// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
//! LES Protocol Version 1 implementation.
//!
//! This uses a "Provider" to answer requests.
//! See https://github.com/ethcore/parity/wiki/Light-Ethereum-Subprotocol-(LES)
use ethcore::transaction::UnverifiedTransaction;
use ethcore::receipt::Receipt;
use io::TimerToken;
use network::{NetworkProtocolHandler, NetworkContext, PeerId};
use rlp::{RlpStream, Stream, UntrustedRlp, View};
use util::hash::H256;
use util::{Bytes, Mutex, RwLock, U256};
use time::{Duration, SteadyTime};
use std::collections::HashMap;
use std::fmt;
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use provider::Provider;
use request::{self, HashOrNumber, Request};
use self::buffer_flow::{Buffer, FlowParams};
use self::context::{Ctx, TickCtx};
use self::error::Punishment;
use self::request_set::RequestSet;
use self::id_guard::IdGuard;
mod context;
mod error;
mod status;
mod request_set;
#[cfg(test)]
mod tests;
pub mod buffer_flow;
pub use self::error::Error;
pub use self::context::{BasicContext, EventContext, IoContext};
pub use self::status::{Status, Capabilities, Announcement};
const TIMEOUT: TimerToken = 0;
const TIMEOUT_INTERVAL_MS: u64 = 1000;
const TICK_TIMEOUT: TimerToken = 1;
const TICK_TIMEOUT_INTERVAL_MS: u64 = 5000;
// minimum interval between updates.
const UPDATE_INTERVAL_MS: i64 = 5000;
/// Supported protocol versions.
pub const PROTOCOL_VERSIONS: &'static [u8] = &[1];
/// Max protocol version.
pub const MAX_PROTOCOL_VERSION: u8 = 1;
/// Packet count for LES.
pub const PACKET_COUNT: u8 = 15;
// packet ID definitions.
mod packet {
// the status packet.
pub const STATUS: u8 = 0x00;
// announcement of new block hashes or capabilities.
pub const ANNOUNCE: u8 = 0x01;
// request and response for block headers
pub const GET_BLOCK_HEADERS: u8 = 0x02;
pub const BLOCK_HEADERS: u8 = 0x03;
// request and response for block bodies
pub const GET_BLOCK_BODIES: u8 = 0x04;
pub const BLOCK_BODIES: u8 = 0x05;
// request and response for transaction receipts.
pub const GET_RECEIPTS: u8 = 0x06;
pub const RECEIPTS: u8 = 0x07;
// request and response for merkle proofs.
pub const GET_PROOFS: u8 = 0x08;
pub const PROOFS: u8 = 0x09;
// request and response for contract code.
pub const GET_CONTRACT_CODES: u8 = 0x0a;
pub const CONTRACT_CODES: u8 = 0x0b;
// relay transactions to peers.
pub const SEND_TRANSACTIONS: u8 = 0x0c;
// request and response for header proofs in a CHT.
pub const GET_HEADER_PROOFS: u8 = 0x0d;
pub const HEADER_PROOFS: u8 = 0x0e;
}
// timeouts for different kinds of requests. all values are in milliseconds.
// TODO: variable timeouts based on request count.
mod timeout {
pub const HANDSHAKE: i64 = 2500;
pub const HEADERS: i64 = 5000;
pub const BODIES: i64 = 5000;
pub const RECEIPTS: i64 = 3500;
pub const PROOFS: i64 = 4000;
pub const CONTRACT_CODES: i64 = 5000;
pub const HEADER_PROOFS: i64 = 3500;
}
/// A request id.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd, Hash)]
pub struct ReqId(usize);
impl fmt::Display for ReqId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Request #{}", self.0)
}
}
// A pending peer: one we've sent our status to but
// may not have received one for.
struct PendingPeer {
sent_head: H256,
last_update: SteadyTime,
}
/// Relevant data to each peer. Not accessible publicly, only `pub` due to
/// limitations of the privacy system.
pub struct Peer {
local_buffer: Buffer, // their buffer relative to us
status: Status,
capabilities: Capabilities,
remote_flow: Option<(Buffer, FlowParams)>,
sent_head: H256, // last chain head we've given them.
last_update: SteadyTime,
pending_requests: RequestSet,
failed_requests: Vec,
}
impl Peer {
// check the maximum cost of a request, returning an error if there's
// not enough buffer left.
