// Copyright 2015, 2016 Ethcore (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . /// /// `BlockChain` synchronization strategy. /// Syncs to peers and keeps up to date. /// This implementation uses ethereum protocol v63 /// /// Syncing strategy summary. /// Split the chain into ranges of N blocks each. Download ranges sequentially. Split each range into subchains of M blocks. Download subchains in parallel. /// State. /// Sync state consists of the following data: /// - s: State enum which can be one of the following values: `ChainHead`, `Blocks`, `Idle` /// - H: A set of downloaded block headers /// - B: A set of downloaded block bodies /// - S: Set of block subchain start block hashes to download. /// - l: Last imported / common block hash /// - P: A set of connected peers. For each peer we maintain its last known total difficulty and starting block hash being requested if any. /// General behaviour. /// We start with all sets empty, l is set to the best block in the block chain, s is set to `ChainHead`. /// If at any moment a bad block is reported by the block queue, we set s to `ChainHead`, reset l to the best block in the block chain and clear H, B and S. /// If at any moment P becomes empty, we set s to `ChainHead`, and clear H, B and S. /// /// Workflow for `ChainHead` state. /// In this state we try to get subchain headers with a single `GetBlockHeaders` request. /// On `NewPeer` / On `Restart`: /// If peer's total difficulty is higher, request N/M headers with interval M+1 starting from l /// On `BlockHeaders(R)`: /// If R is empty: /// If l is equal to genesis block hash or l is more than 1000 blocks behind our best hash: /// Remove current peer from P. set l to the best block in the block chain. Select peer with maximum total difficulty from P and restart. /// Else /// Set l to l’s parent and restart. /// Else if we already have all the headers in the block chain or the block queue: /// Set s to `Idle`, /// Else /// Set S to R, set s to `Blocks`. /// /// /// All other messages are ignored. /// Workflow for `Blocks` state. /// In this state we download block headers and bodies from multiple peers. /// On `NewPeer` / On `Restart`: /// For all idle peers: /// Find a set of 256 or less block hashes in H which are not in B and not being downloaded by other peers. If the set is not empty: /// Request block bodies for the hashes in the set. /// Else /// Find an element in S which is not being downloaded by other peers. If found: Request M headers starting from the element. /// /// On `BlockHeaders(R)`: /// If R is empty remove current peer from P and restart. /// Validate received headers. For each header find a parent in H or R or the blockchain. Restart if there is a block with unknown parent. /// Go to `CollectBlocks`. /// /// On `BlockBodies(R)`: /// If R is empty remove current peer from P and restart. /// Add bodies with a matching header in H to B. /// Go to `CollectBlocks`. /// /// `CollectBlocks`: /// Find a chain of blocks C in H starting from h where h’s parent equals to l. The chain ends with the first block which does not have a body in B. /// Add all blocks from the chain to the block queue. Remove them from H and B. Set l to the hash of the last block from C. /// Update and merge subchain heads in S. For each h in S find a chain of blocks in B starting from h. Remove h from S. if the chain does not include an element from S add the end of the chain to S. /// If H is empty and S contains a single element set s to `ChainHead`. /// Restart. /// /// All other messages are ignored. /// Workflow for Idle state. /// On `NewBlock`: /// Import the block. If the block is unknown set s to `ChainHead` and restart. /// On `NewHashes`: /// Set s to `ChainHead` and restart. /// /// All other messages are ignored. /// use util::*; use rlp::*; use network::*; use ethcore::views::{HeaderView}; use ethcore::header::{BlockNumber, Header as BlockHeader}; use ethcore::client::{BlockChainClient, BlockStatus, BlockID, BlockChainInfo, BlockImportError}; use ethcore::error::*; use ethcore::snapshot::{ManifestData, RestorationStatus}; use sync_io::SyncIo; use time; use super::SyncConfig; use block_sync::{BlockDownloader, BlockRequest, BlockDownloaderImportError as DownloaderImportError}; use snapshot::{Snapshot, ChunkType}; use rand::{thread_rng, Rng}; use api::{PeerInfo as PeerInfoDigest, WARP_SYNC_PROTOCOL_ID}; known_heap_size!