// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . use std::collections::{BTreeSet, BTreeMap, VecDeque}; use std::fmt::{Debug, Formatter, Error as FmtError}; use std::time; use std::sync::Arc; use parking_lot::{Condvar, Mutex}; use ethkey::{Public, Secret}; use key_server_cluster::{Error, NodeId, SessionId, KeyStorage, DocumentKeyShare}; use key_server_cluster::math; use key_server_cluster::cluster::Cluster; use key_server_cluster::cluster_sessions::ClusterSession; use key_server_cluster::message::{Message, GenerationMessage, InitializeSession, ConfirmInitialization, CompleteInitialization, KeysDissemination, PublicKeyShare, SessionError, SessionCompleted}; /// Key generation session API. pub trait Session: Send + Sync + 'static { /// Get generation session state. fn state(&self) -> SessionState; /// Wait until session is completed. Returns public portion of generated server key. fn wait(&self, timeout: Option) -> Result; /// Get joint public key (if it is known). fn joint_public_and_secret(&self) -> Option>; } /// Distributed key generation session. /// Based on "ECDKG: A Distributed Key Generation Protocol Based on Elliptic Curve Discrete Logarithm" paper: /// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.4128&rep=rep1&type=pdf /// Brief overview: /// 1) initialization: master node (which has received request for generating joint public + secret) initializes the session on all other nodes /// 2) key dissemination (KD): all nodes are generating secret + public values and send these to appropriate nodes /// 3) key verification (KV): all nodes are checking values, received for other nodes /// 4) key generation phase (KG): nodes are exchanging with information, enough to generate joint public key pub struct SessionImpl { /// Unique session id. id: SessionId, /// Public identifier of this node. self_node_id: NodeId, /// Key storage. key_storage: Option>, /// Cluster which allows this node to send messages to other nodes in the cluster. cluster: Arc, /// SessionImpl completion condvar. completed: Condvar, /// Mutable session data. data: Mutex, } /// SessionImpl creation parameters pub struct SessionParams { /// SessionImpl identifier. pub id: SessionId, /// Id of node, on which this session is running. pub self_node_id: Public, /// Key storage. pub key_storage: Option>, /// Cluster pub cluster: Arc, } #[derive(Debug)] /// Mutable data of distributed key generation session. struct SessionData { /// Current state of the session. state: SessionState, /// Simulate faulty behaviour? simulate_faulty_behaviour: bool, // === Values, filled when session initialization just starts === /// Reference to the node, which has started this session. master: Option, /// Public key of the creator of the session. author: Option, // === Values, filled when session initialization is completed === /// Threshold value for this DKG. Only `threshold + 1` will be able to collectively recreate joint secret, /// and thus - decrypt message, encrypted with joint public. threshold: Option, /// Random point, jointly generated by every node in the cluster. derived_point: Option, /// Nodes-specific data. nodes: BTreeMap, // === Values, filled during KD phase === /// Value of polynom1[0], generated by this node. secret_coeff: Option, // === Values, filled during KG phase === /// Secret share, which this node holds. Persistent + private. secret_share: Option, /// === Values, filled when DKG session is completed successfully === /// Key share. key_share: Option>, /// Jointly generated public key, which can be used to encrypt secret. Public. joint_public_and_secret: Option>, } #[derive(Debug, Clone)] /// Mutable node-specific data. struct NodeData { /// Random unique scalar. Persistent. pub id_number: Secret, // === Values, filled during KD phase === /// Secret value1, which has been sent to this node. pub secret1_sent: Option, /// Secret value2, which has been sent to this node. pub secret2_sent: Option, /// Secret value1, which has been received from this node. pub secret1: Option, /// Secret value2, which has been received from this node. pub secret2: Option, /// Public values, which have been received from this node. pub publics: Option>, // === Values, filled during KG phase === /// Public share, which has been received from this node. pub public_share: Option, // === Values, filled during completion phase === /// Flags marking that node has confirmed session completion (generated key is stored). pub completion_confirmed: bool, } #[derive(Debug, Clone, PartialEq)] /// Schedule for visiting other nodes of cluster. pub struct EveryOtherNodeVisitor { /// Already visited nodes. visited: BTreeSet, /// Not yet visited nodes. unvisited: VecDeque, /// Nodes, which are currently visited. in_progress: BTreeSet, } #[derive(Debug, Clone, PartialEq)] /// Distributed key generation session state. pub enum SessionState { // === Initialization states === /// Every node starts in this state. WaitingForInitialization, /// Master node asks every other node to confirm initialization. /// Derived point is generated by all nodes in the cluster. WaitingForInitializationConfirm(EveryOtherNodeVisitor), /// Slave nodes are in this state until initialization completion is reported by master node. WaitingForInitializationComplete, // === KD phase states === /// Node is waiting for generated keys from every other node. WaitingForKeysDissemination, // === KG phase states === /// Node is waiting for joint public key share to be received from every other node. WaitingForPublicKeyShare, // === Generation phase states === /// Node is