// returns the calculated maximum cost.
fn deduct_max(&mut self, flow_params: &FlowParams, kind: request::Kind, max: usize) -> Result {
flow_params.recharge(&mut self.local_buffer);
let max_cost = flow_params.compute_cost(kind, max);
self.local_buffer.deduct_cost(max_cost)?;
Ok(max_cost)
}
// refund buffer for a request. returns new buffer amount.
fn refund(&mut self, flow_params: &FlowParams, amount: U256) -> U256 {
flow_params.refund(&mut self.local_buffer, amount);
self.local_buffer.current()
}
}
/// An LES event handler.
///
/// Each handler function takes a context which describes the relevant peer
/// and gives references to the IO layer and protocol structure so new messages
/// can be dispatched immediately.
///
/// Request responses are not guaranteed to be complete or valid, but passed IDs will be correct.
/// Response handlers are not given a copy of the original request; it is assumed
/// that relevant data will be stored by interested handlers.
pub trait Handler: Send + Sync {
/// Called when a peer connects.
fn on_connect(&self, _ctx: &EventContext, _status: &Status, _capabilities: &Capabilities) { }
/// Called when a peer disconnects, with a list of unfulfilled request IDs as
/// of yet.
fn on_disconnect(&self, _ctx: &EventContext, _unfulfilled: &[ReqId]) { }
/// Called when a peer makes an announcement.
fn on_announcement(&self, _ctx: &EventContext, _announcement: &Announcement) { }
/// Called when a peer requests relay of some transactions.
fn on_transactions(&self, _ctx: &EventContext, _relay: &[UnverifiedTransaction]) { }
/// Called when a peer responds with block bodies.
fn on_block_bodies(&self, _ctx: &EventContext, _req_id: ReqId, _bodies: &[Bytes]) { }
/// Called when a peer responds with block headers.
fn on_block_headers(&self, _ctx: &EventContext, _req_id: ReqId, _headers: &[Bytes]) { }
/// Called when a peer responds with block receipts.
fn on_receipts(&self, _ctx: &EventContext, _req_id: ReqId, _receipts: &[Vec]) { }
/// Called when a peer responds with state proofs. Each proof should be a series of trie
/// nodes in ascending order by distance from the root.
fn on_state_proofs(&self, _ctx: &EventContext, _req_id: ReqId, _proofs: &[Vec]) { }
/// Called when a peer responds with contract code.
fn on_code(&self, _ctx: &EventContext, _req_id: ReqId, _codes: &[Bytes]) { }
/// Called when a peer responds with header proofs. Each proof should be a block header coupled
/// with a series of trie nodes is ascending order by distance from the root.
fn on_header_proofs(&self, _ctx: &EventContext, _req_id: ReqId, _proofs: &[(Bytes, Vec)]) { }
/// Called to "tick" the handler periodically.
fn tick(&self, _ctx: &BasicContext) { }
/// Called on abort. This signals to handlers that they should clean up
/// and ignore peers.
// TODO: coreresponding `on_activate`?
fn on_abort(&self) { }
}
/// Protocol parameters.
pub struct Params {
/// Network id.
pub network_id: u64,
/// Buffer flow parameters.
pub flow_params: FlowParams,
/// Initial capabilities.
pub capabilities: Capabilities,
}
/// Type alias for convenience.
pub type PeerMap = HashMap>;
mod id_guard {
use network::PeerId;
use util::RwLockReadGuard;
use super::{PeerMap, ReqId};
// Guards success or failure of given request.
// On drop, inserts the req_id into the "failed requests"
// set for the peer unless defused. In separate module to enforce correct usage.
pub struct IdGuard<'a> {
peers: RwLockReadGuard<'a, PeerMap>,
peer_id: PeerId,
req_id: ReqId,
active: bool,
}
impl<'a> IdGuard<'a> {
/// Create a new `IdGuard`, which will prevent access of the inner ReqId
/// (for forming responses, triggering handlers) until defused
pub fn new(peers: RwLockReadGuard<'a, PeerMap>, peer_id: PeerId, req_id: ReqId) -> Self {
IdGuard {
peers: peers,
peer_id: peer_id,
req_id: req_id,
active: true,
}
}
/// Defuse the guard, signalling that the request has been successfully decoded.
pub fn defuse(mut self) -> ReqId {
// can't use the mem::forget trick here since we need the
// read guard to drop.
self.active = false;
self.req_id
}
}
impl<'a> Drop for IdGuard<'a> {
fn drop(&mut self) {
if !self.active { return }
if let Some(p) = self.peers.get(&self.peer_id) {
p.lock().failed_requests.push(self.req_id);
}
}
}
}
/// This is an implementation of the light ethereum network protocol, abstracted
/// over a `Provider` of data and a p2p network.