(0, PeerInfo); type PacketDecodeError = DecoderError; const PROTOCOL_VERSION_63: u8 = 63; const PROTOCOL_VERSION_1: u8 = 1; const MAX_BODIES_TO_SEND: usize = 256; const MAX_HEADERS_TO_SEND: usize = 512; const MAX_NODE_DATA_TO_SEND: usize = 1024; const MAX_RECEIPTS_TO_SEND: usize = 1024; const MAX_RECEIPTS_HEADERS_TO_SEND: usize = 256; const MIN_PEERS_PROPAGATION: usize = 4; const MAX_PEERS_PROPAGATION: usize = 128; const MAX_PEER_LAG_PROPAGATION: BlockNumber = 20; const MAX_NEW_HASHES: usize = 64; const MAX_TX_TO_IMPORT: usize = 512; const MAX_NEW_BLOCK_AGE: BlockNumber = 20; const MAX_TRANSACTION_SIZE: usize = 300*1024; // Min number of blocks to be behind for a snapshot sync const SNAPSHOT_RESTORE_THRESHOLD: BlockNumber = 100000; const STATUS_PACKET: u8 = 0x00; const NEW_BLOCK_HASHES_PACKET: u8 = 0x01; const TRANSACTIONS_PACKET: u8 = 0x02; const GET_BLOCK_HEADERS_PACKET: u8 = 0x03; const BLOCK_HEADERS_PACKET: u8 = 0x04; const GET_BLOCK_BODIES_PACKET: u8 = 0x05; const BLOCK_BODIES_PACKET: u8 = 0x06; const NEW_BLOCK_PACKET: u8 = 0x07; const GET_NODE_DATA_PACKET: u8 = 0x0d; const NODE_DATA_PACKET: u8 = 0x0e; const GET_RECEIPTS_PACKET: u8 = 0x0f; const RECEIPTS_PACKET: u8 = 0x10; pub const ETH_PACKET_COUNT: u8 = 0x11; const GET_SNAPSHOT_MANIFEST_PACKET: u8 = 0x11; const SNAPSHOT_MANIFEST_PACKET: u8 = 0x12; const GET_SNAPSHOT_DATA_PACKET: u8 = 0x13; const SNAPSHOT_DATA_PACKET: u8 = 0x14; pub const SNAPSHOT_SYNC_PACKET_COUNT: u8 = 0x15; const HEADERS_TIMEOUT_SEC: f64 = 15f64; const BODIES_TIMEOUT_SEC: f64 = 10f64; const RECEIPTS_TIMEOUT_SEC: f64 = 10f64; const FORK_HEADER_TIMEOUT_SEC: f64 = 3f64; const SNAPSHOT_MANIFEST_TIMEOUT_SEC: f64 = 3f64; const SNAPSHOT_DATA_TIMEOUT_SEC: f64 = 60f64; #[derive(Copy, Clone, Eq, PartialEq, Debug)] /// Sync state pub enum SyncState { /// Waiting for pv64 peers to start snapshot syncing SnapshotManifest, /// Downloading snapshot data SnapshotData, /// Waiting for snapshot restoration to complete SnapshotWaiting, /// Downloading new blocks Blocks, /// Initial chain sync complete. Waiting for new packets Idle, /// Block downloading paused. Waiting for block queue to process blocks and free some space Waiting, /// Downloading blocks learned from `NewHashes` packet NewBlocks, } /// Syncing status and statistics #[derive(Clone, Copy)] pub struct SyncStatus { /// State pub state: SyncState, /// Syncing protocol version. That's the maximum protocol version we connect to. pub protocol_version: u8, /// The underlying p2p network version. pub network_id: U256, /// `BlockChain` height for the moment the sync started. pub start_block_number: BlockNumber, /// Last fully downloaded and imported block number (if any). pub last_imported_block_number: Option, /// Highest block number in the download queue (if any). pub highest_block_number: Option, /// Total number of blocks for the sync process. pub blocks_total: BlockNumber, /// Number of blocks downloaded so far. pub blocks_received: BlockNumber, /// Total number of connected peers pub num_peers: usize, /// Total number of active peers. pub num_active_peers: usize, /// Heap memory used in bytes. pub mem_used: usize, /// Snapshot chunks pub num_snapshot_chunks: usize, /// Snapshot chunks downloaded pub snapshot_chunks_done: usize, /// Last fully downloaded and imported ancient block number (if any). pub last_imported_old_block_number: Option, } impl SyncStatus { /// Indicates if snapshot download is in progress pub fn is_snapshot_syncing(&self) -> bool { self.state == SyncState::SnapshotManifest || self.state == SyncState::SnapshotData || self.state == SyncState::SnapshotWaiting } /// Returns max no of peers to display in informants pub fn current_max_peers(&self, min_peers: u32, max_peers: u32) -> u32 { if self.num_peers as u32 > min_peers { max_peers } else { min_peers } } } #[derive(PartialEq, Eq, Debug, Clone)] /// Peer data type requested enum PeerAsking { Nothing, ForkHeader, BlockHeaders, BlockBodies, BlockReceipts, SnapshotManifest, SnapshotData, } #[derive(PartialEq, Eq, Debug, Clone, Copy)] /// Block downloader channel. enum BlockSet { /// New blocks better than out best blocks NewBlocks, /// Missing old blocks OldBlocks, } #[derive(Clone, Eq, PartialEq)] enum ForkConfirmation { /// Fork block confirmation pending. Unconfirmed, /// Peers chain is too short to confirm the fork. TooShort, /// Fork is confurmed. Confirmed, } #[derive(Clone)] /// Syncing peer information struct PeerInfo { /// eth protocol version protocol_version: u8, /// Peer chain genesis hash genesis: H256, /// Peer network id network_id: U256, /// Peer best block hash latest_hash: H256, /// Peer total difficulty if known