waiting for session completion/session completion confirmation. WaitingForGenerationConfirmation, // === Final states of the session === /// Joint public key generation is completed. Finished, /// Joint public key generation is failed. Failed, } impl SessionImpl { /// Create new generation session. pub fn new(params: SessionParams) -> Self { SessionImpl { id: params.id, self_node_id: params.self_node_id, key_storage: params.key_storage, cluster: params.cluster, completed: Condvar::new(), data: Mutex::new(SessionData { state: SessionState::WaitingForInitialization, simulate_faulty_behaviour: false, master: None, author: None, threshold: None, derived_point: None, nodes: BTreeMap::new(), secret_coeff: None, secret_share: None, key_share: None, joint_public_and_secret: None, }), } } /// Get this node Id. pub fn node(&self) -> &NodeId { &self.self_node_id } #[cfg(test)] /// Get derived point. pub fn derived_point(&self) -> Option { self.data.lock().derived_point.clone() } /// Simulate faulty generation session behaviour. pub fn simulate_faulty_behaviour(&self) { self.data.lock().simulate_faulty_behaviour = true; } /// Start new session initialization. This must be called on master node. pub fn initialize(&self, author: Public, threshold: usize, nodes: BTreeSet) -> Result<(), Error> { check_cluster_nodes(self.node(), &nodes)?; check_threshold(threshold, &nodes)?; let mut data = self.data.lock(); // check state if data.state != SessionState::WaitingForInitialization { return Err(Error::InvalidStateForRequest); } // update state data.master = Some(self.node().clone()); data.author = Some(author.clone()); data.threshold = Some(threshold); for node_id in &nodes { // generate node identification parameter let node_id_number = math::generate_random_scalar()?; data.nodes.insert(node_id.clone(), NodeData::with_id_number(node_id_number)); } let mut visit_policy = EveryOtherNodeVisitor::new(self.node(), data.nodes.keys().cloned()); let derived_point = math::generate_random_point()?; match visit_policy.next_node() { Some(next_node) => { data.state = SessionState::WaitingForInitializationConfirm(visit_policy); // start initialization self.cluster.send(&next_node, Message::Generation(GenerationMessage::InitializeSession(InitializeSession { session: self.id.clone().into(), author: author.into(), nodes: data.nodes.iter().map(|(k, v)| (k.clone().into(), v.id_number.clone().into())).collect(), threshold: data.threshold.expect("threshold is filled in initialization phase; KD phase follows initialization phase; qed"), derived_point: derived_point.into(), }))) }, None => { drop(data); self.complete_initialization(derived_point)?; self.disseminate_keys()?; self.verify_keys()?; self.complete_generation() } } } /// Process single message. pub fn process_message(&self, sender: &NodeId, message: &GenerationMessage) -> Result<(), Error> { match message { &GenerationMessage::InitializeSession(ref message) => self.on_initialize_session(sender.clone(), message), &GenerationMessage::ConfirmInitialization(ref message) => self.on_confirm_initialization(sender.clone(), message), &GenerationMessage::CompleteInitialization(ref message) => self.on_complete_initialization(sender.clone(), message), &GenerationMessage::KeysDissemination(ref message) => self.on_keys_dissemination(sender.clone(), message), &GenerationMessage::PublicKeyShare(ref message) => self.on_public_key_share(sender.clone(), message), &GenerationMessage::SessionError(ref message) => self.on_session_error(sender.clone(), message), &GenerationMessage::SessionCompleted(ref message) => self.on_session_completed(sender.clone(), message), } } /// When session initialization message is received. pub fn on_initialize_session(&self, sender: NodeId, message: &InitializeSession) -> Result<(), Error> { debug_assert!(self.id == *message.session); debug_assert!(&sender != self.node()); // check message let nodes_ids = message.nodes.keys().cloned().map(Into::into).collect(); check_threshold(message.threshold, &nodes_ids)?; check_cluster_nodes(self.node(), &nodes_ids)?; let mut data = self.data.lock(); // check state if data.state != SessionState::WaitingForInitialization { return Err(Error::InvalidStateForRequest); } // update derived point with random scalar let mut derived_point = message.derived_point.clone().into(); math::update_random_point(&mut derived_point)?; // send confirmation back to master node self.cluster.send(&sender, Message::Generation(GenerationMessage::ConfirmInitialization(ConfirmInitialization { session: self.id.clone().into(), derived_point: derived_point.into(), })))?; // update state data.master = Some(sender); data.author = Some(message.author.clone().into()); data.state = SessionState::WaitingForInitializationComplete; data.nodes = message.nodes.iter().map(|(id, number)| (id.clone().into(), NodeData::with_id_number(number.clone().into()))).collect(); data.threshold = Some(message.threshold); Ok(()) } /// When session initialization confirmation message is reeived. pub fn on_confirm_initialization(&self, sender: NodeId, message: &ConfirmInitialization) -> Result<(), Error> { debug_assert!(self.id == *message.session); debug_assert!(&sender != self.node()); let mut data = self.data.lock(); debug_assert!