///
/// This is simply designed for request-response purposes. Higher level uses
/// of the protocol, such as synchronization, will function as wrappers around
/// this system.
//
// LOCK ORDER:
// Locks must be acquired in the order declared, and when holding a read lock
// on the peers, only one peer may be held at a time.
pub struct LightProtocol {
provider: Arc,
genesis_hash: H256,
network_id: u64,
pending_peers: RwLock>,
peers: RwLock,
capabilities: RwLock,
flow_params: FlowParams, // assumed static and same for every peer.
handlers: Vec>,
req_id: AtomicUsize,
}
impl LightProtocol {
/// Create a new instance of the protocol manager.
pub fn new(provider: Arc, params: Params) -> Self {
debug!(target: "les", "Initializing LES handler");
let genesis_hash = provider.chain_info().genesis_hash;
LightProtocol {
provider: provider,
genesis_hash: genesis_hash,
network_id: params.network_id,
pending_peers: RwLock::new(HashMap::new()),
peers: RwLock::new(HashMap::new()),
capabilities: RwLock::new(params.capabilities),
flow_params: params.flow_params,
handlers: Vec::new(),
req_id: AtomicUsize::new(0),
}
}
/// Attempt to get peer status.
pub fn peer_status(&self, peer: &PeerId) -> Option {
self.peers.read().get(&peer)
.map(|peer| peer.lock().status.clone())
}
/// Check the maximum amount of requests of a specific type
/// which a peer would be able to serve. Returns zero if the
/// peer is unknown or has no buffer flow parameters.
fn max_requests(&self, peer: PeerId, kind: request::Kind) -> usize {
self.peers.read().get(&peer).and_then(|peer| {
let mut peer = peer.lock();
match peer.remote_flow {
Some((ref mut buf, ref flow)) => {
flow.recharge(buf);
Some(flow.max_amount(&*buf, kind))
}
None => None,
}
}).unwrap_or(0)
}
/// Make a request to a peer.
///
/// Fails on: nonexistent peer, network error, peer not server,
/// insufficient buffer. Does not check capabilities before sending.
/// On success, returns a request id which can later be coordinated
/// with an event.
pub fn request_from(&self, io: &IoContext, peer_id: &PeerId, request: Request) -> Result {
let peers = self.peers.read();
let peer = peers.get(peer_id).ok_or_else(|| Error::UnknownPeer)?;
let mut peer = peer.lock();
match peer.remote_flow {
Some((ref mut buf, ref flow)) => {
flow.recharge(buf);
let max = flow.compute_cost(request.kind(), request.amount());
buf.deduct_cost(max)?;
}
None => return Err(Error::NotServer),
}
let req_id = self.req_id.fetch_add(1, Ordering::SeqCst);
let packet_data = encode_request(&request, req_id);
trace!(target: "les", "Dispatching request {} to peer {}", req_id, peer_id);
let packet_id = match request.kind() {
request::Kind::Headers => packet::GET_BLOCK_HEADERS,
request::Kind::Bodies => packet::GET_BLOCK_BODIES,
request::Kind::Receipts => packet::GET_RECEIPTS,
request::Kind::StateProofs => packet::GET_PROOFS,
request::Kind::Codes => packet::GET_CONTRACT_CODES,
request::Kind::HeaderProofs => packet::GET_HEADER_PROOFS,
};
io.send(*peer_id, packet_id, packet_data);
peer.pending_requests.insert(ReqId(req_id), request, SteadyTime::now());
Ok(ReqId(req_id))
}
/// Make an announcement of new chain head and capabilities to all peers.
/// The announcement is expected to be valid.
pub fn make_announcement(&self, io: &IoContext, mut announcement: Announcement) {
let mut reorgs_map = HashMap::new();
let now = SteadyTime::now();
// update stored capabilities
self.capabilities.write().update_from(&announcement);
// calculate reorg info and send packets
for (peer_id, peer_info) in self.peers.read().iter() {
let mut peer_info = peer_info.lock();
// TODO: "urgent" announcements like new blocks?
// the timer approach will skip 1 (possibly 2) in rare occasions.
if peer_info.sent_head == announcement.head_hash ||
peer_info.status.head_num >= announcement.head_num ||
now - peer_info.last_update < Duration::milliseconds(UPDATE_INTERVAL_MS) {
continue
}
peer_info.last_update = now;
let reorg_depth = reorgs_map.entry(peer_info.sent_head)
.or_insert_with(|| {
match self.provider.reorg_depth(&announcement.head_hash, &peer_info.sent_head) {
Some(depth) => depth,
None => {
// both values will always originate locally -- this means something
// has gone really wrong
debug!(target: "les", "couldn't compute reorganization depth between {:?} and {:?}",
&announcement.head_hash, &peer_info.sent_head);
0
}
}
});
peer_info.sent_head = announcement.head_hash;
announcement.reorg_depth = *reorg_depth;
io.send(*peer_id, packet::ANNOUNCE, status::write_announcement(&announcement));
}
}
/// Add an event handler.