difficulty: Option, /// Type of data currenty being requested from peer. asking: PeerAsking, /// A set of block numbers being requested asking_blocks: Vec, /// Holds requested header hash if currently requesting block header by hash asking_hash: Option, /// Holds requested snapshot chunk hash if any. asking_snapshot_data: Option, /// Request timestamp ask_time: f64, /// Holds a set of transactions recently sent to this peer to avoid spamming. last_sent_transactions: HashSet, /// Pending request is expired and result should be ignored expired: bool, /// Peer fork confirmation status confirmation: ForkConfirmation, /// Best snapshot hash snapshot_hash: Option, /// Best snapshot block number snapshot_number: Option, /// Block set requested block_set: Option, } impl PeerInfo { fn can_sync(&self) -> bool { self.confirmation == ForkConfirmation::Confirmed && !self.expired } fn is_allowed(&self) -> bool { self.confirmation != ForkConfirmation::Unconfirmed && !self.expired } } /// Blockchain sync handler. /// See module documentation for more details. pub struct ChainSync { /// Sync state state: SyncState, /// Last block number for the start of sync starting_block: BlockNumber, /// Highest block number seen highest_block: Option, /// All connected peers peers: HashMap, /// Peers active for current sync round active_peers: HashSet, /// Block download process for new blocks new_blocks: BlockDownloader, /// Block download process for ancient blocks old_blocks: Option, /// Last propagated block number last_sent_block_number: BlockNumber, /// Network ID network_id: U256, /// Optional fork block to check fork_block: Option<(BlockNumber, H256)>, /// Snapshot sync allowed. snapshot_sync_enabled: bool, /// Snapshot downloader. snapshot: Snapshot, } type RlpResponseResult = Result, PacketDecodeError>; impl ChainSync { /// Create a new instance of syncing strategy. pub fn new(config: SyncConfig, chain: &BlockChainClient) -> ChainSync { let chain_info = chain.chain_info(); let mut sync = ChainSync { state: SyncState::Idle, starting_block: chain.chain_info().best_block_number, highest_block: None, peers: HashMap::new(), active_peers: HashSet::new(), new_blocks: BlockDownloader::new(false, &chain_info.best_block_hash, chain_info.best_block_number), old_blocks: None, last_sent_block_number: 0, network_id: config.network_id, fork_block: config.fork_block, snapshot_sync_enabled: config.warp_sync, snapshot: Snapshot::new(), }; sync.init_downloaders(chain); sync } /// Returns synchonization status pub fn status(&self) -> SyncStatus { let last_imported_number = self.new_blocks.last_imported_block_number(); SyncStatus { state: self.state.clone(), protocol_version: PROTOCOL_VERSION_63, network_id: self.network_id, start_block_number: self.starting_block, last_imported_block_number: Some(last_imported_number), last_imported_old_block_number: self.old_blocks.as_ref().map(|d| d.last_imported_block_number()), highest_block_number: self.highest_block.map(|n| max(n, last_imported_number)), blocks_received: if last_imported_number > self.starting_block { last_imported_number - self.starting_block } else { 0 }, blocks_total: match self.highest_block { Some(x) if x > self.starting_block => x - self.starting_block, _ => 0 }, num_peers: self.peers.values().filter(|p| p.is_allowed()).count(), num_active_peers: self.peers.values().filter(|p| p.is_allowed() && p.asking != PeerAsking::Nothing).count(), num_snapshot_chunks: self.snapshot.total_chunks(), snapshot_chunks_done: self.snapshot.done_chunks(), mem_used: self.new_blocks.heap_size() + self.old_blocks.as_ref().map_or(0, |d| d.heap_size()) + self.peers.heap_size_of_children(), } } /// Returns information on peers connections pub fn peers(&self, io: &SyncIo) -> Vec { self.peers.iter() .filter_map(|(&peer_id, ref peer_data)| io.peer_session_info(peer_id).map(|session_info| PeerInfoDigest { id: session_info.id.map(|id| id.hex()), client_version: session_info.client_version, capabilities: session_info.peer_capabilities.into_iter().map(|c| c.to_string()).collect(), remote_address: session_info.remote_address, local_address: session_info.local_address, eth_version: peer_data.protocol_version as u32, eth_difficulty: peer_data.difficulty, eth_head: peer_data.latest_hash, }) ) .collect() } /// Abort all sync activity pub fn abort(&mut self, io: &mut SyncIo) { self.reset_and_continue(io); self.peers.clear(); } #[cfg_attr(feature="dev", allow(for_kv_map))] // Because it's not possible to get `values_mut()` /// Reset sync. Clear all downloaded data but keep the queue fn reset(&mut self, io: &mut SyncIo) { self.new_blocks.reset(); self.snapshot.clear(); if self.state == SyncState::SnapshotData { debug!