256 { &self.root } /// Create a new contract at address `contract`. If there is already an account at the address /// it will have its code reset, ready for `init_code()`. pub fn new_contract(&mut self, contract: &Address, balance: U256, nonce_offset: U256) -> TrieResult<()> { let original_storage_root = self.original_storage_root(contract)?; self.insert_cache(contract, AccountEntry::new_dirty(Some(Account::new_contract(balance, self.account_start_nonce + nonce_offset, original_storage_root)))); Ok(()) } /// Remove an existing account. pub fn kill_account(&mut self, account: &Address) { self.insert_cache(account, AccountEntry::new_dirty(None)); } /// Determine whether an account exists. pub fn exists(&self, a: &Address) -> TrieResult { // Bloom filter does not contain empty accounts, so it is important here to // check if account exists in the database directly before EIP-161 is in effect. self.ensure_cached(a, RequireCache::None, false, |a| a.is_some()) } /// Determine whether an account exists and if not empty. pub fn exists_and_not_null(&self, a: &Address) -> TrieResult { self.ensure_cached(a, RequireCache::None, false, |a| a.map_or(false, |a| !a.is_null())) } /// Determine whether an account exists and has code or non-zero nonce. pub fn exists_and_has_code_or_nonce(&self, a: &Address) -> TrieResult { self.ensure_cached(a, RequireCache::CodeSize, false, |a| a.map_or(false, |a| a.code_hash() != KECCAK_EMPTY || *a.nonce() != self.account_start_nonce)) } /// Get the balance of account `a`. pub fn balance(&self, a: &Address) -> TrieResult { self.ensure_cached(a, RequireCache::None, true, |a| a.as_ref().map_or(U256::zero(), |account| *account.balance())) } /// Get the nonce of account `a`. pub fn nonce(&self, a: &Address) -> TrieResult { self.ensure_cached(a, RequireCache::None, true, |a| a.as_ref().map_or(self.account_start_nonce, |account| *account.nonce())) } /// Get the storage root of account `a`. pub fn storage_root(&self, a: &Address) -> TrieResult> { self.ensure_cached(a, RequireCache::None, true, |a| a.as_ref().and_then(|account| account.storage_root())) } /// Get the original storage root since last commit of account `a`. pub fn original_storage_root(&self, a: &Address) -> TrieResult { Ok(self.ensure_cached(a, RequireCache::None, true, |a| a.as_ref().map(|account| account.original_storage_root()))? .unwrap_or(KECCAK_NULL_RLP)) } /// Get the value of storage at a specific checkpoint. pub fn checkpoint_storage_at(&self, start_checkpoint_index: usize, address: &Address, key: &H256) -> TrieResult> { #[must_use] enum ReturnKind { /// Use original storage at value at this address. OriginalAt, /// The checkpoint storage value is the same as the checkpoint storage value at the next checkpoint. SameAsNext, } let kind = { let checkpoints = self.checkpoints.borrow(); if start_checkpoint_index >= checkpoints.len() { // The checkpoint was not found. Return None. return Ok(None); } let mut kind = None; for checkpoint in checkpoints.iter().skip(start_checkpoint_index) { match checkpoint.get(address) { // The account exists at this checkpoint. Some(Some(AccountEntry { account: Some(ref account), .. })) => { if let Some(value) = account.cached_storage_at(key) { return Ok(Some(value)); } else { // This account has checkpoint entry, but the key is not in the entry's cache. We can use // original_storage_at if current account's original storage root is the same as checkpoint // account's original storage root. Otherwise, the account must be a newly created contract. if account.base_storage_root() == self.original_storage_root(address)? { kind = Some(ReturnKind::OriginalAt); break } else { // If account base storage root is different from the original storage root since last // commit, then it can only be created from a new contract, where the base storage root // would always be empty. Note that this branch is actually never called, because // `cached_storage_at` handled this case. warn!(target: "state", "Trying to get an account's cached storage value, but base storage root does not equal to original storage root! Assuming the value is empty."); return Ok(Some(H256::new())); } } }, // The account didn't exist at that point. Return empty value. Some(Some(AccountEntry { account: None, .. })) => return Ok(Some(H256::new())), // The value was not cached at that checkpoint, meaning it was not modified at all. Some(None) => { kind = Some(ReturnKind::OriginalAt); break }, // This key does not have a checkpoint entry. None => { kind = Some(ReturnKind::SameAsNext); }, } } kind.expect("start_checkpoint_index is checked to be below checkpoints_len; for loop above must have been executed at least once; it will either early return, or set the kind value to Some; qed") }; match kind { ReturnKind::SameAsNext => { // If we reached here, all previous SameAsNext failed to early return. It means that the value we want // to fetch is the same as current. Ok(Some(self.storage_at(address, key)?)) }, ReturnKind::OriginalAt => Ok(Some(self.original_storage_at(address, key)?)), } } fn storage_at_inner( &self, address: &Address, key: &H256, f_cached_at: FCachedStorageAt, f_at: FStorageAt, ) -> TrieResult where FCachedStorageAt: Fn(&Account, &H256) -> Option, FStorageAt: Fn(&Account, &HashDB, &H256) -> TrieResult { // Storage key search and update works like this: // 1. If there's an entry for the account in the local cache check for the key and return it if found. // 2. If there's an entry for the account in the global cache check for the key or load it into that account. // 3. If account is missing in the global cache load it into the local cache and cache the key there. { // check local cache first without updating let local_cache = self.cache.borrow_mut(); let mut local_account = None; if let Some(maybe_acc) = local_cache.get(address) { match maybe_acc.account { Some(ref account) => { if let Some(value) = f_cached_at(account, key) { return Ok(value); } else { local_account = Some(maybe_acc); } }, _ => return Ok(H256::new()), } } // check the global cache and and cache storage key there if found, let trie_res = self.db.get_cached(address, |acc| match acc { None => Ok(H256::new()), Some(a) => { let account_db = self.factories.accountdb.readonly(self.db.as_hashdb(), a.address_hash(address)); f_at(a, account_db.as_hashdb(), key) } }); if let Some(res) = trie_res { return res; } // otherwise cache the account localy and cache storage key there. if let Some(ref mut acc) = local_account { if let Some(ref account) = acc.account { let account_db = self.factories.accountdb.readonly(self.db.as_hashdb(), account.address_hash(address)); return f_at(account, account_db.as_hashdb(), key) } else { return Ok(H256::new()) } } } // check if the account could exist before any requests to trie if self.db.is_known_null(address) { return Ok(H256::zero()) } // account is not found in the global cache, get from the DB and insert into local let db = self.factories.trie.readonly(self.db.as_hashdb(), &self.root).expect(SEC_TRIE_DB_UNWRAP_STR); let from_rlp = |b: &[u8]| Account::from_rlp(b).expect("decoding db value failed"); let maybe_acc = db.get_with(address, from_rlp)?; let r = maybe_acc.as_ref().map_or(Ok(H256::new()), |a| { let account_db = self.factories.accountdb.readonly(self.db.as_hashdb(), a.address_hash(address)); f_at(a, account_db.as_hashdb(), key) }); self.insert_cache(address, AccountEntry::new_clean(maybe_acc)); r } /// Mutate storage of account `address` so that it is `value` for `key`. pub fn storage_at(&self, address: &Address, key: &H256) -> TrieResult { self.storage_at_inner( address, key, |account, key| { account.cached_storage_at(key) }, |account, db, key| { account.storage_at(db, key) }, ) } /// Get the value of storage after last state commitment. pub fn original_storage_at(&self, address: &Address, key: &H256) -> TrieResult { self.storage_at_inner( address, key, |account, key| { account.cached_original_storage_at(key) }, |account, db, key| { account.original_storage_at(db, key) }, ) } /// Get accounts' code. pub fn code(&self, a: &Address) -> TrieResult>> { self.ensure_cached(a, RequireCache::Code, true, |a| a.as_ref().map_or(None, |a| a.code().clone())) } /// Get an account's code hash. pub fn code_hash(&self, a: &Address) -> TrieResult> { self.ensure_cached(a, RequireCache::None, true, |a| a.as_ref().map(|a| a.code_hash())) } /// Get accounts' code size. pub fn code_size(&self, a: &Address) -> TrieResult> { self.ensure_cached(a, RequireCache::CodeSize, true, |a| a.as_ref().and_then(|a| a.code_size())) } /// Add `incr` to the balance of account `a`. pub fn add_balance(&mut self, a: &Address, incr: &U256, cleanup_mode: CleanupMode) -> TrieResult<()> { trace!(target: "state", "add_balance({}, {}): {}", a, incr, self.balance(a)?); let is_value_transfer = !incr.is_zero(); if is_value_transfer || (cleanup_mode == CleanupMode::ForceCreate && !self.exists(a)?) { self.require(a, false)?.add_balance(incr); } else if let CleanupMode::TrackTouched(set) = cleanup_mode { if self.exists(a)? { set.insert(*a); self.touch(a)?; } } Ok(()) } /// Subtract `decr` from the balance of account `a`. pub fn sub_balance(&mut self, a: &Address, decr: &U256, cleanup_mode: &mut CleanupMode) -> TrieResult<()> { trace!(target: "state", "sub_balance({}, {}): {}", a, decr, self.balance(a)?); if !decr.is_zero() || !self.exists(a)? { self.require(a, false)?.sub_balance(decr); } if let CleanupMode::TrackTouched(ref mut set) = *cleanup_mode { set.insert(*a); } Ok(()) } /// Subtracts `by` from the balance of `from` and adds it to that of `to`. pub fn transfer_balance(&mut self, from: &Address, to: &Address, by: &U256, mut cleanup_mode: CleanupMode) -> TrieResult<()> { self.sub_balance(from, by, &mut cleanup_mode)?; self.add_balance(to, by, cleanup_mode)?; Ok(()) } /// Increment the nonce of account `a` by 1. pub fn inc_nonce(&mut self, a: &Address) -> TrieResult<()> { self.require(a, false).map(|mut x| x.inc_nonce()) } /// Mutate storage of account `a` so that it is `value` for `key`. pub fn set_storage(&mut self, a: &Address, key: H256, value: H256) -> TrieResult<()> { trace!(target: "state", "set_storage({}:{:x} to {:x})", a, key, value); if self.storage_at(a, &key)? != value { self.require(a, false)?.set_storage(key, value) } Ok(()) } /// Initialise the code of account `a` so that it is `code`. /// NOTE: Account should have been created with `new_contract`. pub fn init_code(&mut self, a: &Address, code: Bytes) -> TrieResult<()> { self.require_or_from(a, true, || Account::new_contract(0.into(), self.account_start_nonce, KECCAK_NULL_RLP), |_| {})?.init_code(code); Ok(()) } /// Reset the code of account `a` so that it is `code`. pub fn reset_code(&mut self, a: &Address, code: Bytes) -> TrieResult<()> { self.require_or_from(a, true, || Account::new_contract(0.into(), self.account_start_nonce, KECCAK_NULL_RLP), |_| {})?.reset_code(code); Ok(()) } /// Execute a given transaction, producing a receipt and an optional trace. /// This will change the state accordingly. pub fn apply(&mut self, env_info: &EnvInfo, machine: &Machine, t: &SignedTransaction, tracing: bool) -> ApplyResult { if tracing { let options = TransactOptions::with_tracing(); self.apply_with_tracing(env_info, machine, t, options.tracer, options.vm_tracer) } else { let options = TransactOptions::with_no_tracing(); self.apply_with_tracing(env_info, machine, t, options.tracer, options.vm_tracer) } } /// Execute a given transaction with given tracer and VM tracer producing a receipt and an optional trace. /// This will change the state accordingly. pub fn apply_with_tracing( &mut self, env_info: &EnvInfo, machine: &Machine, t: &SignedTransaction, tracer: T, vm_tracer: V, ) -> ApplyResult where T: trace::Tracer, V: trace::VMTracer, { let options = TransactOptions::new(tracer, vm_tracer); let e = self.execute(env_info, machine, t, options, false)?; let params = machine.params(); let eip658 = env_info.number >= params.eip658_transition; let no_intermediate_commits = eip658 || (env_info.number >= params.eip98_transition && env_info.number >= params.validate_receipts_transition); let outcome = if no_intermediate_commits { if eip658 { TransactionOutcome::StatusCode(if e.exception.is_some() { 0 } else { 1 }) } else { TransactionOutcome::Unknown } } else { self.commit()?; TransactionOutcome::StateRoot(self.root().clone()) }; let output = e.output; let receipt = Receipt::new(outcome, e.cumulative_gas_used, e.logs); trace!(target: "state", "Transaction receipt: {:?}", receipt); Ok(ApplyOutcome { receipt, output, trace: e.trace, vm_trace: e.vm_trace, }) } // Execute a given transaction without committing changes. // // `virt` signals that we are executing outside of a block set and restrictions like // gas limits and gas costs should be lifted. fn execute(&mut self, env_info: &EnvInfo, machine: &Machine, t: &SignedTransaction, options: TransactOptions, virt: bool) -> Result, ExecutionError> where T: trace::Tracer, V: trace::VMTracer, { let schedule = machine.schedule(env_info.number); let mut e = Executive::new(self, env_info, machine, &schedule); match virt { true => e.transact_virtual(t, options), false => e.transact(t, options), } } fn touch(&mut self, a: &Address) -> TrieResult<()> { self.require(a, false)?; Ok(()) } /// Commits our cached account changes into the trie. pub fn commit(&mut self) -> Result<(), Error> { assert!(self.checkpoints.borrow().is_empty()); // first, commit the sub trees. let mut accounts = self.cache.borrow_mut(); for (address, ref mut a) in accounts.iter_mut().filter(|&(_, ref a)| a.is_dirty()) { if let Some(ref mut account) = a.account { let addr_hash = account.address_hash(address); { let mut account_db = self.factories.accountdb.create(self.db.as_hashdb_mut(), addr_hash); account.commit_storage(&self.factories.trie, account_db.as_hashdb_mut())?; account.commit_code(account_db.as_hashdb_mut()); } if !account.is_empty() { self.db.note_non_null_account(address); } } } { let mut trie = self.factories.trie.from_existing(self.db.as_hashdb_mut(), &mut self.root)?; for (address, ref mut a) in accounts.iter_mut().filter(|&(_, ref a)| a.is_dirty()) { a.state = AccountState::Committed; match a.account { Some(ref mut account) => { trie.insert(address, &account.rlp())?; }, None => { trie.remove(address)?; }, }; } } Ok(()) } /// Propagate local cache into shared canonical state cache. fn propagate_to_global_cache(&mut self) { let mut addresses = self.cache.borrow_mut(); trace!("Committing cache {:?} entries", addresses.len()); for (address, a) in addresses.drain().filter(|&(_, ref a)| a.state == AccountState::Committed || a.state == AccountState::CleanFresh) { self.db.add_to_account_cache(address, a.account, a.state == AccountState::Committed); } } /// Clear state cache pub fn clear(&mut self) { assert!(self.checkpoints.borrow().is_empty()); self.cache.borrow_mut().clear(); } /// Remove any touched empty or dust accounts. pub fn kill_garbage(&mut self, touched: &HashSet