///
/// These are intended to be added when the protocol structure
/// is initialized as a means of customizing its behavior,
/// and dispatching requests immediately upon events.
pub fn add_handler(&mut self, handler: Arc) {
self.handlers.push(handler);
}
/// Signal to handlers that network activity is being aborted
/// and clear peer data.
pub fn abort(&self) {
for handler in &self.handlers {
handler.on_abort();
}
// acquire in order and hold.
let mut pending_peers = self.pending_peers.write();
let mut peers = self.peers.write();
pending_peers.clear();
peers.clear();
}
// Does the common pre-verification of responses before the response itself
// is actually decoded:
// - check whether peer exists
// - check whether request was made
// - check whether request kinds match
fn pre_verify_response(&self, peer: &PeerId, kind: request::Kind, raw: &UntrustedRlp) -> Result {
let req_id = ReqId(raw.val_at(0)?);
let cur_buffer: U256 = raw.val_at(1)?;
trace!(target: "les", "pre-verifying response from peer {}, kind={:?}", peer, kind);
let mut had_req = false;
let peers = self.peers.read();
let maybe_err = match peers.get(peer) {
Some(peer_info) => {
let mut peer_info = peer_info.lock();
let req_info = peer_info.pending_requests.remove(&req_id, SteadyTime::now());
let flow_info = peer_info.remote_flow.as_mut();
match (req_info, flow_info) {
(Some(request), Some(flow_info)) => {
had_req = true;
let &mut (ref mut buf, ref mut flow) = flow_info;
let actual_buffer = ::std::cmp::min(cur_buffer, *flow.limit());
buf.update_to(actual_buffer);
if request.kind() != kind {
Some(Error::UnsolicitedResponse)
} else {
None
}
}
(None, _) => Some(Error::UnsolicitedResponse),
(_, None) => Some(Error::NotServer), // really should be impossible.
}
}
None => Some(Error::UnknownPeer), // probably only occurs in a race of some kind.
};
if had_req {
let id_guard = IdGuard::new(peers, *peer, req_id);
match maybe_err {
Some(err) => Err(err),
None => Ok(id_guard)
}
} else {
Err(maybe_err.expect("every branch without a request leads to error; qed"))
}
}
/// Handle an LES packet using the given io context.
/// Packet data is _untrusted_, which means that invalid data won't lead to
/// issues.
pub fn handle_packet(&self, io: &IoContext, peer: &PeerId, packet_id: u8, data: &[u8]) {
let rlp = UntrustedRlp::new(data);
trace!(target: "les", "Incoming packet {} from peer {}", packet_id, peer);
// handle the packet
let res = match packet_id {
packet::STATUS => self.status(peer, io, rlp),
packet::ANNOUNCE => self.announcement(peer, io, rlp),
packet::GET_BLOCK_HEADERS => self.get_block_headers(peer, io, rlp),
packet::BLOCK_HEADERS => self.block_headers(peer, io, rlp),
packet::GET_BLOCK_BODIES => self.get_block_bodies(peer, io, rlp),
packet::BLOCK_BODIES => self.block_bodies(peer, io, rlp),
packet::GET_RECEIPTS => self.get_receipts(peer, io, rlp),
packet::RECEIPTS => self.receipts(peer, io, rlp),
packet::GET_PROOFS => self.get_proofs(peer, io, rlp),
packet::PROOFS => self.proofs(peer, io, rlp),
packet::GET_CONTRACT_CODES => self.get_contract_code(peer, io, rlp),
packet::CONTRACT_CODES => self.contract_code(peer, io, rlp),
packet::GET_HEADER_PROOFS => self.get_header_proofs(peer, io, rlp),
packet::HEADER_PROOFS => self.header_proofs(peer, io, rlp),
packet::SEND_TRANSACTIONS => self.relay_transactions(peer, io, rlp),
other => {
Err(Error::UnrecognizedPacket(other))
}
};
if let Err(e) = res {
punish(*peer, io, e);
}
}
// check timeouts and punish peers.
