// Copyright 2015, 2016 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Header download state machine. use std::collections::{HashMap, VecDeque}; use std::mem; use ethcore::header::Header; use light::net::{EventContext, ReqId}; use light::request::Headers as HeadersRequest; use network::PeerId; use rlp::{UntrustedRlp, View}; use util::{Bytes, H256, Mutex}; use super::{Error, Peer}; use super::response::{self, Constraint}; // amount of blocks between each scaffold entry. // TODO: move these into paraeters for `RoundStart::new`? const ROUND_SKIP: usize = 255; // amount of scaffold frames: these are the blank spaces in "X___X___X" const ROUND_FRAMES: u64 = 255; // number of attempts to make to get a full scaffold for a sync round. const SCAFFOLD_ATTEMPTS: usize = 3; // A request for headers with a known starting header // and a known parent hash for the last block. struct Request { headers: HeadersRequest, end_parent: H256, } pub struct Fetcher { sparse: Vec
, // sparse header chain. requests: VecDeque, pending: HashMap, } impl Fetcher { // Produce a new fetcher given a sparse headerchain, in ascending order. // The headers must be valid RLP at this point. fn new(sparse_headers: Vec
) -> Self { let mut requests = VecDeque::with_capacity(sparse_headers.len() - 1); for pair in sparse_headers.windows(2) { let low_rung = &pair[0]; let high_rung = &pair[1]; let diff = high_rung.number() - low_rung.number(); if diff < 2 { continue } // these headers are already adjacent. let needed_headers = HeadersRequest { start: high_rung.parent_hash().clone().into(), max: diff as usize - 1, skip: 0, reverse: true, }; requests.push_back(Request { headers: needed_headers, end_parent: low_rung.hash(), }); } Fetcher { sparse: sparse_headers, requests: requests, pending: HashMap::new(), } } fn process_response(self, req_id: ReqId, headers: &[Bytes]) -> (Downloader, Result<(), Error>) { unimplemented!() } } // Round started: get stepped header chain. // from a start block with number X we request 256 headers stepped by 256 from // block X + 1. struct RoundStart { start_block: (u64, H256), pending_req: Option<(ReqId, HeadersRequest)>, sparse_headers: Vec
, attempt: 0, } impl RoundStart { fn new(start: (u64, H256)) -> Self { RoundStart { start_block: start.clone(), pending_req: None, sparse_headers: Vec::new(), } } fn process_response(mut self, req_id: ReqId, headers: &[Bytes]) -> (Downloader, Result<(), Error>) { let req = match self.pending_req.take() { Some((id, req)) if req_id == id { req.clone() } other => { self.pending_req = other; return (self, Ok(())) } }; self.attempt += 1; let headers = match response::decode_and_verify(headers, &req) { Ok(headers) => { self.sparse_headers.extend(headers); if self.sparse_headers.len() == ROUND_FRAMES + 1 || self.attempt >= SCAFFOLD_ATTEMPTS { let fetcher = Fetcher::new(self.sparse_headers); (Downloader::Fetch(fetcher), Ok(())) } } } } } /// Downloader state machine. pub enum Downloader { /// Waiting for peers. Nothing, /// Searching for common block with best chain. SearchCommon, /// Beginning a sync round. RoundStart(RoundStart), /// Fetching intermediate blocks during a sync round. Fetch(Fetcher), } impl Downloader { // Process an answer to a request. Unknown requests will be ignored. fn process_response(self, req_id: ReqId, headers: &[Bytes]) -> (Self, Result<(), Error>) { match self { Downloader::RoundStart(round_start) => round_start.process_response(req_id, headers), Downloader::Fetch(fetcher) => fetcher.process_response(req_id, headers), other => (other, Ok(())), } } // Return unfulfilled requests from disconnected peer. Unknown requests will be ignored. fn requests_abandoned(self, abandoned: &[ReqId]) -> (Self, Result<(), Error>) { } // Dispatch pending requests. The dispatcher provided will attempt to // find a suitable peer to serve the request. // TODO: have dispatcher take capabilities argument? fn dispatch_requests(self, dispatcher: D) -> (Self, Result<(), Error>) where D: Fn(HeadersRequest) -> Option { unimplemented!() } }