, remove_empty_touched: bool, min_balance: &Option, kill_contracts: bool) -> TrieResult<()> { let to_kill: HashSet<_> = { self.cache.borrow().iter().filter_map(|(address, ref entry)| if touched.contains(address) && // Check all touched accounts ((remove_empty_touched && entry.exists_and_is_null()) // Remove all empty touched accounts. || min_balance.map_or(false, |ref balance| entry.account.as_ref().map_or(false, |account| (account.is_basic() || kill_contracts) // Remove all basic and optionally contract accounts where balance has been decreased. && account.balance() < balance && entry.old_balance.as_ref().map_or(false, |b| account.balance() < b)))) { Some(address.clone()) } else { None }).collect() }; for address in to_kill { self.kill_account(&address); } Ok(()) } /// Populate the state from `accounts`. /// Used for tests. pub fn populate_from(&mut self, accounts: PodState) { assert!(self.checkpoints.borrow().is_empty()); for (add, acc) in accounts.drain().into_iter() { self.cache.borrow_mut().insert(add, AccountEntry::new_dirty(Some(Account::from_pod(acc)))); } } /// Populate a PodAccount map from this state. fn to_pod_cache(&self) -> PodState { assert!(self.checkpoints.borrow().is_empty()); PodState::from(self.cache.borrow().iter().fold(BTreeMap::new(), |mut m, (add, opt)| { if let Some(ref acc) = opt.account { m.insert(*add, PodAccount::from_account(acc)); } m })) } #[cfg(feature="to-pod-full")] /// Populate a PodAccount map from this state. /// Warning this is not for real time use. /// Use of this method requires FatDB mode to be able /// to iterate on accounts. pub fn to_pod_full(&self) -> Result { assert!(self.checkpoints.borrow().is_empty()); assert!(self.factories.trie.is_fat()); let mut result = BTreeMap::new(); let trie = self.factories.trie.readonly(self.db.as_hashdb(), &self.root)?; // put trie in cache for item in trie.iter()? { if let Ok((addr, _dbval)) = item { let address = Address::from_slice(&addr); let _ = self.require(&address, true); } } // Resolve missing part for (add, opt) in self.cache.borrow().iter() { if let Some(ref acc) = opt.account { let pod_account = self.account_to_pod_account(acc, add)?; result.insert(add.clone(), pod_account); } } Ok(PodState::from(result)) } /// Create a PodAccount from an account. /// Differs from existing method by including all storage /// values of the account to the PodAccount. /// This function is only intended for use in small tests or with fresh accounts. /// It requires FatDB. #[cfg(feature="to-pod-full")] fn account_to_pod_account(&self, account: &Account, address: &Address) -> Result { let mut pod_storage = BTreeMap::new(); let addr_hash = account.address_hash(address); let accountdb = self.factories.accountdb.readonly(self.db.as_hashdb(), addr_hash); let root = account.base_storage_root(); let trie = self.factories.trie.readonly(accountdb.as_hashdb(), &root)?; for o_kv in trie.iter()? { if let Ok((key, val)) = o_kv { pod_storage.insert(key[..].into(), U256::from(&val[..]).into()); } } let mut pod_account = PodAccount::from_account(&account); // cached one first pod_storage.append(&mut pod_account.storage); pod_account.storage = pod_storage; Ok(pod_account) } /// Populate a PodAccount map from this state, with another state as the account and storage query. fn to_pod_diff(&mut self, query: &State) -> TrieResult { assert!(self.checkpoints.borrow().is_empty()); // Merge PodAccount::to_pod for cache of self and `query`. let all_addresses = self.cache.borrow().keys().cloned() .chain(query.cache.borrow().keys().cloned()) .collect::>(); Ok(PodState::from(all_addresses.into_iter().fold(Ok(BTreeMap::new()), |m: TrieResult<_>, address| { let mut m = m?; let account = self.ensure_cached(&address, RequireCache::Code, true, |acc| { acc.map(|acc| { // Merge all modified storage keys. let all_keys = { let self_keys = acc.storage_changes().keys().cloned() .collect::>(); if let Some(ref query_storage) = query.cache.borrow().get(&address) .and_then(|opt| { Some(opt.account.as_ref()?.storage_changes().keys().cloned() .collect::>()) }) { self_keys.union(&query_storage).cloned().collect::>() } else { self_keys.into_iter().collect::>() } }; // Storage must be fetched after ensure_cached to avoid borrow problem. (*acc.balance(), *acc.nonce(), all_keys, acc.code().map(|x| x.to_vec())) }) })?; if let Some((balance, nonce, storage_keys, code)) = account { let storage = storage_keys.into_iter().fold(Ok(BTreeMap::new()), |s: TrieResult<_>, key| { let mut s = s?; s.insert(key, self.storage_at(&address, &key)?); Ok(s) })?; m.insert(address, PodAccount { balance, nonce, storage, code }); } Ok(m) })?)) } /// Returns a `StateDiff` describing the difference from `orig` to `self`. /// Consumes self. pub fn diff_from(&self, mut orig: State) -> TrieResult { let pod_state_post = self.to_pod_cache(); let pod_state_pre = orig.to_pod_diff(self)?; Ok(pod_state::diff_pod(&pod_state_pre, &pod_state_post)) } /// Load required account data from the databases. Returns whether the cache succeeds. #[must_use] fn update_account_cache(require: RequireCache, account: &mut Account, state_db: &B, db: &HashDB) -> bool { if let RequireCache::None = require { return true; } if account.is_cached() { return true; } // if there's already code in the global cache, always cache it localy let hash = account.code_hash(); match state_db.get_cached_code(&hash) { Some(code) => { account.cache_given_code(code); true }, None => match require { RequireCache::None => true, RequireCache::Code => { if let Some(code) = account.cache_code(db) { // propagate code loaded from the database to // the global code cache. state_db.cache_code(hash, code); true } else { false } }, RequireCache::CodeSize => { account.cache_code_size(db) } } } } /// Check caches for required data /// First searches for account in the local, then the shared cache. /// Populates local cache if nothing found. fn ensure_cached(&self, a: &Address, require: RequireCache, check_null: bool, f: F) -> TrieResult where F: Fn(Option<&Account>) -> U { // check local cache first if let Some(ref mut maybe_acc) = self.cache.borrow_mut().get_mut(a) { if let Some(ref mut account) = maybe_acc.account { let accountdb = self.factories.accountdb.readonly(self.db.as_hashdb(), account.address_hash(a)); if Self::update_account_cache(require, account, &self.db, accountdb.as_hashdb()) { return Ok(f(Some(account))); } else { return Err(Box::new(TrieError::IncompleteDatabase(H256::from(a)))); } } return Ok(f(None)); } // check global cache let result = self.db.get_cached(a, |mut acc| { if let Some(ref mut account) = acc { let accountdb = self.factories.accountdb.readonly(self.db.as_hashdb(), account.address_hash(a)); if !Self::update_account_cache(require, account, &self.db, accountdb.as_hashdb()) { return Err(Box::new(TrieError::IncompleteDatabase(H256::from(a)))); } } Ok(f(acc.map(|a| &*a))) }); match result { Some(r) => Ok(r?), None => { // first check if it is not in database for sure if check_null && self.db.is_known_null(a) { return Ok(f(None)); } // not found in the global cache, get from the DB and insert into local let db = self.factories.trie.readonly(self.db.as_hashdb(), &self.root)?; let from_rlp = |b: &[u8]| Account::from_rlp(b).expect("decoding db