fn timeout_check(&self, io: &IoContext) {
let now = SteadyTime::now();
// handshake timeout
{
let mut pending = self.pending_peers.write();
let slowpokes: Vec<_> = pending.iter()
.filter(|&(_, ref peer)| {
peer.last_update + Duration::milliseconds(timeout::HANDSHAKE) <= now
})
.map(|(&p, _)| p)
.collect();
for slowpoke in slowpokes {
debug!(target: "les", "Peer {} handshake timed out", slowpoke);
pending.remove(&slowpoke);
io.disconnect_peer(slowpoke);
}
}
// request timeouts
{
for (peer_id, peer) in self.peers.read().iter() {
if peer.lock().pending_requests.check_timeout(now) {
debug!(target: "les", "Peer {} request timeout", peer_id);
io.disconnect_peer(*peer_id);
}
}
}
}
/// called when a peer connects.
pub fn on_connect(&self, peer: &PeerId, io: &IoContext) {
let proto_version = match io.protocol_version(*peer).ok_or(Error::WrongNetwork) {
Ok(pv) => pv,
Err(e) => { punish(*peer, io, e); return }
};
if PROTOCOL_VERSIONS.iter().find(|x| **x == proto_version).is_none() {
punish(*peer, io, Error::UnsupportedProtocolVersion(proto_version));
return;
}
let chain_info = self.provider.chain_info();
let status = Status {
head_td: chain_info.total_difficulty,
head_hash: chain_info.best_block_hash,
head_num: chain_info.best_block_number,
genesis_hash: chain_info.genesis_hash,
protocol_version: proto_version as u32, // match peer proto version
network_id: self.network_id,
last_head: None,
};
let capabilities = self.capabilities.read().clone();
let status_packet = status::write_handshake(&status, &capabilities, Some(&self.flow_params));
self.pending_peers.write().insert(*peer, PendingPeer {
sent_head: chain_info.best_block_hash,
last_update: SteadyTime::now(),
});
io.send(*peer, packet::STATUS, status_packet);
}
/// called when a peer disconnects.
pub fn on_disconnect(&self, peer: PeerId, io: &IoContext) {
trace!(target: "les", "Peer {} disconnecting", peer);
self.pending_peers.write().remove(&peer);
let unfulfilled = match self.peers.write().remove(&peer) {
None => return,
Some(peer_info) => {
let peer_info = peer_info.into_inner();
let mut unfulfilled: Vec<_> = peer_info.pending_requests.collect_ids();
unfulfilled.extend(peer_info.failed_requests);
unfulfilled
}
};
for handler in &self.handlers {
handler.on_disconnect(&Ctx {
peer: peer,
io: io,
proto: self,
}, &unfulfilled)
}
}
/// Execute the given closure with a basic context derived from the I/O context.
pub fn with_context(&self, io: &IoContext, f: F) -> T
where F: FnOnce(&BasicContext) -> T
{
f(&TickCtx {
io: io,
proto: self,
})
}
fn tick_handlers(&self, io: &IoContext) {
for handler in &self.handlers {
handler.tick(&TickCtx {
io: io,
proto: self,
})
}
}
}
impl LightProtocol {
// Handle status message from peer.
fn status(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
let pending = match self.pending_peers.write().remove(peer) {
Some(pending) => pending,
None => {
return Err(Error::UnexpectedHandshake);
}
};
let (status, capabilities, flow_params) = status::parse_handshake(data)?;
trace!(target: "les", "Connected peer with chain head {:?}", (status.head_hash, status.head_num));
if (status.network_id, status.genesis_hash) != (self.network_id, self.genesis_hash) {
return Err(Error::WrongNetwork);
}
if Some(status.protocol_version as u8) != io.protocol_version(*peer) {
return Err(Error::BadProtocolVersion);
}
let remote_flow = flow_params.map(|params| (params.create_buffer(), params));
self.peers.write().insert(*peer, Mutex::new(Peer {
local_buffer: self.flow_params.create_buffer(),
status: status.clone(),
capabilities: capabilities.clone(),
remote_flow: remote_flow,
sent_head: pending.sent_head,
last_update: pending.last_update,
pending_requests: RequestSet::default(),
failed_requests: Vec::new(),
}));
for handler in &self.handlers {
handler.on_connect(&Ctx {
peer: *peer,
io: io,
proto: self,
}, &status, &capabilities)
}
Ok(())
}
// Handle an announcement.
fn announcement(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
if !self.peers.read().contains_key(peer) {
debug!(target: "les", "Ignoring announcement from unknown peer");
return Ok(())
}
let announcement = status::parse_announcement(data)?;
// scope to ensure locks are dropped before moving into handler-space.
{
let peers = self.peers.read();
let peer_info = match peers.get(peer) {
Some(info) => info,
None => return Ok(()),
};
let mut peer_info = peer_info.lock();
// update status.