(target:"sync", "Aborting snapshot restore"); io.snapshot_service().abort_restore(); } for (_, ref mut p) in &mut self.peers { if p.block_set != Some(BlockSet::OldBlocks) { p.asking_blocks.clear(); p.asking_hash = None; // mark any pending requests as expired if p.asking != PeerAsking::Nothing && p.is_allowed() { p.expired = true; } } } self.state = SyncState::Idle; // Reactivate peers only if some progress has been made // since the last sync round of if starting fresh. self.active_peers = self.peers.keys().cloned().collect(); } /// Restart sync pub fn reset_and_continue(&mut self, io: &mut SyncIo) { trace!(target: "sync", "Restarting"); self.reset(io); self.continue_sync(io); } /// Remove peer from active peer set. Peer will be reactivated on the next sync /// round. fn deactivate_peer(&mut self, _io: &mut SyncIo, peer_id: PeerId) { trace!(target: "sync", "Deactivating peer {}", peer_id); self.active_peers.remove(&peer_id); } fn start_snapshot_sync(&mut self, io: &mut SyncIo, peer_id: PeerId) { self.snapshot.clear(); self.request_snapshot_manifest(io, peer_id); self.state = SyncState::SnapshotManifest; } /// Restart sync disregarding the block queue status. May end up re-downloading up to QUEUE_SIZE blocks pub fn restart(&mut self, io: &mut SyncIo) { self.init_downloaders(io.chain()); self.reset_and_continue(io); } /// Restart sync after bad block has been detected. May end up re-downloading up to QUEUE_SIZE blocks fn init_downloaders(&mut self, chain: &BlockChainClient) { // Do not assume that the block queue/chain still has our last_imported_block let chain = chain.chain_info(); self.new_blocks = BlockDownloader::new(false, &chain.best_block_hash, chain.best_block_number); if let (Some(ancient_block_hash), Some(ancient_block_number)) = (chain.ancient_block_hash, chain.ancient_block_number) { trace!(target: "sync", "Downloading old blocks from {:?} (#{}) till {:?} (#{:?})", ancient_block_hash, ancient_block_number, chain.first_block_hash, chain.first_block_number); let mut downloader = BlockDownloader::new(true, &ancient_block_hash, ancient_block_number); if let Some(hash) = chain.first_block_hash { trace!(target: "sync", "Downloader target set to {:?}", hash); downloader.set_target(&hash); } self.old_blocks = Some(downloader); } else { self.old_blocks = None; } } /// Called by peer to report status fn on_peer_status(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { let protocol_version: u8 = try!(r.val_at(0)); let warp_protocol = io.protocol_version(&WARP_SYNC_PROTOCOL_ID, peer_id) != 0; let peer = PeerInfo { protocol_version: protocol_version, network_id: try!(r.val_at(1)), difficulty: Some(try!(r.val_at(2))), latest_hash: try!(r.val_at(3)), genesis: try!(r.val_at(4)), asking: PeerAsking::Nothing, asking_blocks: Vec::new(), asking_hash: None, ask_time: 0f64, last_sent_transactions: HashSet::new(), expired: false, confirmation: if self.fork_block.is_none() { ForkConfirmation::Confirmed } else { ForkConfirmation::Unconfirmed }, asking_snapshot_data: None, snapshot_hash: if warp_protocol { Some(try!(r.val_at(5))) } else { None }, snapshot_number: if warp_protocol { Some(try!(r.val_at(6))) } else { None }, block_set: None, }; trace!(target: "sync", "New peer {} (protocol: {}, network: {:?}, difficulty: {:?}, latest:{}, genesis:{})", peer_id, peer.protocol_version, peer.network_id, peer.difficulty, peer.latest_hash, peer.genesis); if io.is_expired() { trace!(target: "sync", "Status packet from expired session {}:{}", peer_id, io.peer_info(peer_id)); return Ok(()); } if self.peers.contains_key(&peer_id) { debug!(target: "sync", "Unexpected status packet from {}:{}", peer_id, io.peer_info(peer_id)); return Ok(()); } let chain_info = io.chain().chain_info(); if peer.genesis != chain_info.genesis_hash { io.disable_peer(peer_id); trace!(target: "sync", "Peer {} genesis hash mismatch (ours: {}, theirs: {})", peer_id, chain_info.genesis_hash, peer.genesis); return Ok(()); } if peer.network_id != self.network_id { io.disable_peer(peer_id); trace!(target: "sync", "Peer {} network id mismatch (ours: {}, theirs: {})", peer_id, self.network_id, peer.network_id); return Ok(()); } if (warp_protocol && peer.protocol_version != PROTOCOL_VERSION_1) || (!warp_protocol && peer.protocol_version != PROTOCOL_VERSION_63) { io.disable_peer(peer_id); trace!