value failed"); let mut maybe_acc = db.get_with(a, from_rlp)?; if let Some(ref mut account) = maybe_acc.as_mut() { let accountdb = self.factories.accountdb.readonly(self.db.as_hashdb(), account.address_hash(a)); if !Self::update_account_cache(require, account, &self.db, accountdb.as_hashdb()) { return Err(Box::new(TrieError::IncompleteDatabase(H256::from(a)))); } } let r = f(maybe_acc.as_ref()); self.insert_cache(a, AccountEntry::new_clean(maybe_acc)); Ok(r) } } } /// Pull account `a` in our cache from the trie DB. `require_code` requires that the code be cached, too. fn require<'a>(&'a self, a: &Address, require_code: bool) -> TrieResult> { self.require_or_from(a, require_code, || Account::new_basic(0u8.into(), self.account_start_nonce), |_| {}) } /// Pull account `a` in our cache from the trie DB. `require_code` requires that the code be cached, too. /// If it doesn't exist, make account equal the evaluation of `default`. fn require_or_from<'a, F, G>(&'a self, a: &Address, require_code: bool, default: F, not_default: G) -> TrieResult> where F: FnOnce() -> Account, G: FnOnce(&mut Account), { let contains_key = self.cache.borrow().contains_key(a); if !contains_key { match self.db.get_cached_account(a) { Some(acc) => self.insert_cache(a, AccountEntry::new_clean_cached(acc)), None => { let maybe_acc = if !self.db.is_known_null(a) { let db = self.factories.trie.readonly(self.db.as_hashdb(), &self.root)?; let from_rlp = |b:&[u8]| { Account::from_rlp(b).expect("decoding db value failed") }; AccountEntry::new_clean(db.get_with(a, from_rlp)?) } else { AccountEntry::new_clean(None) }; self.insert_cache(a, maybe_acc); } } } self.note_cache(a); // at this point the entry is guaranteed to be in the cache. Ok(RefMut::map(self.cache.borrow_mut(), |c| { let entry = c.get_mut(a).expect("entry known to exist in the cache; qed"); match &mut entry.account { &mut Some(ref mut acc) => not_default(acc), slot => *slot = Some(default()), } // set the dirty flag after changing account data. entry.state = AccountState::Dirty; match entry.account { Some(ref mut account) => { if require_code { let addr_hash = account.address_hash(a); let accountdb = self.factories.accountdb.readonly(self.db.as_hashdb(), addr_hash); // FIXME (Issue #9838): update_account_cache can fail in rare cases, but we cannot return error in RefMut wrapper. Self::update_account_cache(RequireCache::Code, account, &self.db, accountdb.as_hashdb()); } account }, _ => panic!("Required account must always exist; qed"), } })) } /// Replace account code and storage. Creates account if it does not exist. pub fn patch_account(&self, a: &Address, code: Arc, storage: HashMap) -> TrieResult<()> { Ok(self.require(a, false)?.reset_code_and_storage(code, storage)) } } // State proof implementations; useful for light client protocols. impl State { /// Prove an account's existence or nonexistence in the state trie. /// Returns a merkle proof of the account's trie node omitted or an encountered trie error. /// If the account doesn't exist in the trie, prove that and return defaults. /// Requires a secure trie to be used for accurate results. /// `account_key` == keccak(address) pub fn prove_account(&self, account_key: H256) -> TrieResult<(Vec, BasicAccount)> { let mut recorder = Recorder::new(); let trie = TrieDB::new(self.db.as_hashdb(), &self.root)?; let maybe_account: Option = { let panicky_decoder = |bytes: &[u8]| { ::rlp::decode(bytes).expect(&format!("prove_account, could not query trie for account key={}", &account_key)) }; let query = (&mut recorder, panicky_decoder); trie.get_with(&account_key, query)? }; let account = maybe_account.unwrap_or_else(|| BasicAccount { balance: 0.into(), nonce: self.account_start_nonce, code_hash: KECCAK_EMPTY, storage_root: KECCAK_NULL_RLP, }); Ok((recorder.drain().into_iter().map(|r| r.data).collect(), account)) } /// Prove an account's storage key's existence or nonexistence in the state. /// Returns a merkle proof of the account's storage trie. /// Requires a secure trie to be used for correctness. /// `account_key` == keccak(address) /// `storage_key` == keccak(key) pub fn prove_storage(&self, account_key: H256, storage_key: H256) -> TrieResult<(Vec, H256)> { // TODO: probably could look into cache somehow but it's keyed by // address, not keccak(address). let trie = TrieDB::new(self.db.as_hashdb(), &self.root)?; let from_rlp = |b: &[u8]| Account::from_rlp(b).expect("decoding db value failed"); let acc = match trie.get_with(&account_key, from_rlp)? { Some(acc) => acc, None => return Ok((Vec::new(), H256::new())), }; let account_db = self.factories.accountdb.readonly(self.db.as_hashdb(), account_key); acc.prove_storage(account_db.as_hashdb(), storage_key) } } impl fmt::Debug for State { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}", self.cache.borrow()) } } // TODO: cloning for `State` shouldn't be possible in general; Remove this and use // checkpoints where possible. impl Clone for State { fn clone(&self) -> State { let cache = { let mut cache: HashMap = HashMap::new(); for (key, val) in self.cache.borrow().iter() { if let Some(entry) = val.clone_if_dirty() { cache.insert(key.clone(), entry); } } cache }; State { db: self.db.boxed_clone(), root: self.root.clone(), cache: RefCell::new(cache), checkpoints: RefCell::new(Vec::new()), account_start_nonce: self.account_start_nonce.clone(), factories: self.factories.clone(), } } } #[cfg(test)] mod tests { use std::sync::Arc; use std::str::FromStr; use rustc_hex::FromHex; use hash::{keccak, KECCAK_NULL_RLP}; use super::*; use ethkey::Secret; use ethereum_types::{H256, U256, Address}; use test_helpers::{get_temp_state, get_temp_state_db}; use machine::EthereumMachine; use vm::EnvInfo; use spec::*; use transaction::*; use ethcore_logger::init_log; use trace::{FlatTrace, TraceError, trace}; use evm::CallType; fn secret() -> Secret { keccak("").into() } fn make_frontier_machine(max_depth: usize) -> EthereumMachine { let mut machine = ::ethereum::new_frontier_test_machine(); machine.set_schedule_creation_rules(Box::new(move |s, _| s.max_depth = max_depth)); machine } #[test] fn should_apply_create_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 100.into(), data: FromHex::from_hex("601080600c6000396000f3006000355415600957005b60203560003555").unwrap(), }.sign(&secret(), None); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 0, action: trace::Action::Create(trace::Create { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), value: 100.into(), gas: 77412.into(), init: vec![96, 16, 128, 96, 12, 96, 0, 57, 96, 0, 243, 0, 96, 0, 53, 84, 21, 96, 9, 87, 0, 91, 96, 32, 53, 96, 0, 53, 85], }), result: trace::Res::Create(trace::CreateResult { gas_used: U256::from(3224), address: Address::from_str("8988167e088c87cd314df6d3c2b83da5acb93ace").unwrap(), code: vec![96, 0, 53, 84, 21, 96, 9, 87, 0, 91, 96, 32, 53, 96, 0, 53] }), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_work_when_cloned() { init_log(); let a = Address::zero(); let mut state = { let mut state = get_temp_state(); assert_eq!