{
// TODO: punish peer if they've moved backwards.
let status = &mut peer_info.status;
let last_head = status.head_hash;
status.head_hash = announcement.head_hash;
status.head_td = announcement.head_td;
status.head_num = announcement.head_num;
status.last_head = Some((last_head, announcement.reorg_depth));
}
// update capabilities.
peer_info.capabilities.update_from(&announcement);
}
for handler in &self.handlers {
handler.on_announcement(&Ctx {
peer: *peer,
io: io,
proto: self,
}, &announcement);
}
Ok(())
}
// Handle a request for block headers.
fn get_block_headers(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_HEADERS: usize = 512;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let req_id: u64 = data.val_at(0)?;
let data = data.at(1)?;
let start_block = {
if data.at(0)?.size() == 32 {
HashOrNumber::Hash(data.val_at(0)?)
} else {
HashOrNumber::Number(data.val_at(0)?)
}
};
let req = request::Headers {
start: start_block,
max: ::std::cmp::min(MAX_HEADERS, data.val_at(1)?),
skip: data.val_at(2)?,
reverse: data.val_at(3)?,
};
let max_cost = peer.deduct_max(&self.flow_params, request::Kind::Headers, req.max)?;
let response = self.provider.block_headers(req);
let actual_cost = self.flow_params.compute_cost(request::Kind::Headers, response.len());
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::BLOCK_HEADERS, {
let mut stream = RlpStream::new_list(3);
stream.append(&req_id).append(&cur_buffer).begin_list(response.len());
for header in response {
stream.append_raw(&header.into_inner(), 1);
}
stream.out()
});
Ok(())
}
// Receive a response for block headers.
fn block_headers(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
let id_guard = self.pre_verify_response(peer, request::Kind::Headers, &raw)?;
let raw_headers: Vec<_> = raw.at(2)?.iter().map(|x| x.as_raw().to_owned()).collect();
let req_id = id_guard.defuse();
for handler in &self.handlers {
handler.on_block_headers(&Ctx {
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_headers);
}
Ok(())
}
// Handle a request for block bodies.
fn get_block_bodies(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_BODIES: usize = 256;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let req_id: u64 = data.val_at(0)?;
let req = request::Bodies {
block_hashes: data.at(1)?.iter()
.take(MAX_BODIES)
.map(|x| x.as_val())
.collect::>()?
};
let max_cost = peer.deduct_max(&self.flow_params, request::Kind::Bodies, req.block_hashes.len())?;
let response = self.provider.block_bodies(req);
let response_len = response.iter().filter(|x| x.is_some()).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::Bodies, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::BLOCK_BODIES, {
let mut stream = RlpStream::new_list(3);
stream.append(&req_id).append(&cur_buffer).begin_list(response.len());
for body in response {
match body {
Some(body) => stream.append_raw(&body.into_inner(), 1),
None => stream.append_empty_data(),
};
}
stream.out()
});
Ok(())
}
// Receive a response for block bodies.
fn block_bodies(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
let id_guard = self.pre_verify_response(peer, request::Kind::Bodies, &raw)?;
let raw_bodies: Vec = raw.at(2)?.iter().map(|x| x.as_raw().to_owned()).collect();
let req_id = id_guard.defuse();
for handler in &self.handlers {
handler.on_block_bodies(&Ctx {
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_bodies);
}
Ok(())
}
// Handle a request for receipts.
fn get_receipts(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_RECEIPTS: usize = 256;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let req_id: u64 = data.val_at(0)?;
let req = request::Receipts {
block_hashes: data.at(1)?.iter()
.take(MAX_RECEIPTS)
.map(|x| x.as_val())
.collect::>()?
};
let max_cost = peer.deduct_max(&self.flow_params, request::Kind::Receipts, req.block_hashes.len())?;
let response = self.provider.receipts(req);
let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::Receipts, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::RECEIPTS, {
let mut stream = RlpStream::new_list(3);
stream.append(&req_id).append(&cur_buffer).begin_list(response.len());
for receipts in response {
stream.append_raw(&receipts, 1);
}
stream.out()
});
Ok(())
}
// Receive a response for receipts.
fn receipts(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
let id_guard = self.pre_verify_response(peer, request::Kind::Receipts, &raw)?;
let raw_receipts: Vec> = raw.at(2)?