(target: "sync", "Peer {} unsupported eth protocol ({})", peer_id, peer.protocol_version); return Ok(()); } self.peers.insert(peer_id.clone(), peer); self.active_peers.insert(peer_id.clone()); debug!(target: "sync", "Connected {}:{}", peer_id, io.peer_info(peer_id)); if let Some((fork_block, _)) = self.fork_block { self.request_fork_header_by_number(io, peer_id, fork_block); } else { self.sync_peer(io, peer_id, false); } Ok(()) } #[cfg_attr(feature="dev", allow(cyclomatic_complexity))] /// Called by peer once it has new block headers during sync fn on_peer_block_headers(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { let confirmed = match self.peers.get_mut(&peer_id) { Some(ref mut peer) if peer.asking == PeerAsking::ForkHeader => { peer.asking = PeerAsking::Nothing; let item_count = r.item_count(); let (fork_number, fork_hash) = self.fork_block.expect("ForkHeader request is sent only fork block is Some; qed").clone(); if item_count == 0 || item_count != 1 { trace!(target: "sync", "{}: Chain is too short to confirm the block", peer_id); peer.confirmation = ForkConfirmation::TooShort; } else { let header = try!(r.at(0)).as_raw(); if header.sha3() == fork_hash { trace!(target: "sync", "{}: Confirmed peer", peer_id); peer.confirmation = ForkConfirmation::Confirmed; if !io.chain_overlay().read().contains_key(&fork_number) { io.chain_overlay().write().insert(fork_number, header.to_vec()); } } else { trace!(target: "sync", "{}: Fork mismatch", peer_id); io.disconnect_peer(peer_id); return Ok(()); } } true }, _ => false, }; if confirmed { self.sync_peer(io, peer_id, false); return Ok(()); } self.clear_peer_download(peer_id); let expected_hash = self.peers.get(&peer_id).and_then(|p| p.asking_hash); let block_set = self.peers.get(&peer_id).and_then(|p| p.block_set).unwrap_or(BlockSet::NewBlocks); if !self.reset_peer_asking(peer_id, PeerAsking::BlockHeaders) || expected_hash.is_none() { trace!(target: "sync", "{}: Ignored unexpected headers, expected_hash = {:?}", peer_id, expected_hash); self.continue_sync(io); return Ok(()); } let item_count = r.item_count(); trace!(target: "sync", "{} -> BlockHeaders ({} entries), state = {:?}, set = {:?}", peer_id, item_count, self.state, block_set); if self.state == SyncState::Idle && self.old_blocks.is_none() { trace!(target: "sync", "Ignored unexpected block headers"); self.continue_sync(io); return Ok(()); } if self.state == SyncState::Waiting { trace!(target: "sync", "Ignored block headers while waiting"); self.continue_sync(io); return Ok(()); } let result = { let mut downloader = match block_set { BlockSet::NewBlocks => &mut self.new_blocks, BlockSet::OldBlocks => { match self.old_blocks { None => { trace!(target: "sync", "Ignored block headers while block download is inactive"); self.continue_sync(io); return Ok(()); }, Some(ref mut blocks) => blocks, } } }; downloader.import_headers(io, r, expected_hash) }; match result { Err(DownloaderImportError::Useless) => { self.deactivate_peer(io, peer_id); }, Err(DownloaderImportError::Invalid) => { io.disable_peer(peer_id); self.deactivate_peer(io, peer_id); self.continue_sync(io); return Ok(()); }, Ok(()) => (), } self.collect_blocks(io, block_set); // give a task to the same peer first if received valuable headers. self.sync_peer(io, peer_id, false); // give tasks to other peers self.continue_sync(io); Ok(()) } /// Called by peer once it has new block bodies fn on_peer_block_bodies(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { self.clear_peer_download(peer_id); let block_set = self.peers.get(&peer_id).and_then(|p| p.block_set).unwrap_or(BlockSet::NewBlocks); if !self.reset_peer_asking(peer_id, PeerAsking::BlockBodies) { trace!(target: "sync", "{}: Ignored unexpected bodies", peer_id); self.continue_sync(io); return Ok(()); } let item_count = r.item_count(); trace!(target: "sync", "{} -> BlockBodies ({} entries), set = {:?}", peer_id, item_count, block_set); if item_count == 0 { self.deactivate_peer(io, peer_id); } else if self.state == SyncState::Waiting { trace!(target: "sync", "Ignored block bodies while waiting"); } else { let result = { let mut downloader = match block_set { BlockSet::NewBlocks => &mut self.new_blocks, BlockSet::OldBlocks => match self.old_blocks { None => { trace!