(state.exists(&a).unwrap(), false); state.inc_nonce(&a).unwrap(); state.commit().unwrap(); state.clone() }; state.inc_nonce(&a).unwrap(); state.commit().unwrap(); } #[test] fn should_trace_failed_create_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Create, value: 100.into(), data: FromHex::from_hex("5b600056").unwrap(), }.sign(&secret(), None); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), action: trace::Action::Create(trace::Create { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), value: 100.into(), gas: 78792.into(), init: vec![91, 96, 0, 86], }), result: trace::Res::FailedCreate(TraceError::OutOfGas), subtraces: 0 }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_call_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("6000").unwrap()).unwrap(); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(3), output: vec![] }), subtraces: 0, }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_basic_call_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![], }.sign(&secret(), None); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(0), output: vec![] }), subtraces: 0, }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_call_transaction_to_builtin() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = Spec::new_test_machine(); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0x1.into()), value: 0.into(), data: vec![], }.sign(&secret(), None); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: "0000000000000000000000000000000000000001".into(), value: 0.into(), gas: 79_000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(3000), output: vec![] }), subtraces: 0, }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_not_trace_subcall_transaction_to_builtin() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = Spec::new_test_machine(); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 0.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("600060006000600060006001610be0f1").unwrap()).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 0.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(3_721), // in post-eip150 output: vec![] }), subtraces: 0, }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_callcode_properly() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = Spec::new_test_machine(); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 0.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("60006000600060006000600b611000f2").unwrap()).unwrap(); state.init_code(&0xb.into(), FromHex::from_hex("6000").unwrap()).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 1, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 0.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: 724.into(), // in post-eip150 output: vec![] }), }, FlatTrace { trace_address: vec![0].into_iter().collect(), subtraces: 0, action: trace::Action::Call(trace::Call { from: 0xa.into(), to: 0xb.into(), value: 0.into(), gas: 4096.into(), input: vec![], call_type: CallType::CallCode, }), result: trace::Res::Call(trace::CallResult { gas_used: 3.into(), output: vec![], }), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_delegatecall_properly() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); info.number = 0x789b0; let machine = Spec::new_test_machine(); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 0.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("6000600060006000600b618000f4").unwrap()).unwrap(); state.init_code(&0xb.into(), FromHex::from_hex("60056000526001601ff3").unwrap()).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 1, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 0.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(736), // in post-eip150 output: vec![] }), }, FlatTrace { trace_address: vec![0].into_iter().collect(), subtraces: 0, action: trace::Action::Call(trace::Call { from: 0xa.into(), to: 0xb.into(), value: 0.into(), gas: 32768.into(), input: vec![], call_type: CallType::DelegateCall, }), result: trace::Res::Call(trace::CallResult { gas_used: 18.into(), output: vec![5], }), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_failed_call_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("5b600056").unwrap()).unwrap(); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::FailedCall(TraceError::OutOfGas), subtraces: 0, }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_call_with_subcall_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("60006000600060006000600b602b5a03f1").unwrap()).unwrap(); state.init_code(&0xb.into(), FromHex::from_hex("6000").unwrap()).unwrap(); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 1, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(69), output: vec![] }), }, FlatTrace { trace_address: vec![0].into_iter().collect(), subtraces: 0, action: trace::Action::Call(trace::Call { from: 0xa.into(), to: 0xb.into(), value: 0.into(), gas: 78934.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(3), output: vec![] }), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_call_with_basic_subcall_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("60006000600060006045600b6000f1").unwrap()).unwrap(); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 1, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(31761), output: vec![] }), }, FlatTrace { trace_address: vec![0].into_iter().collect(), subtraces: 0, action: trace::Action::Call(trace::Call { from: 0xa.into(), to: 0xb.into(), value: 69.into(), gas: 2300.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult::default()), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_not_trace_call_with_invalid_basic_subcall_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("600060006000600060ff600b6000f1").unwrap()).unwrap(); // not enough funds. state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 0, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(31761), output: vec![] }), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_failed_subcall_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![],//600480600b6000396000f35b600056 }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("60006000600060006000600b602b5a03f1").unwrap()).unwrap(); state.init_code(&0xb.into(), FromHex::from_hex("5b600056").unwrap()).unwrap(); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 1, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(79_000), output: vec![] }), }, FlatTrace { trace_address: vec![0].into_iter().collect(), subtraces: 0, action: trace::Action::Call(trace::Call { from: 0xa.into(), to: 0xb.into(), value: 0.into(), gas: 78934.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::FailedCall(TraceError::OutOfGas), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_call_with_subcall_with_subcall_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("60006000600060006000600b602b5a03f1").unwrap()).unwrap(); state.init_code(&0xb.into(), FromHex::from_hex("60006000600060006000600c602b5a03f1").unwrap()).unwrap(); state.init_code(&0xc.into(), FromHex::from_hex("6000").unwrap()).unwrap(); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 1, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(135), output: vec![] }), }, FlatTrace { trace_address: vec![0].into_iter().collect(), subtraces: 1, action: trace::Action::Call(trace::Call { from: 0xa.into(), to: 0xb.into(), value: 0.into(), gas: 78934.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(69), output: vec![] }), }, FlatTrace { trace_address: vec![0, 0].into_iter().collect(), subtraces: 0, action: trace::Action::Call(trace::Call { from: 0xb.into(), to: 0xc.into(), value: 0.into(), gas: 78868.