.iter()
.map(|x| x.as_val())
.collect::>()?;
let req_id = id_guard.defuse();
for handler in &self.handlers {
handler.on_receipts(&Ctx {
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_receipts);
}
Ok(())
}
// Handle a request for proofs.
fn get_proofs(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_PROOFS: usize = 128;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let req_id: u64 = data.val_at(0)?;
let req = {
let requests: Result, Error> = data.at(1)?.iter().take(MAX_PROOFS).map(|x| {
Ok(request::StateProof {
block: x.val_at(0)?,
key1: x.val_at(1)?,
key2: if x.at(2)?.is_empty() { None } else { Some(x.val_at(2)?) },
from_level: x.val_at(3)?,
})
}).collect();
request::StateProofs {
requests: requests?,
}
};
let max_cost = peer.deduct_max(&self.flow_params, request::Kind::StateProofs, req.requests.len())?;
let response = self.provider.proofs(req);
let response_len = response.iter().filter(|x| &x[..] != &::rlp::EMPTY_LIST_RLP).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::StateProofs, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::PROOFS, {
let mut stream = RlpStream::new_list(3);
stream.append(&req_id).append(&cur_buffer).begin_list(response.len());
for proof in response {
stream.append_raw(&proof, 1);
}
stream.out()
});
Ok(())
}
// Receive a response for proofs.
fn proofs(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
let id_guard = self.pre_verify_response(peer, request::Kind::StateProofs, &raw)?;
let raw_proofs: Vec> = raw.at(2)?.iter()
.map(|x| x.iter().map(|node| node.as_raw().to_owned()).collect())
.collect();
let req_id = id_guard.defuse();
for handler in &self.handlers {
handler.on_state_proofs(&Ctx {
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_proofs);
}
Ok(())
}
// Handle a request for contract code.
fn get_contract_code(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_CODES: usize = 256;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let req_id: u64 = data.val_at(0)?;
let req = {
let requests: Result, Error> = data.at(1)?.iter().take(MAX_CODES).map(|x| {
Ok(request::ContractCode {
block_hash: x.val_at(0)?,
account_key: x.val_at(1)?,
})
}).collect();
request::ContractCodes {
code_requests: requests?,
}
};
let max_cost = peer.deduct_max(&self.flow_params, request::Kind::Codes, req.code_requests.len())?;
let response = self.provider.contract_codes(req);
let response_len = response.iter().filter(|x| !x.is_empty()).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::Codes, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::CONTRACT_CODES, {
let mut stream = RlpStream::new_list(3);
stream.append(&req_id).append(&cur_buffer).begin_list(response.len());
for code in response {
stream.append(&code);
}
stream.out()
});
Ok(())
}
// Receive a response for contract code.
fn contract_code(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
let id_guard = self.pre_verify_response(peer, request::Kind::Codes, &raw)?;
let raw_code: Vec = raw.at(2)?.iter()
.map(|x| x.as_val())
.collect::>()?;
let req_id = id_guard.defuse();
for handler in &self.handlers {
handler.on_code(&Ctx {
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_code);
}
Ok(())
}
// Handle a request for header proofs
fn get_header_proofs(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_PROOFS: usize = 256;
let peers = self.peers.read();
let peer = match peers.get(peer) {
Some(peer) => peer,
None => {
debug!(target: "les", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let req_id: u64 = data.val_at(0)?;
let req = {
let requests: Result, Error> = data.at(1)?.iter().take(MAX_PROOFS).map(|x| {
Ok(request::HeaderProof {
cht_number: x.val_at(0)?,
block_number: x.val_at(1)?,
from_level: x.val_at(2)?,
})
}).collect();
request::HeaderProofs {
requests: requests?,
}
};
let max_cost = peer.deduct_max(&self.flow_params, request::Kind::HeaderProofs, req.requests.len())?;
let response = self.provider.header_proofs(req);
let response_len = response.iter().filter(|x| &x[..] != ::rlp::EMPTY_LIST_RLP).count();
let actual_cost = self.flow_params.compute_cost(request::Kind::HeaderProofs, response_len);
assert!(max_cost >= actual_cost, "Actual cost exceeded maximum computed cost.");
let cur_buffer = peer.refund(&self.flow_params, max_cost - actual_cost);
io.respond(packet::HEADER_PROOFS, {
let mut stream = RlpStream::new_list(3);
stream.append(&req_id).append(&cur_buffer).begin_list(response.len());
for proof in response {
stream.append_raw(&proof, 1);
}
stream.out()
});
Ok(())
}
// Receive a response for header proofs
fn header_proofs(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> {
fn decode_res(raw: UntrustedRlp) -> Result<(Bytes, Vec), ::rlp::DecoderError> {
Ok((
raw.val_at(0)?,
raw.at(1)?.iter().map(|x| x.as_raw().to_owned()).collect(),
))
}
let id_guard = self.pre_verify_response(peer, request::Kind::HeaderProofs, &raw)?;
let raw_proofs: Vec<_> = raw.at(2)?.iter()
.map(decode_res)
.collect::>()?;
let req_id = id_guard.defuse();
for handler in &self.handlers {
handler.on_header_proofs(&Ctx {
peer: *peer,
io: io,
proto: self,
}, req_id, &raw_proofs);
}
Ok(())
}
// Receive a set of transactions to relay.