(data.nodes.contains_key(&sender)); // check state && select new node to be initialized let next_receiver = match data.state { SessionState::WaitingForInitializationConfirm(ref mut visit_policy) => { if !visit_policy.mark_visited(&sender) { return Err(Error::InvalidStateForRequest); } visit_policy.next_node() }, _ => return Err(Error::InvalidStateForRequest), }; // proceed message if let Some(next_receiver) = next_receiver { return self.cluster.send(&next_receiver, Message::Generation(GenerationMessage::InitializeSession(InitializeSession { session: self.id.clone().into(), author: data.author.as_ref().expect("author is filled on initialization step; confrm initialization follows initialization; qed").clone().into(), nodes: data.nodes.iter().map(|(k, v)| (k.clone().into(), v.id_number.clone().into())).collect(), threshold: data.threshold.expect("threshold is filled in initialization phase; KD phase follows initialization phase; qed"), derived_point: message.derived_point.clone().into(), }))); } // now it is time for keys dissemination (KD) phase drop(data); self.complete_initialization(message.derived_point.clone().into())?; self.disseminate_keys() } /// When session initialization completion message is received. pub fn on_complete_initialization(&self, sender: NodeId, message: &CompleteInitialization) -> Result<(), Error> { debug_assert!(self.id == *message.session); debug_assert!(&sender != self.node()); let mut data = self.data.lock(); // check state if data.state != SessionState::WaitingForInitializationComplete { return Err(Error::InvalidStateForRequest); } if data.master != Some(sender) { return Err(Error::InvalidMessage); } // remember passed data data.derived_point = Some(message.derived_point.clone().into()); // now it is time for keys dissemination (KD) phase drop(data); self.disseminate_keys() } /// When keys dissemination message is received. pub fn on_keys_dissemination(&self, sender: NodeId, message: &KeysDissemination) -> Result<(), Error> { debug_assert!(self.id == *message.session); debug_assert!(&sender != self.node()); let mut data = self.data.lock(); // simulate failure, if required if data.simulate_faulty_behaviour { return Err(Error::Io("simulated error".into())); } // check state if data.state != SessionState::WaitingForKeysDissemination { match data.state { SessionState::WaitingForInitializationComplete => return Err(Error::TooEarlyForRequest), _ => return Err(Error::InvalidStateForRequest), } } debug_assert!(data.nodes.contains_key(&sender)); // check message let threshold = data.threshold.expect("threshold is filled in initialization phase; KD phase follows initialization phase; qed"); if message.publics.len() != threshold + 1 { return Err(Error::InvalidMessage); } // update node data { let node_data = data.nodes.get_mut(&sender).ok_or(Error::InvalidMessage)?; if node_data.secret1.is_some() || node_data.secret2.is_some() || node_data.publics.is_some() { return Err(Error::InvalidStateForRequest); } node_data.secret1 = Some(message.secret1.clone().into()); node_data.secret2 = Some(message.secret2.clone().into()); node_data.publics = Some(message.publics.iter().cloned().map(Into::into).collect()); } // check if we have received keys from every other node if data.nodes.iter().any(|(node_id, node_data)| node_id != self.node() && (node_data.publics.is_none() || node_data.secret1.is_none() || node_data.secret2.is_none())) { return Ok(()) } drop(data); self.verify_keys() } /// When public key share is received. pub fn on_public_key_share(&self, sender: NodeId, message: &PublicKeyShare) -> Result<(), Error> { let mut data = self.data.lock(); // check state if data.state != SessionState::WaitingForPublicKeyShare { match data.state { SessionState::WaitingForInitializationComplete | SessionState::WaitingForKeysDissemination => return Err(Error::TooEarlyForRequest), _ => return Err(Error::InvalidStateForRequest), } } // update node data with received public share { let node_data = &mut data.nodes.get_mut(&sender).ok_or(Error::InvalidMessage)?; if node_data.public_share.is_some() { return Err(Error::InvalidMessage); } node_data.public_share = Some(message.public_share.clone().into()); } // if there's also nodes, which has not sent us their public shares - do nothing if data.nodes.iter().any(|(node_id, node_data)| node_id != self.node() && node_data.public_share.is_none()) { return Ok(()); } drop(data); self.complete_generation() } /// When session completion message is received. pub fn on_session_completed(&self, sender: NodeId, message: &SessionCompleted) -> Result<(), Error> { debug_assert!(self.id == *message.session); debug_assert!(&sender != self.node()); let mut data = self.data.lock(); debug_assert!(data.nodes.contains_key(&sender)); // check state if data.state != SessionState::WaitingForGenerationConfirmation { match data.state { SessionState::WaitingForPublicKeyShare => return Err(Error::TooEarlyForRequest), _ => return Err(Error::InvalidStateForRequest), } } // if we are not masters, save result and respond with confirmation if data.master.as_ref() != Some(self.node()) { // check that we have received message from master if data.master.as_ref() != Some(&sender) { return Err(Error::InvalidMessage); } // save encrypted data to key storage let encrypted_data = DocumentKeyShare { author: data.author.as_ref().expect("author is filled in initialization phase; KG phase follows initialization phase; qed").clone(), threshold: data.threshold.expect("threshold is filled in initialization phase; KG phase follows initialization phase; qed"), id_numbers: data.nodes.iter().map(|(node_id, node_data)| (node_id.clone(), node_data.id_number.clone())).collect(), secret_share: data.secret_share.as_ref().expect("secret_share is filled in KG phase; we are at the end of KG phase; qed").clone(), common_point: None, encrypted_point: None, }; if let Some(ref key_storage) = self.key_storage { key_storage.insert(self.id.clone(), encrypted_data.clone()) .map_err(|e| Error::KeyStorage(e.into()))?; } // then respond with confirmation data.state = SessionState::Finished; return self.cluster.send(&sender, Message::Generation(GenerationMessage::SessionCompleted(SessionCompleted { session: self.id.clone().into(), }))); } // remember that we have received confirmation from sender node { let sender_node = data.nodes.get_mut(&sender).expect("node is always qualified by himself; qed"); if sender_node.completion_confirmed { return Err(Error::InvalidMessage); } sender_node.completion_confirmed = true; } // check if we have received confirmations from all cluster nodes if data.nodes.iter().any(|(_, node_data)| !node_data.completion_confirmed) { return Ok(()) } // we have received enough confirmations => complete session data.state = SessionState::Finished; self.completed.notify_all(); Ok(()) } /// When error has occured on another node. pub fn on_session_error(&self, sender: NodeId, message: &SessionError) -> Result<(), Error> { let mut data = self.data.lock(); warn!("{}: generation session failed with error: {} from {}", self.node(), message.error, sender); data.state = SessionState::Failed; data.key_share = Some(Err(Error::Io(message.error.clone()))); data.joint_public_and_secret = Some(Err(Error::Io(message.error.clone()))); self.completed.notify_all(); Ok(()) } /// Complete initialization (when all other nodex has responded with confirmation) fn complete_initialization(&self, mut derived_point: Public) -> Result<(), Error> { // update point once again to make sure that derived point is not generated by last node math::update_random_point(&mut derived_point)?; // remember derived point let mut data = self.data.lock(); data.derived_point = Some(derived_point.clone().into()); // broadcast derived point && other session paraeters to every other node self.cluster.broadcast(Message::Generation(GenerationMessage::CompleteInitialization(CompleteInitialization { session: self.id.clone().into(), derived_point: derived_point.into(), }))) } /// Keys dissemination (KD) phase fn disseminate_keys(&self) -> Result<(), Error> { let mut data = self.data.lock(); // pick 2t + 2 random numbers as polynomial coefficients for 2 polynoms let threshold = data.threshold.expect("threshold is filled on initialization phase; KD phase follows initialization phase; qed"); let polynom1 = math::generate_random_polynom(threshold)?; let polynom2 = math::generate_random_polynom(threshold)?; data.secret_coeff = Some(polynom1[0].clone()); // compute t+1 public values let publics = math::public_values_generation(threshold, data.derived_point.as_ref().expect("keys dissemination occurs after derived point is agreed; qed"), &polynom1, &polynom2)?; // compute secret values for every other node for (node, node_data) in data.nodes.iter_mut() { let secret1 = math::compute_polynom(&polynom1, &node_data.id_number)?; let secret2 = math::compute_polynom(&polynom2, &node_data.id_number)?; // send a message containing secret1 && secret2 to other node if node != self.node() { node_data.secret1_sent = Some(secret1.clone()); node_data.secret2_sent = Some(secret2.clone()); self.cluster.send(&node, Message::Generation(GenerationMessage::KeysDissemination(KeysDissemination { session: self.id.clone().into(), secret1: secret1.into(), secret2: secret2.into(), publics: publics.iter().cloned().map(Into::into).collect(), })))?; } else { node_data.secret1 = Some(secret1); node_data.secret2 = Some(secret2); node_data.publics = Some(publics.clone()); } } // update state data.state = SessionState::WaitingForKeysDissemination; Ok(()) } /// Keys verification (KV) phase fn verify_keys(&self) -> Result<(), Error> { let mut data = self.data.lock(); // key verification (KV) phase: check that other nodes have passed correct secrets let threshold = data.threshold.expect("threshold is filled in initialization phase; KV phase follows initialization phase; qed"); let derived_point = data.derived_point.clone().expect("derived point generated on initialization phase; KV phase follows initialization phase; qed"); let number_id = data.nodes[self.node()].id_number.clone(); for (_ , node_data) in data.nodes.iter_mut().filter(|&(node_id, _)| node_id != self.node()) { let secret1 = node_data.secret1.as_ref().expect("keys received on KD phase; KV phase follows KD phase; qed"); let secret2 = node_data.secret2.as_ref().expect("keys received on KD phase; KV phase follows KD phase; qed"); let publics = node_data.publics.as_ref().expect("keys received on KD phase; KV phase follows KD phase; qed"); let is_key_verification_ok = math::keys_verification(threshold, &derived_point, &number_id, secret1, secret2, publics)?; if !is_key_verification_ok { // node has sent us incorrect values. In original ECDKG protocol we should have sent complaint here. return Err(Error::InvalidMessage); } } // calculate public share let self_public_share = { let self_secret_coeff = data.secret_coeff.as_ref().expect("secret_coeff is generated on KD phase; KG phase follows KD phase; qed"); math::compute_public_share(self_secret_coeff)? }; // calculate self secret + public shares let self_secret_share = { let secret_values_iter = data.nodes.values() .map(|n| n.secret1.as_ref().expect("keys received on KD phase; KG phase follows KD phase; qed")); math::compute_secret_share(secret_values_iter)? }; // update state data.state = SessionState::WaitingForPublicKeyShare; data.secret_share = Some(self_secret_share); let self_node = data.nodes.get_mut(self.node()).expect("node is always qualified by himself; qed"); self_node.public_share = Some(self_public_share.clone()); // broadcast self public key share self.cluster.broadcast(Message::Generation(GenerationMessage::PublicKeyShare(PublicKeyShare { session: self.id.clone().into(), public_share: self_public_share.into(), }))) } /// Complete generation fn complete_generation(&self) -> Result<(), Error> { let mut data = self.data.lock(); // else - calculate joint public key let joint_public = { let public_shares = data.nodes.values().map(|n| n.public_share.as_ref().expect("keys received on KD phase; KG phase follows KD phase; qed")); math::compute_joint_public(public_shares)? }; // prepare key data let encrypted_data = DocumentKeyShare { author: data.author.as_ref().expect("author is filled in initialization phase; KG phase follows initialization phase; qed").clone(), threshold: data.threshold.expect("threshold is filled in initialization phase; KG phase follows initialization phase; qed"), id_numbers: data.nodes.iter().map(|(node_id, node_data)| (node_id.clone(), node_data.id_number.clone())).collect(), secret_share: data.secret_share.as_ref().expect("secret_share is filled in KG phase; we are at the end of KG phase; qed").clone(), common_point: None, encrypted_point: None, }; // if we are at the slave node - wait for session completion let secret_coeff = data.secret_coeff.as_ref().expect("secret coeff is selected on initialization phase; current phase follows initialization; qed").clone(); if data.master.as_ref() != Some(self.node()) { data.key_share = Some(Ok(encrypted_data)); data.joint_public_and_secret = Some(Ok((joint_public, secret_coeff))); data.state = SessionState::WaitingForGenerationConfirmation; return Ok(()); } // then save encrypted data to the key storage if let Some(ref key_storage) = self.key_storage { key_storage.insert(self.id.clone(), encrypted_data.clone()) .map_err(|e| Error::KeyStorage(e.into()))?; } // then distribute encrypted data to every other node self.cluster.broadcast(Message::Generation(GenerationMessage::SessionCompleted(SessionCompleted { session: self.id.clone().into(), })))?; // then wait for confirmation from all other nodes { let self_node = data.nodes.get_mut(self.node()).expect("node is always qualified by himself; qed"); self_node.completion_confirmed = true; } data.key_share = Some(Ok(encrypted_data)); data.joint_public_and_secret = Some(Ok((joint_public, secret_coeff))); data.state = SessionState::WaitingForGenerationConfirmation; Ok(()) } } impl ClusterSession for SessionImpl { fn is_finished(&self) -> bool { let data = self.data.lock(); data.state == SessionState::Failed || data.state == SessionState::Finished } fn on_node_timeout(&self, node: &NodeId) { let mut data = self.data.lock(); // all nodes are required for generation session // => fail without check warn!("{}: generation session failed because {} connection has timeouted", self.node(), node); data.state = SessionState::Failed; data.key_share = Some(Err(Error::NodeDisconnected)); data.joint_public_and_secret = Some(Err(Error::NodeDisconnected)); self.completed.notify_all(); } fn on_session_timeout(&self) { let mut data = self.data.lock(); warn!("{}: generation session failed with timeout", self.node()); data.state = SessionState::Failed; data.key_share = Some(Err(Error::NodeDisconnected)); data.joint_public_and_secret = Some(Err(Error::NodeDisconnected)); self.completed.notify_all(); } } impl Session for SessionImpl { fn state(&self) -> SessionState { self.data.lock().state.clone() } fn wait(&self, timeout: Option) -> Result { let mut data = self.data.lock(); if !data.joint_public_and_secret.is_some() { match timeout { None => self.completed.wait(&mut data), Some(timeout) => { self.completed.wait_for(&mut data, timeout); }, } } data.joint_public_and_secret.clone() .expect("checked above or waited for completed; completed is only signaled when joint_public.is_some(); qed") .map(|p| p.0) } fn joint_public_and_secret(&self) -> Option> { self.data.lock().joint_public_and_secret.clone() } } impl EveryOtherNodeVisitor { pub fn new(self_id: &NodeId, nodes: I) -> Self where I: Iterator { EveryOtherNodeVisitor { visited: BTreeSet::new(), unvisited: nodes.filter(|n| n != self_id).collect(), in_progress: BTreeSet::new(), } } pub fn next_node(&mut self) -> Option { let next_node = self.unvisited.pop_front(); if let Some(ref next_node) = next_node { self.in_progress.insert(next_node.clone()); } next_node } pub fn mark_visited(&mut self, node: &NodeId) -> bool { if !self.in_progress.remove(node) { return false; } self.visited.insert(node.clone()) } } impl NodeData { fn with_id_number(node_id_number: Secret) -> Self { NodeData { id_number: node_id_number, secret1_sent: None, secret2_sent: None, secret1: None, secret2: None, publics: None, public_share: None, completion_confirmed: false, } } } impl Debug for SessionImpl { fn fmt(&self, f: &mut Formatter) -> Result<(), FmtError> { write!