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(3), output: vec![] }), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_failed_subcall_with_subcall_transaction() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![],//600480600b6000396000f35b600056 }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("60006000600060006000600b602b5a03f1").unwrap()).unwrap(); state.init_code(&0xb.into(), FromHex::from_hex("60006000600060006000600c602b5a03f1505b601256").unwrap()).unwrap(); state.init_code(&0xc.into(), FromHex::from_hex("6000").unwrap()).unwrap(); state.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 1, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(79_000), output: vec![] }) }, FlatTrace { trace_address: vec![0].into_iter().collect(), subtraces: 1, action: trace::Action::Call(trace::Call { from: 0xa.into(), to: 0xb.into(), value: 0.into(), gas: 78934.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::FailedCall(TraceError::OutOfGas), }, FlatTrace { trace_address: vec![0, 0].into_iter().collect(), subtraces: 0, action: trace::Action::Call(trace::Call { from: 0xb.into(), to: 0xc.into(), value: 0.into(), gas: 78868.into(), call_type: CallType::Call, input: vec![], }), result: trace::Res::Call(trace::CallResult { gas_used: U256::from(3), output: vec![] }), }]; assert_eq!(result.trace, expected_trace); } #[test] fn should_trace_suicide() { init_log(); let mut state = get_temp_state(); let mut info = EnvInfo::default(); info.gas_limit = 1_000_000.into(); let machine = make_frontier_machine(5); let t = Transaction { nonce: 0.into(), gas_price: 0.into(), gas: 100_000.into(), action: Action::Call(0xa.into()), value: 100.into(), data: vec![], }.sign(&secret(), None); state.init_code(&0xa.into(), FromHex::from_hex("73000000000000000000000000000000000000000bff").unwrap()).unwrap(); state.add_balance(&0xa.into(), &50.into(), CleanupMode::NoEmpty).unwrap(); state.add_balance(&t.sender(), &100.into(), CleanupMode::NoEmpty).unwrap(); let result = state.apply(&info, &machine, &t, true).unwrap(); let expected_trace = vec![FlatTrace { trace_address: Default::default(), subtraces: 1, action: trace::Action::Call(trace::Call { from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(), to: 0xa.into(), value: 100.into(), gas: 79000.into(), input: vec![], call_type: CallType::Call, }), result: trace::Res::Call(trace::CallResult { gas_used: 3.into(), output: vec![] }), }, FlatTrace { trace_address: vec![0].into_iter().collect(), subtraces: 0, action: trace::Action::Suicide(trace::Suicide { address: 0xa.into(), refund_address: 0xb.into(), balance: 150.into(), }), result: trace::Res::None, }]; assert_eq!(result.trace, expected_trace); } #[test] fn code_from_database() { let a = Address::zero(); let (root, db) = { let mut state = get_temp_state(); state.require_or_from(&a, false, || Account::new_contract(42.into(), 0.into(), KECCAK_NULL_RLP), |_|{}).unwrap(); state.init_code(&a, vec![1, 2, 3]).unwrap(); assert_eq!(state.code(&a).unwrap(), Some(Arc::new(vec![1u8, 2, 3]))); state.commit().unwrap(); assert_eq!(state.code(&a).unwrap(), Some(Arc::new(vec![1u8, 2, 3]))); state.drop() }; let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); assert_eq!(state.code(&a).unwrap(), Some(Arc::new(vec![1u8, 2, 3]))); } #[test] fn storage_at_from_database() { let a = Address::zero(); let (root, db) = { let mut state = get_temp_state(); state.set_storage(&a, H256::from(&U256::from(1u64)), H256::from(&U256::from(69u64))).unwrap(); state.commit().unwrap(); state.drop() }; let s = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); assert_eq!(s.storage_at(&a, &H256::from(&U256::from(1u64))).unwrap(), H256::from(&U256::from(69u64))); } #[test] fn get_from_database() { let a = Address::zero(); let (root, db) = { let mut state = get_temp_state(); state.inc_nonce(&a).unwrap(); state.add_balance(&a, &U256::from(69u64), CleanupMode::NoEmpty).unwrap(); state.commit().unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); state.drop() }; let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64)); } #[test] fn remove() { let a = Address::zero(); let mut state = get_temp_state(); assert_eq!(state.exists(&a).unwrap(), false); assert_eq!(state.exists_and_not_null(&a).unwrap(), false); state.inc_nonce(&a).unwrap(); assert_eq!(state.exists(&a).unwrap(), true); assert_eq!(state.exists_and_not_null(&a).unwrap(), true); assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64)); state.kill_account(&a); assert_eq!(state.exists(&a).unwrap(), false); assert_eq!(state.exists_and_not_null(&a).unwrap(), false); assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64)); } #[test] fn empty_account_is_not_created() { let a = Address::zero(); let db = get_temp_state_db(); let (root, db) = { let mut state = State::new(db, U256::from(0), Default::default()); state.add_balance(&a, &U256::default(), CleanupMode::NoEmpty).unwrap(); // create an empty account state.commit().unwrap(); state.drop() }; let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); assert!(!state.exists(&a).unwrap()); assert!(!state.exists_and_not_null(&a).unwrap()); } #[test] fn empty_account_exists_when_creation_forced() { let a = Address::zero(); let db = get_temp_state_db(); let (root, db) = { let mut state = State::new(db, U256::from(0), Default::default()); state.add_balance(&a, &U256::default(), CleanupMode::ForceCreate).unwrap(); // create an empty account state.commit().unwrap(); state.drop() }; let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); assert!(state.exists(&a).unwrap()); assert!(!state.exists_and_not_null(&a).unwrap()); } #[test] fn remove_from_database() { let a = Address::zero(); let (root, db) = { let mut state = get_temp_state(); state.inc_nonce(&a).unwrap(); state.commit().unwrap(); assert_eq!(state.exists(&a).unwrap(), true); assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64)); state.drop() }; let (root, db) = { let mut state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); assert_eq!(state.exists(&a).unwrap(), true); assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64)); state.kill_account(&a); state.commit().unwrap(); assert_eq!(state.exists(&a).unwrap(), false); assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64)); state.drop() }; let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); assert_eq!(state.exists(&a).unwrap(), false); assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64)); } #[test] fn alter_balance() { let mut state = get_temp_state(); let a = Address::zero(); let b = 1u64.into(); state.add_balance(&a, &U256::from(69u64), CleanupMode::NoEmpty).unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); state.commit().unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); state.sub_balance(&a, &U256::from(42u64), &mut CleanupMode::NoEmpty).unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(27u64)); state.commit().unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(27u64)); state.transfer_balance(&a, &b, &U256::from(18u64), CleanupMode::NoEmpty).unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(9u64)); assert_eq!(state.balance(&b).unwrap(), U256::from(18u64)); state.commit().unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(9u64)); assert_eq!(state.balance(&b).unwrap(), U256::from(18u64)); } #[test] fn alter_nonce() { let mut state = get_temp_state(); let a = Address::zero(); state.inc_nonce(&a).unwrap(); assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64)); state.inc_nonce(&a).unwrap(); assert_eq!(state.nonce(&a).unwrap(), U256::from(2u64)); state.commit().unwrap(); assert_eq!