(target: "sync", "Ignored block headers while block download is inactive"); self.continue_sync(io); return Ok(()); }, Some(ref mut blocks) => blocks, } }; downloader.import_bodies(io, r) }; match result { Err(DownloaderImportError::Invalid) => { io.disable_peer(peer_id); self.deactivate_peer(io, peer_id); self.continue_sync(io); return Ok(()); }, Err(DownloaderImportError::Useless) => { self.deactivate_peer(io, peer_id); }, Ok(()) => (), } self.collect_blocks(io, block_set); self.sync_peer(io, peer_id, false); } self.continue_sync(io); Ok(()) } /// Called by peer once it has new block receipts fn on_peer_block_receipts(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { self.clear_peer_download(peer_id); let block_set = self.peers.get(&peer_id).and_then(|p| p.block_set).unwrap_or(BlockSet::NewBlocks); if !self.reset_peer_asking(peer_id, PeerAsking::BlockReceipts) { trace!(target: "sync", "{}: Ignored unexpected receipts", peer_id); self.continue_sync(io); return Ok(()); } let item_count = r.item_count(); trace!(target: "sync", "{} -> BlockReceipts ({} entries)", peer_id, item_count); if item_count == 0 { self.deactivate_peer(io, peer_id); } else if self.state == SyncState::Waiting { trace!(target: "sync", "Ignored block receipts while waiting"); } else { let result = { let mut downloader = match block_set { BlockSet::NewBlocks => &mut self.new_blocks, BlockSet::OldBlocks => match self.old_blocks { None => { trace!(target: "sync", "Ignored block headers while block download is inactive"); self.continue_sync(io); return Ok(()); }, Some(ref mut blocks) => blocks, } }; downloader.import_receipts(io, r) }; match result { Err(DownloaderImportError::Invalid) => { io.disable_peer(peer_id); self.deactivate_peer(io, peer_id); self.continue_sync(io); return Ok(()); }, Err(DownloaderImportError::Useless) => { self.deactivate_peer(io, peer_id); }, Ok(()) => (), } self.collect_blocks(io, block_set); self.sync_peer(io, peer_id, false); } self.continue_sync(io); Ok(()) } /// Called by peer once it has new block bodies #[cfg_attr(feature="dev", allow(cyclomatic_complexity))] fn on_peer_new_block(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { if !self.peers.get(&peer_id).map_or(false, |p| p.can_sync()) { trace!(target: "sync", "Ignoring new block from unconfirmed peer {}", peer_id); return Ok(()); } let block_rlp = try!(r.at(0)); let header_rlp = try!(block_rlp.at(0)); let h = header_rlp.as_raw().sha3(); trace!(target: "sync", "{} -> NewBlock ({})", peer_id, h); let header: BlockHeader = try!(header_rlp.as_val()); if header.number() > self.highest_block.unwrap_or(0) { self.highest_block = Some(header.number()); } let mut unknown = false; { if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { peer.latest_hash = header.hash(); } } let last_imported_number = self.new_blocks.last_imported_block_number(); if last_imported_number > header.number() && last_imported_number - header.number() > MAX_NEW_BLOCK_AGE { trace!(target: "sync", "Ignored ancient new block {:?}", h); io.disable_peer(peer_id); return Ok(()); } match io.chain().import_block(block_rlp.as_raw().to_vec()) { Err(BlockImportError::Import(ImportError::AlreadyInChain)) => { trace!(target: "sync", "New block already in chain {:?}", h); }, Err(BlockImportError::Import(ImportError::AlreadyQueued)) => { trace!(target: "sync", "New block already queued {:?}", h); }, Ok(_) => { self.new_blocks.mark_as_known(&header.hash(), header.number()); trace!(target: "sync", "New block queued {:?} ({})", h, header.number()); }, Err(BlockImportError::Block(BlockError::UnknownParent(p))) => { unknown = true; trace!(target: "sync", "New block with unknown parent ({:?}) {:?}", p, h); }, Err(e) => { debug!(target: "sync", "Bad new block {:?} : {:?}", h, e); io.disable_peer(peer_id); } }; if unknown { if self.state != SyncState::Idle { trace!(target: "sync", "NewBlock ignored while seeking"); } else { trace!(target: "sync", "New unknown block {:?}", h); //TODO: handle too many unknown blocks let difficulty: U256 = try!(r.val_at(1)); if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { if peer.difficulty.map_or(true, |pd| difficulty > pd) { peer.difficulty = Some(difficulty); trace!(target: "sync", "Received block {:?} with no known parent. Peer needs syncing...", h); } } self.sync_peer(io, peer_id, true); } } Ok(()) } /// Handles `NewHashes` packet. Initiates headers download for any unknown hashes. fn on_peer_new_hashes(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { if !self.peers.get(&peer_id).map_or(false, |p| p.can_sync()) { trace!(target: "sync", "Ignoring new hashes from unconfirmed peer {}", peer_id); return Ok(()); } if self.state != SyncState::Idle { trace!(target: "sync", "Ignoring new hashes since we're already downloading."); let max = r.iter().take(MAX_NEW_HASHES).map(|item| item.val_at::(1).unwrap_or(0)).fold(0u64, max); if max > self.highest_block.unwrap_or(0) { self.highest_block = Some(max); } return Ok(()); } trace!