fn relay_transactions(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> {
const MAX_TRANSACTIONS: usize = 256;
let txs: Vec<_> = data.iter()
.take(MAX_TRANSACTIONS)
.map(|x| x.as_val::())
.collect::>()?;
debug!(target: "les", "Received {} transactions to relay from peer {}", txs.len(), peer);
for handler in &self.handlers {
handler.on_transactions(&Ctx {
peer: *peer,
io: io,
proto: self,
}, &txs);
}
Ok(())
}
}
// if something went wrong, figure out how much to punish the peer.
fn punish(peer: PeerId, io: &IoContext, e: Error) {
match e.punishment() {
Punishment::None => {}
Punishment::Disconnect => {
debug!(target: "les", "Disconnecting peer {}: {}", peer, e);
io.disconnect_peer(peer)
}
Punishment::Disable => {
debug!(target: "les", "Disabling peer {}: {}", peer, e);
io.disable_peer(peer)
}
}
}
impl NetworkProtocolHandler for LightProtocol {
fn initialize(&self, io: &NetworkContext) {
io.register_timer(TIMEOUT, TIMEOUT_INTERVAL_MS)
.expect("Error registering sync timer.");
io.register_timer(TICK_TIMEOUT, TICK_TIMEOUT_INTERVAL_MS)
.expect("Error registering sync timer.");
}
fn read(&self, io: &NetworkContext, peer: &PeerId, packet_id: u8, data: &[u8]) {
self.handle_packet(io, peer, packet_id, data);
}
fn connected(&self, io: &NetworkContext, peer: &PeerId) {
self.on_connect(peer, io);
}
fn disconnected(&self, io: &NetworkContext, peer: &PeerId) {
self.on_disconnect(*peer, io);
}
fn timeout(&self, io: &NetworkContext, timer: TimerToken) {
match timer {
TIMEOUT => self.timeout_check(io),
TICK_TIMEOUT => self.tick_handlers(io),
_ => warn!(target: "les", "received timeout on unknown token {}", timer),
}
}
}
// Helper for encoding the request to RLP with the given ID.
fn encode_request(req: &Request, req_id: usize) -> Vec {
match *req {
Request::Headers(ref headers) => {
let mut stream = RlpStream::new_list(2);
stream.append(&req_id).begin_list(4);
match headers.start {
HashOrNumber::Hash(ref hash) => stream.append(hash),
HashOrNumber::Number(ref num) => stream.append(num),
};
stream
.append(&headers.max)
.append(&headers.skip)
.append(&headers.reverse);
stream.out()
}
Request::Bodies(ref request) => {
let mut stream = RlpStream::new_list(2);
stream.append(&req_id).begin_list(request.block_hashes.len());
for hash in &request.block_hashes {
stream.append(hash);
}
stream.out()
}
Request::Receipts(ref request) => {
let mut stream = RlpStream::new_list(2);
stream.append(&req_id).begin_list(request.block_hashes.len());
for hash in &request.block_hashes {
stream.append(hash);
}
stream.out()
}
Request::StateProofs(ref request) => {
let mut stream = RlpStream::new_list(2);
stream.append(&req_id).begin_list(request.requests.len());
for proof_req in &request.requests {
stream.begin_list(4)
.append(&proof_req.block)
.append(&proof_req.key1);
match proof_req.key2 {
Some(ref key2) => stream.append(key2),
None => stream.append_empty_data(),
};
stream.append(&proof_req.from_level);
}
stream.out()
}
Request::Codes(ref request) => {
let mut stream = RlpStream::new_list(2);
stream.append(&req_id).begin_list(request.code_requests.len());
for code_req in &request.code_requests {
stream.begin_list(2)
.append(&code_req.block_hash)
.append(&code_req.account_key);
}
stream.out()
}
Request::HeaderProofs(ref request) => {
let mut stream = RlpStream::new_list(2);
stream.append(&req_id).begin_list(request.requests.len());
for proof_req in &request.requests {
stream.begin_list(3)
.append(&proof_req.cht_number)
.append(&proof_req.block_number)
.append(&proof_req.from_level);
}
stream.out()
}
}
}