(state.nonce(&a).unwrap(), U256::from(2u64)); state.inc_nonce(&a).unwrap(); assert_eq!(state.nonce(&a).unwrap(), U256::from(3u64)); state.commit().unwrap(); assert_eq!(state.nonce(&a).unwrap(), U256::from(3u64)); } #[test] fn balance_nonce() { let mut state = get_temp_state(); let a = Address::zero(); assert_eq!(state.balance(&a).unwrap(), U256::from(0u64)); assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64)); state.commit().unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(0u64)); assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64)); } #[test] fn ensure_cached() { let mut state = get_temp_state(); let a = Address::zero(); state.require(&a, false).unwrap(); state.commit().unwrap(); assert_eq!(*state.root(), "0ce23f3c809de377b008a4a3ee94a0834aac8bec1f86e28ffe4fdb5a15b0c785".into()); } #[test] fn checkpoint_basic() { let mut state = get_temp_state(); let a = Address::zero(); state.checkpoint(); state.add_balance(&a, &U256::from(69u64), CleanupMode::NoEmpty).unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); state.discard_checkpoint(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); state.checkpoint(); state.add_balance(&a, &U256::from(1u64), CleanupMode::NoEmpty).unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(70u64)); state.revert_to_checkpoint(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); } #[test] fn checkpoint_nested() { let mut state = get_temp_state(); let a = Address::zero(); state.checkpoint(); state.checkpoint(); state.add_balance(&a, &U256::from(69u64), CleanupMode::NoEmpty).unwrap(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); state.discard_checkpoint(); assert_eq!(state.balance(&a).unwrap(), U256::from(69u64)); state.revert_to_checkpoint(); assert_eq!(state.balance(&a).unwrap(), U256::from(0)); } #[test] fn checkpoint_revert_to_get_storage_at() { let mut state = get_temp_state(); let a = Address::zero(); let k = H256::from(U256::from(0)); let c0 = state.checkpoint(); let c1 = state.checkpoint(); state.set_storage(&a, k, H256::from(U256::from(1))).unwrap(); assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(1))); state.revert_to_checkpoint(); // Revert to c1. assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0))); } #[test] fn checkpoint_from_empty_get_storage_at() { let mut state = get_temp_state(); let a = Address::zero(); let k = H256::from(U256::from(0)); let k2 = H256::from(U256::from(1)); assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0))); state.clear(); let c0 = state.checkpoint(); state.new_contract(&a, U256::zero(), U256::zero()).unwrap(); let c1 = state.checkpoint(); state.set_storage(&a, k, H256::from(U256::from(1))).unwrap(); let c2 = state.checkpoint(); let c3 = state.checkpoint(); state.set_storage(&a, k2, H256::from(U256::from(3))).unwrap(); state.set_storage(&a, k, H256::from(U256::from(3))).unwrap(); let c4 = state.checkpoint(); state.set_storage(&a, k, H256::from(U256::from(4))).unwrap(); let c5 = state.checkpoint(); assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c2, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c3, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c4, &a, &k).unwrap(), Some(H256::from(U256::from(3)))); assert_eq!(state.checkpoint_storage_at(c5, &a, &k).unwrap(), Some(H256::from(U256::from(4)))); state.discard_checkpoint(); // Commit/discard c5. assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c2, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c3, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c4, &a, &k).unwrap(), Some(H256::from(U256::from(3)))); state.revert_to_checkpoint(); // Revert to c4. assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c2, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c3, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); state.discard_checkpoint(); // Commit/discard c3. assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c2, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); state.revert_to_checkpoint(); // Revert to c2. assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); state.discard_checkpoint(); // Commit/discard c1. assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); } #[test] fn checkpoint_get_storage_at() { let mut state = get_temp_state(); let a = Address::zero(); let k = H256::from(U256::from(0)); let k2 = H256::from(U256::from(1)); state.set_storage(&a, k, H256::from(U256::from(0xffff))).unwrap(); state.commit().unwrap(); state.clear(); assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0xffff))); state.clear(); let cm1 = state.checkpoint(); let c0 = state.checkpoint(); state.new_contract(&a, U256::zero(), U256::zero()).unwrap(); let c1 = state.checkpoint(); state.set_storage(&a, k, H256::from(U256::from(1))).unwrap(); let c2 = state.checkpoint(); let c3 = state.checkpoint(); state.set_storage(&a, k2, H256::from(U256::from(3))).unwrap(); state.set_storage(&a, k, H256::from(U256::from(3))).unwrap(); let c4 = state.checkpoint(); state.set_storage(&a, k, H256::from(U256::from(4))).unwrap(); let c5 = state.checkpoint(); assert_eq!(state.checkpoint_storage_at(cm1, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c2, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c3, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c4, &a, &k).unwrap(), Some(H256::from(U256::from(3)))); assert_eq!(state.checkpoint_storage_at(c5, &a, &k).unwrap(), Some(H256::from(U256::from(4)))); state.discard_checkpoint(); // Commit/discard c5. assert_eq!(state.checkpoint_storage_at(cm1, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c2, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c3, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c4, &a, &k).unwrap(), Some(H256::from(U256::from(3)))); state.revert_to_checkpoint(); // Revert to c4. assert_eq!(state.checkpoint_storage_at(cm1, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c2, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); assert_eq!(state.checkpoint_storage_at(c3, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); state.discard_checkpoint(); // Commit/discard c3. assert_eq!(state.checkpoint_storage_at(cm1, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); assert_eq!(state.checkpoint_storage_at(c2, &a, &k).unwrap(), Some(H256::from(U256::from(1)))); state.revert_to_checkpoint(); // Revert to c2. assert_eq!(state.checkpoint_storage_at(cm1, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c1, &a, &k).unwrap(), Some(H256::from(U256::from(0)))); state.discard_checkpoint(); // Commit/discard c1. assert_eq!(state.checkpoint_storage_at(cm1, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); assert_eq!(state.checkpoint_storage_at(c0, &a, &k).unwrap(), Some(H256::from(U256::from(0xffff)))); } #[test] fn kill_account_with_checkpoints() { let mut state = get_temp_state(); let a = Address::zero(); let k = H256::from(U256::from(0)); state.checkpoint(); state.set_storage(&a, k, H256::from(U256::from(1))).unwrap(); state.checkpoint(); state.kill_account(&a); assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0))); state.revert_to_checkpoint(); assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(1))); } #[test] fn create_contract_fail() { let mut state = get_temp_state(); let orig_root = state.root().clone(); let a: Address = 1000.into(); state.checkpoint(); // c1 state.new_contract(&a, U256::zero(), U256::zero()).unwrap(); state.add_balance(&a, &U256::from(1), CleanupMode::ForceCreate).unwrap(); state.checkpoint(); // c2 state.add_balance(&a, &U256::from(1), CleanupMode::ForceCreate).unwrap(); state.discard_checkpoint(); // discard c2 state.revert_to_checkpoint(); // revert to c1 assert_eq!