(f, "Generation session {} on {}", self.id, self.self_node_id) } } pub fn check_cluster_nodes(self_node_id: &NodeId, nodes: &BTreeSet) -> Result<(), Error> { // at least two nodes must be in cluster if nodes.len() < 1 { return Err(Error::InvalidNodesCount); } // this node must be a part of cluster if !nodes.contains(self_node_id) { return Err(Error::InvalidNodesConfiguration); } Ok(()) } pub fn check_threshold(threshold: usize, nodes: &BTreeSet) -> Result<(), Error> { // at least threshold + 1 nodes are required to collectively decrypt message if threshold >= nodes.len() { return Err(Error::InvalidThreshold); } Ok(()) } #[cfg(test)] pub mod tests { use std::time; use std::sync::Arc; use std::collections::{BTreeSet, BTreeMap, VecDeque}; use tokio_core::reactor::Core; use ethkey::{Random, Generator, Public}; use key_server_cluster::{NodeId, SessionId, Error, DummyKeyStorage}; use key_server_cluster::message::{self, Message, GenerationMessage}; use key_server_cluster::cluster::tests::{DummyCluster, make_clusters, run_clusters, loop_until, all_connections_established}; use key_server_cluster::cluster_sessions::ClusterSession; use key_server_cluster::generation_session::{Session, SessionImpl, SessionState, SessionParams}; use key_server_cluster::math; use key_server_cluster::math::tests::do_encryption_and_decryption; pub struct Node { pub cluster: Arc, pub key_storage: Arc, pub session: SessionImpl, } pub struct MessageLoop { pub session_id: SessionId, pub nodes: BTreeMap, pub queue: VecDeque<(NodeId, NodeId, Message)>, } impl MessageLoop { pub fn new(nodes_num: usize) -> Self { let mut nodes = BTreeMap::new(); let session_id = SessionId::default(); for _ in 0..nodes_num { let key_pair = Random.generate().unwrap(); let node_id = key_pair.public().clone(); let cluster = Arc::new(DummyCluster::new(node_id.clone())); let key_storage = Arc::new(DummyKeyStorage::default()); let session = SessionImpl::new(SessionParams { id: session_id.clone(), self_node_id: node_id.clone(), key_storage: Some(key_storage.clone()), cluster: cluster.clone(), }); nodes.insert(node_id, Node { cluster: cluster, key_storage: key_storage, session: session }); } let nodes_ids: Vec<_> = nodes.keys().cloned().collect(); for node in nodes.values() { for node_id in &nodes_ids { node.cluster.add_node(node_id.clone()); } } MessageLoop { session_id: session_id, nodes: nodes, queue: VecDeque::new(), } } pub fn master(&self) -> &SessionImpl { &self.nodes.values().nth(0).unwrap().session } pub fn first_slave(&self) -> &SessionImpl { &self.nodes.values().nth(1).unwrap().session } pub fn second_slave(&self) -> &SessionImpl { &self.nodes.values().nth(2).unwrap().session } pub fn take_message(&mut self) -> Option<(NodeId, NodeId, Message)> { self.nodes.values() .filter_map(|n| n.cluster.take_message().map(|m| (n.session.node().clone(), m.0, m.1))) .nth(0) .or_else(|| self.queue.pop_front()) } pub fn process_message(&mut self, msg: (NodeId, NodeId, Message)) -> Result<(), Error> { match { match msg.2 { Message::Generation(GenerationMessage::InitializeSession(ref message)) => self.nodes[&msg.1].session.on_initialize_session(msg.0.clone(), &message), Message::Generation(GenerationMessage::ConfirmInitialization(ref message)) => self.nodes[&msg.1].session.on_confirm_initialization(msg.0.clone(), &message), Message::Generation(GenerationMessage::CompleteInitialization(ref message)) => self.nodes[&msg.1].session.on_complete_initialization(msg.0.clone(), &message), Message::Generation(GenerationMessage::KeysDissemination(ref message)) => self.nodes[&msg.1].session.on_keys_dissemination(msg.0.clone(), &message), Message::Generation(GenerationMessage::PublicKeyShare(ref message)) => self.nodes[&msg.1].session.on_public_key_share(msg.0.clone(), &message), Message::Generation(GenerationMessage::SessionCompleted(ref message)) => self.nodes[&msg.1].session.on_session_completed(msg.0.clone(), &message), _ => panic!("unexpected"), } } { Ok(_) => Ok(()), Err(Error::TooEarlyForRequest) => { self.queue.push_back(msg); Ok(()) }, Err(err) => Err(err), } } pub fn take_and_process_message(&mut self) -> Result<(), Error> { let msg = self.take_message().unwrap(); self.process_message(msg) } } fn make_simple_cluster(threshold: usize, num_nodes: usize) -> Result<(SessionId, NodeId, NodeId, MessageLoop), Error> { let l = MessageLoop::new(num_nodes); l.master().initialize(Public::default(), threshold, l.nodes.keys().cloned().collect())?; let session_id = l.session_id.clone(); let master_id = l.master().node().clone(); let slave_id = l.first_slave().node().clone(); Ok((session_id, master_id, slave_id, l)) } #[test] fn initializes_in_cluster_of_single_node() { let l = MessageLoop::new(1); assert!(l.master().initialize(Public::default(), 0, l.nodes.keys().cloned().collect()).is_ok()); } #[test] fn fails_to_initialize_if_not_a_part_of_cluster() { let node_id = math::generate_random_point().unwrap(); let cluster = Arc::new(DummyCluster::new(node_id.clone())); let session = SessionImpl::new(SessionParams { id: SessionId::default(), self_node_id: node_id.clone(), key_storage: Some(Arc::new(DummyKeyStorage::default())), cluster: cluster, }); let cluster_nodes: BTreeSet<_> = (0..2).map(|_| math::generate_random_point().unwrap()).collect(); assert_eq!(session.initialize(Public::default(), 0, cluster_nodes).unwrap_err(), Error::InvalidNodesConfiguration); } #[test] fn fails_to_initialize_if_threshold_is_wrong() { match make_simple_cluster(2, 2) { Err(Error::InvalidThreshold) => (), _ => panic!("unexpected"), } } #[test] fn fails_to_initialize_when_already_initialized() { let (_, _, _, l) = make_simple_cluster(0, 2).unwrap(); assert_eq!(l.master().initialize(Public::default(), 0, l.nodes.keys().cloned().collect()).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn fails_to_accept_initialization_when_already_initialized() { let (_, _, _, mut l) = make_simple_cluster(0, 2).unwrap(); let message = l.take_message().unwrap(); l.process_message(message.clone()).unwrap(); assert_eq!(l.process_message(message.clone()).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn slave_updates_derived_point_on_initialization() { let (_, _, _, mut l) = make_simple_cluster(0, 2).unwrap(); let passed_point = match l.take_message().unwrap() { (f, t, Message::Generation(GenerationMessage::InitializeSession(message))) => { let point = message.derived_point.clone(); l.process_message((f, t, Message::Generation(GenerationMessage::InitializeSession(message)))).unwrap(); point }, _ => panic!