(target: "sync", "{} -> NewHashes ({} entries)", peer_id, r.item_count()); let hashes = r.iter().take(MAX_NEW_HASHES).map(|item| (item.val_at::(0), item.val_at::(1))); let mut max_height: BlockNumber = 0; let mut new_hashes = Vec::new(); let last_imported_number = self.new_blocks.last_imported_block_number(); for (rh, rn) in hashes { let hash = try!(rh); let number = try!(rn); if number > self.highest_block.unwrap_or(0) { self.highest_block = Some(number); } if self.new_blocks.is_downloading(&hash) { continue; } if last_imported_number > number && last_imported_number - number > MAX_NEW_BLOCK_AGE { trace!(target: "sync", "Ignored ancient new block hash {:?}", hash); io.disable_peer(peer_id); continue; } match io.chain().block_status(BlockID::Hash(hash.clone())) { BlockStatus::InChain => { trace!(target: "sync", "New block hash already in chain {:?}", hash); }, BlockStatus::Queued => { trace!(target: "sync", "New hash block already queued {:?}", hash); }, BlockStatus::Unknown => { new_hashes.push(hash.clone()); if number > max_height { trace!(target: "sync", "New unknown block hash {:?}", hash); if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { peer.latest_hash = hash.clone(); } max_height = number; } }, BlockStatus::Bad => { debug!(target: "sync", "Bad new block hash {:?}", hash); io.disable_peer(peer_id); return Ok(()); } } }; if max_height != 0 { trace!(target: "sync", "Downloading blocks for new hashes"); self.new_blocks.reset_to(new_hashes); self.state = SyncState::NewBlocks; self.sync_peer(io, peer_id, true); } Ok(()) } /// Called when snapshot manifest is downloaded from a peer. fn on_snapshot_manifest(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { if !self.peers.get(&peer_id).map_or(false, |p| p.can_sync()) { trace!(target: "sync", "Ignoring snapshot manifest from unconfirmed peer {}", peer_id); return Ok(()); } self.clear_peer_download(peer_id); if !self.reset_peer_asking(peer_id, PeerAsking::SnapshotManifest) || self.state != SyncState::SnapshotManifest { trace!(target: "sync", "{}: Ignored unexpected manifest", peer_id); self.continue_sync(io); return Ok(()); } let manifest_rlp = try!(r.at(0)); let manifest = match ManifestData::from_rlp(manifest_rlp.as_raw()) { Err(e) => { trace!(target: "sync", "{}: Ignored bad manifest: {:?}", peer_id, e); io.disconnect_peer(peer_id); self.continue_sync(io); return Ok(()); } Ok(manifest) => manifest, }; self.snapshot.reset_to(&manifest, &manifest_rlp.as_raw().sha3()); io.snapshot_service().begin_restore(manifest); self.state = SyncState::SnapshotData; // give a task to the same peer first. self.sync_peer(io, peer_id, false); // give tasks to other peers self.continue_sync(io); Ok(()) } /// Called when snapshot data is downloaded from a peer. fn on_snapshot_data(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { if !self.peers.get(&peer_id).map_or(false, |p| p.can_sync()) { trace!(target: "sync", "Ignoring snapshot data from unconfirmed peer {}", peer_id); return Ok(()); } self.clear_peer_download(peer_id); if !self.reset_peer_asking(peer_id, PeerAsking::SnapshotData) || self.state != SyncState::SnapshotData { trace!(target: "sync", "{}: Ignored unexpected snapshot data", peer_id); self.continue_sync(io); return Ok(()); } // check service status match io.snapshot_service().status() { RestorationStatus::Inactive | RestorationStatus::Failed => { trace!(target: "sync", "{}: Snapshot restoration aborted", peer_id); self.state = SyncState::Idle; self.snapshot.clear(); self.continue_sync(io); return Ok(()); }, RestorationStatus::Ongoing { .. } => { trace!(target: "sync", "{}: Snapshot restoration is ongoing", peer_id); }, } let snapshot_data: Bytes = try!(r.val_at(0)); match self.snapshot.validate_chunk(&snapshot_data) { Ok(ChunkType::Block(hash)) => { trace!(target: "sync", "{}: Processing block chunk", peer_id); io.snapshot_service().restore_block_chunk(hash, snapshot_data); } Ok(ChunkType::State(hash)) => { trace!(target: "sync", "{}: Processing state chunk", peer_id); io.snapshot_service().restore_state_chunk(hash, snapshot_data); } Err(()) => { trace!(target: "sync", "{}: Got bad snapshot chunk", peer_id); io.disconnect_peer(peer_id); self.continue_sync(io); return Ok(()); } } if self.snapshot.is_complete() { // wait for snapshot restoration process to complete self.state = SyncState::SnapshotWaiting; } // give a task to the same peer first. self.sync_peer(io, peer_id, false); // give tasks to other peers self.continue_sync(io); Ok(()) } /// Called by peer when it is disconnecting pub fn on_peer_aborting(&mut self, io: &mut SyncIo, peer: PeerId) { trace!