(state.exists(&a).unwrap(), false); state.commit().unwrap(); assert_eq!(orig_root, state.root().clone()); } #[test] fn create_contract_fail_previous_storage() { let mut state = get_temp_state(); let a: Address = 1000.into(); let k = H256::from(U256::from(0)); state.set_storage(&a, k, H256::from(U256::from(0xffff))).unwrap(); state.commit().unwrap(); state.clear(); let orig_root = state.root().clone(); assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0xffff))); state.clear(); state.checkpoint(); // c1 state.new_contract(&a, U256::zero(), U256::zero()).unwrap(); state.checkpoint(); // c2 state.set_storage(&a, k, H256::from(U256::from(2))).unwrap(); state.revert_to_checkpoint(); // revert to c2 assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0))); state.revert_to_checkpoint(); // revert to c1 assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0xffff))); state.commit().unwrap(); assert_eq!(orig_root, state.root().clone()); } #[test] fn create_empty() { let mut state = get_temp_state(); state.commit().unwrap(); assert_eq!(*state.root(), "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421".into()); } #[test] fn should_not_panic_on_state_diff_with_storage() { let mut state = get_temp_state(); let a: Address = 0xa.into(); state.init_code(&a, b"abcdefg".to_vec()).unwrap();; state.add_balance(&a, &256.into(), CleanupMode::NoEmpty).unwrap(); state.set_storage(&a, 0xb.into(), 0xc.into()).unwrap(); let mut new_state = state.clone(); new_state.set_storage(&a, 0xb.into(), 0xd.into()).unwrap(); new_state.diff_from(state).unwrap(); } #[test] fn should_kill_garbage() { let a = 10.into(); let b = 20.into(); let c = 30.into(); let d = 40.into(); let e = 50.into(); let x = 0.into(); let db = get_temp_state_db(); let (root, db) = { let mut state = State::new(db, U256::from(0), Default::default()); state.add_balance(&a, &U256::default(), CleanupMode::ForceCreate).unwrap(); // create an empty account state.add_balance(&b, &100.into(), CleanupMode::ForceCreate).unwrap(); // create a dust account state.add_balance(&c, &101.into(), CleanupMode::ForceCreate).unwrap(); // create a normal account state.add_balance(&d, &99.into(), CleanupMode::ForceCreate).unwrap(); // create another dust account state.new_contract(&e, 100.into(), 1.into()).unwrap(); // create a contract account state.init_code(&e, vec![0x00]).unwrap(); state.commit().unwrap(); state.drop() }; let mut state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); let mut touched = HashSet::new(); state.add_balance(&a, &U256::default(), CleanupMode::TrackTouched(&mut touched)).unwrap(); // touch an account state.transfer_balance(&b, &x, &1.into(), CleanupMode::TrackTouched(&mut touched)).unwrap(); // touch an account decreasing its balance state.transfer_balance(&c, &x, &1.into(), CleanupMode::TrackTouched(&mut touched)).unwrap(); // touch an account decreasing its balance state.transfer_balance(&e, &x, &1.into(), CleanupMode::TrackTouched(&mut touched)).unwrap(); // touch an account decreasing its balance state.kill_garbage(&touched, true, &None, false).unwrap(); assert!(!state.exists(&a).unwrap()); assert!(state.exists(&b).unwrap()); state.kill_garbage(&touched, true, &Some(100.into()), false).unwrap(); assert!(!state.exists(&b).unwrap()); assert!(state.exists(&c).unwrap()); assert!(state.exists(&d).unwrap()); assert!(state.exists(&e).unwrap()); state.kill_garbage(&touched, true, &Some(100.into()), true).unwrap(); assert!(state.exists(&c).unwrap()); assert!(state.exists(&d).unwrap()); assert!(!state.exists(&e).unwrap()); } #[test] fn should_trace_diff_suicided_accounts() { use pod_account; let a = 10.into(); let db = get_temp_state_db(); let (root, db) = { let mut state = State::new(db, U256::from(0), Default::default()); state.add_balance(&a, &100.into(), CleanupMode::ForceCreate).unwrap(); state.commit().unwrap(); state.drop() }; let mut state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); let original = state.clone(); state.kill_account(&a); let diff = state.diff_from(original).unwrap(); let diff_map = diff.get(); assert_eq!(diff_map.len(), 1); assert!(diff_map.get(&a).is_some()); assert_eq!(diff_map.get(&a), pod_account::diff_pod(Some(&PodAccount { balance: U256::from(100), nonce: U256::zero(), code: Some(Default::default()), storage: Default::default() }), None).as_ref()); } #[test] fn should_trace_diff_unmodified_storage() { use pod_account; let a = 10.into(); let db = get_temp_state_db(); let (root, db) = { let mut state = State::new(db, U256::from(0), Default::default()); state.set_storage(&a, H256::from(&U256::from(1u64)), H256::from(&U256::from(20u64))).unwrap(); state.commit().unwrap(); state.drop() }; let mut state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap(); let original = state.clone(); state.set_storage(&a, H256::from(&U256::from(1u64)), H256::from(&U256::from(100u64))).unwrap(); let diff = state.diff_from(original).unwrap(); let diff_map = diff.get(); assert_eq!(diff_map.len(), 1); assert!(diff_map.get(&a).is_some()); assert_eq!(diff_map.get(&a), pod_account::diff_pod(Some(&PodAccount { balance: U256::zero(), nonce: U256::zero(), code: Some(Default::default()), storage: vec![(H256::from(&U256::from(1u64)), H256::from(&U256::from(20u64)))] .into_iter().collect(), }), Some(&PodAccount { balance: U256::zero(), nonce: U256::zero(), code: Some(Default::default()), storage: vec![(H256::from(&U256::from(1u64)), H256::from(&U256::from(100u64)))] .into_iter().collect(), })).as_ref()); } #[cfg(feature="to-pod-full")] #[test] fn should_get_full_pod_storage_values() { use trie::{TrieFactory, TrieSpec}; let a = 10.into(); let db = get_temp_state_db(); let factories = Factories { vm: Default::default(), trie: TrieFactory::new(TrieSpec::Fat), accountdb: Default::default(), }; let get_pod_state_val = |pod_state : &PodState, ak, k| { pod_state.get().get(ak).unwrap().storage.get(&k).unwrap().clone() }; let storage_address = H256::from(&U256::from(1u64)); let (root, db) = { let mut state = State::new(db, U256::from(0), factories.clone()); state.set_storage(&a, storage_address.clone(), H256::from(&U256::from(20u64))).unwrap(); let dump = state.to_pod_full().unwrap(); assert_eq!(get_pod_state_val(&dump, &a, storage_address.clone()), H256::from(&U256::from(20u64))); state.commit().unwrap(); let dump = state.to_pod_full().unwrap(); assert_eq!(get_pod_state_val(&dump, &a, storage_address.clone()), H256::from(&U256::from(20u64))); state.drop() }; let mut state = State::from_existing(db, root, U256::from(0u8), factories).unwrap(); let dump = state.to_pod_full().unwrap(); assert_eq!(get_pod_state_val(&dump, &a, storage_address.clone()), H256::from(&U256::from(20u64))); state.set_storage(&a, storage_address.clone(), H256::from(&U256::from(21u64))).unwrap(); let dump = state.to_pod_full().unwrap(); assert_eq!(get_pod_state_val(&dump, &a, storage_address.clone()), H256::from(&U256::from(21u64))); state.commit().unwrap(); state.set_storage(&a, storage_address.clone(), H256::from(&U256::from(0u64))).unwrap(); let dump = state.to_pod_full().unwrap(); assert_eq!(get_pod_state_val(&dump, &a, storage_address.clone()), H256::from(&U256::from(0u64))); } }