("unexpected"), }; match l.take_message().unwrap() { (_, _, Message::Generation(GenerationMessage::ConfirmInitialization(message))) => assert!(passed_point != message.derived_point), _ => panic!("unexpected"), } } #[test] fn fails_to_accept_initialization_confirmation_if_already_accepted_from_the_same_node() { let (sid, _, s, mut l) = make_simple_cluster(0, 3).unwrap(); l.take_and_process_message().unwrap(); l.take_and_process_message().unwrap(); l.take_and_process_message().unwrap(); assert_eq!(l.master().on_confirm_initialization(s, &message::ConfirmInitialization { session: sid.into(), derived_point: math::generate_random_point().unwrap().into(), }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn fails_to_accept_initialization_confirmation_if_initialization_already_completed() { let (sid, _, s, mut l) = make_simple_cluster(0, 2).unwrap(); l.take_and_process_message().unwrap(); l.take_and_process_message().unwrap(); assert_eq!(l.master().on_confirm_initialization(s, &message::ConfirmInitialization { session: sid.into(), derived_point: math::generate_random_point().unwrap().into(), }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn master_updates_derived_point_on_initialization_completion() { let (_, _, _, mut l) = make_simple_cluster(0, 2).unwrap(); l.take_and_process_message().unwrap(); let passed_point = match l.take_message().unwrap() { (f, t, Message::Generation(GenerationMessage::ConfirmInitialization(message))) => { let point = message.derived_point.clone(); l.process_message((f, t, Message::Generation(GenerationMessage::ConfirmInitialization(message)))).unwrap(); point }, _ => panic!("unexpected"), }; assert!(l.master().derived_point().unwrap() != passed_point.into()); } #[test] fn fails_to_complete_initialization_if_not_a_part_of_cluster() { let (sid, m, _, l) = make_simple_cluster(0, 2).unwrap(); let mut nodes = BTreeMap::new(); nodes.insert(m, math::generate_random_scalar().unwrap()); nodes.insert(math::generate_random_point().unwrap(), math::generate_random_scalar().unwrap()); assert_eq!(l.first_slave().on_initialize_session(m, &message::InitializeSession { session: sid.into(), author: Public::default().into(), nodes: nodes.into_iter().map(|(k, v)| (k.into(), v.into())).collect(), threshold: 0, derived_point: math::generate_random_point().unwrap().into(), }).unwrap_err(), Error::InvalidNodesConfiguration); } #[test] fn fails_to_complete_initialization_if_threshold_is_wrong() { let (sid, m, s, l) = make_simple_cluster(0, 2).unwrap(); let mut nodes = BTreeMap::new(); nodes.insert(m, math::generate_random_scalar().unwrap()); nodes.insert(s, math::generate_random_scalar().unwrap()); assert_eq!(l.first_slave().on_initialize_session(m, &message::InitializeSession { session: sid.into(), author: Public::default().into(), nodes: nodes.into_iter().map(|(k, v)| (k.into(), v.into())).collect(), threshold: 2, derived_point: math::generate_random_point().unwrap().into(), }).unwrap_err(), Error::InvalidThreshold); } #[test] fn fails_to_complete_initialization_if_not_waiting_for_it() { let (sid, m, _, l) = make_simple_cluster(0, 2).unwrap(); assert_eq!(l.first_slave().on_complete_initialization(m, &message::CompleteInitialization { session: sid.into(), derived_point: math::generate_random_point().unwrap().into(), }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn fails_to_complete_initialization_from_non_master_node() { let (sid, _, _, mut l) = make_simple_cluster(0, 3).unwrap(); l.take_and_process_message().unwrap(); l.take_and_process_message().unwrap(); l.take_and_process_message().unwrap(); l.take_and_process_message().unwrap(); assert_eq!(l.first_slave().on_complete_initialization(l.second_slave().node().clone(), &message::CompleteInitialization { session: sid.into(), derived_point: math::generate_random_point().unwrap().into(), }).unwrap_err(), Error::InvalidMessage); } #[test] fn fails_to_accept_keys_dissemination_if_not_waiting_for_it() { let (sid, _, s, l) = make_simple_cluster(0, 2).unwrap(); assert_eq!(l.master().on_keys_dissemination(s, &message::KeysDissemination { session: sid.into(), secret1: math::generate_random_scalar().unwrap().into(), secret2: math::generate_random_scalar().unwrap().into(), publics: vec![math::generate_random_point().unwrap().into()], }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn fails_to_accept_keys_dissemination_if_wrong_number_of_publics_passed() { let (sid, m, _, mut l) = make_simple_cluster(0, 3).unwrap(); l.take_and_process_message().unwrap(); // m -> s1: InitializeSession l.take_and_process_message().unwrap(); // m -> s2: InitializeSession l.take_and_process_message().unwrap(); // s1 -> m: ConfirmInitialization l.take_and_process_message().unwrap(); // s2 -> m: ConfirmInitialization l.take_and_process_message().unwrap(); // m -> s1: CompleteInitialization l.take_and_process_message().unwrap(); // m -> s2: CompleteInitialization l.take_and_process_message().unwrap(); // m -> s1: KeysDissemination assert_eq!(l.first_slave().on_keys_dissemination(m, &message::KeysDissemination { session: sid.into(), secret1: math::generate_random_scalar().unwrap().into(), secret2: math::generate_random_scalar().unwrap().into(), publics: vec![math::generate_random_point().unwrap().into(), math::generate_random_point().unwrap().into()], }).unwrap_err(), Error::InvalidMessage); } #[test] fn fails_to_accept_keys_dissemination_second_time_from_the_same_node() { let (sid, m, _, mut l) = make_simple_cluster(0, 3).unwrap(); l.take_and_process_message().unwrap(); // m -> s1: InitializeSession l.take_and_process_message().unwrap(); // m -> s2: InitializeSession l.take_and_process_message().unwrap(); // s1 -> m: ConfirmInitialization l.take_and_process_message().unwrap(); // s2 -> m: ConfirmInitialization l.take_and_process_message().unwrap(); // m -> s1: CompleteInitialization l.take_and_process_message().unwrap(); // m -> s2: CompleteInitialization l.take_and_process_message().unwrap(); // m -> s1: KeysDissemination assert_eq!(l.first_slave().on_keys_dissemination(m, &message::KeysDissemination { session: sid.into(), secret1: math::generate_random_scalar().unwrap().into(), secret2: math::generate_random_scalar().unwrap().into(), publics: vec![math::generate_random_point().unwrap().into()], }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn should_not_accept_public_key_share_when_is_not_waiting_for_it() { let (sid, _, s, l) = make_simple_cluster(1, 3).unwrap(); assert_eq!(l.master().on_public_key_share(s, &message::PublicKeyShare { session: sid.into(), public_share: math::generate_random_point().unwrap().into(), }).unwrap_err(), Error::InvalidStateForRequest); } #[test] fn should_not_accept_public_key_share_when_receiving_twice() { let (sid, m, _, mut l) = make_simple_cluster(0, 3).unwrap(); l.take_and_process_message().unwrap(); // m -> s1: InitializeSession l.take_and_process_message().unwrap(); // m -> s2: InitializeSession l.take_and_process_message().unwrap(); // s1 -> m: ConfirmInitialization l.take_and_process_message().unwrap(); // s2 -> m: ConfirmInitialization l.take_and_process_message().unwrap(); // m -> s1: CompleteInitialization l.take_and_process_message().unwrap(); // m -> s2: CompleteInitialization l.take_and_process_message().unwrap(); // m -> s1: KeysDissemination l.take_and_process_message().unwrap(); // m -> s2: KeysDissemination l.take_and_process_message().unwrap(); // s1 -> m: KeysDissemination l.take_and_process_message().unwrap(); // s1 -> s2: KeysDissemination l.take_and_process_message().unwrap(); // s2 -> m: KeysDissemination l.take_and_process_message().unwrap(); // s2 -> s1: KeysDissemination let (f, t, msg) = match l.take_message() { Some((f, t, Message::Generation(GenerationMessage::PublicKeyShare(msg)))) => (f, t, msg), _ => panic!("unexpected"), }; assert_eq!(&f, l.master().node()); assert_eq!(&t, l.second_slave().node()); l.process_message((f, t, Message::Generation(GenerationMessage::PublicKeyShare(msg.clone())))).unwrap(); assert_eq!(l.second_slave().on_public_key_share(m, &message::PublicKeyShare { session: sid.into(), public_share: math::generate_random_point().unwrap().into(), }).unwrap_err(), Error::InvalidMessage); } #[test] fn encryption_fails_on_session_timeout() { let (_, _, _, l) = make_simple_cluster(0, 2).unwrap(); assert!(l.master().joint_public_and_secret().is_none()); l.master().on_session_timeout(); assert!(l.master().joint_public_and_secret().unwrap().unwrap_err() == Error::NodeDisconnected); } #[test] fn encryption_fails_on_node_timeout() { let (_, _, _, l) = make_simple_cluster(0, 2).unwrap(); assert!(l.master().joint_public_and_secret().is_none()); l.master().on_node_timeout(l.first_slave().node()); assert!(l.master().joint_public_and_secret().unwrap().unwrap_err() == Error::NodeDisconnected); } #[test] fn complete_enc_dec_session() { let test_cases = [(0, 5), (2, 5), (3, 5)]; for &(threshold, num_nodes) in &test_cases { let mut l = MessageLoop::new(num_nodes); l.master().initialize(Public::default(), threshold, l.nodes.keys().cloned().collect()).unwrap(); assert_eq!(l.nodes.len(), num_nodes); // let nodes do initialization + keys dissemination while let Some((from, to, message)) = l.take_message() { l.process_message((from, to, message)).unwrap(); } // check that all nodes has finished joint public generation let joint_public_key = l.master().joint_public_and_secret().unwrap().unwrap().0; for node in l.nodes.values() { let state = node.session.state(); assert_eq!(state, SessionState::Finished); assert_eq!(node.session.joint_public_and_secret().map(|p| p.map(|p| p.0)), Some(Ok(joint_public_key))); } // now let's encrypt some secret (which is a point on EC) let document_secret_plain = Random.generate().unwrap().public().clone(); let all_nodes_id_numbers: Vec<_> = l.master().data.lock().nodes.values().map(|n| n.id_number.clone()).collect(); let all_nodes_secret_shares: Vec<_> = l.nodes.values().map(|n| n.session.data.lock().secret_share.as_ref().unwrap().clone()).collect(); let document_secret_decrypted = do_encryption_and_decryption(threshold, &joint_public_key, &all_nodes_id_numbers, &all_nodes_secret_shares, None, document_secret_plain.clone() ).0; assert_eq!(document_secret_plain, document_secret_decrypted); } } #[test] fn encryption_session_works_over_network() { //::util::log::init_log(); let test_cases = [(1, 3)]; for &(threshold, num_nodes) in &test_cases { let mut core = Core::new().unwrap(); // prepare cluster objects for each node let clusters = make_clusters(&core, 6022, num_nodes); run_clusters(&clusters); // establish connections loop_until(&mut core, time::Duration::from_millis(300), || clusters.iter().all(all_connections_established)); // run session to completion let session_id = SessionId::default(); let session = clusters[0].client().new_generation_session(session_id, Public::default(), threshold).unwrap(); loop_until(&mut core, time::Duration::from_millis(1000), || session.joint_public_and_secret().is_some()); } } }