(target: "sync", "== Disconnecting {}: {}", peer, io.peer_info(peer)); if self.peers.contains_key(&peer) { debug!(target: "sync", "Disconnected {}", peer); self.clear_peer_download(peer); self.peers.remove(&peer); self.active_peers.remove(&peer); self.continue_sync(io); } } /// Called when a new peer is connected pub fn on_peer_connected(&mut self, io: &mut SyncIo, peer: PeerId) { trace!(target: "sync", "== Connected {}: {}", peer, io.peer_info(peer)); if let Err(e) = self.send_status(io, peer) { debug!(target:"sync", "Error sending status request: {:?}", e); io.disable_peer(peer); } } /// Resume downloading fn continue_sync(&mut self, io: &mut SyncIo) { if self.state != SyncState::Waiting && self.state != SyncState::SnapshotWaiting && !self.peers.values().any(|p| p.asking != PeerAsking::Nothing && p.block_set != Some(BlockSet::OldBlocks) && p.can_sync()) { self.complete_sync(io); } let mut peers: Vec<(PeerId, U256, u8)> = self.peers.iter().filter_map(|(k, p)| if p.can_sync() { Some((*k, p.difficulty.unwrap_or_else(U256::zero), p.protocol_version)) } else { None }).collect(); thread_rng().shuffle(&mut peers); //TODO: sort by rating // prefer peers with higher protocol version peers.sort_by(|&(_, _, ref v1), &(_, _, ref v2)| v1.cmp(v2)); trace!(target: "sync", "Syncing with {}/{} peers", self.active_peers.len(), peers.len()); for (p, _, _) in peers { if self.active_peers.contains(&p) { self.sync_peer(io, p, false); } } } /// Called after all blocks have been downloaded fn complete_sync(&mut self, io: &mut SyncIo) { trace!(target: "sync", "Sync complete"); self.reset(io); self.state = SyncState::Idle; } /// Enter waiting state fn pause_sync(&mut self) { trace!(target: "sync", "Block queue full, pausing sync"); self.state = SyncState::Waiting; } /// Find something to do for a peer. Called for a new peer or when a peer is done with its task. fn sync_peer(&mut self, io: &mut SyncIo, peer_id: PeerId, force: bool) { if !self.active_peers.contains(&peer_id) { trace!(target: "sync", "Skipping deactivated peer"); return; } let (peer_latest, peer_difficulty, peer_snapshot_number, peer_snapshot_hash) = { if let Some(ref peer) = self.peers.get_mut(&peer_id) { if peer.asking != PeerAsking::Nothing || !peer.can_sync() { return; } if self.state == SyncState::Waiting { trace!(target: "sync", "Waiting for the block queue"); return; } if self.state == SyncState::SnapshotWaiting { trace!(target: "sync", "Waiting for the snapshot restoration"); return; } (peer.latest_hash.clone(), peer.difficulty.clone(), peer.snapshot_number.as_ref().cloned().unwrap_or(0), peer.snapshot_hash.as_ref().cloned()) } else { return; } }; let chain_info = io.chain().chain_info(); let syncing_difficulty = chain_info.pending_total_difficulty; let higher_difficulty = peer_difficulty.map_or(true, |pd| pd > syncing_difficulty); if force || self.state == SyncState::NewBlocks || higher_difficulty || self.old_blocks.is_some() { match self.state { SyncState::Idle if self.snapshot_sync_enabled && chain_info.best_block_number < peer_snapshot_number && (peer_snapshot_number - chain_info.best_block_number) > SNAPSHOT_RESTORE_THRESHOLD => { trace!(target: "sync", "Starting snapshot sync: {} vs {}", peer_snapshot_number, chain_info.best_block_number); self.start_snapshot_sync(io, peer_id); }, SyncState::Idle | SyncState::Blocks | SyncState::NewBlocks => { if io.chain().queue_info().is_full() { self.pause_sync(); return; } let have_latest = io.chain().block_status(BlockID::Hash(peer_latest)) != BlockStatus::Unknown; if !have_latest && (higher_difficulty || force || self.state == SyncState::NewBlocks) { // check if got new blocks to download if let Some(request) = self.new_blocks.request_blocks(io) { self.request_blocks(io, peer_id, request, BlockSet::NewBlocks); if self.state == SyncState::Idle { self.state = SyncState::Blocks; } return; } } if let Some(request) = self.old_blocks.as_mut().and_then(|d| d.request_blocks(io)) { self.request_blocks(io, peer_id, request, BlockSet::OldBlocks); return; } }, SyncState::SnapshotData => { if peer_snapshot_hash.is_some() && peer_snapshot_hash == self.snapshot.snapshot_hash() { self.request_snapshot_data(io, peer_id); } }, SyncState::SnapshotManifest | //already downloading from other peer SyncState::Waiting | SyncState::SnapshotWaiting => () } } } /// Perofrm block download request` fn request_blocks(&mut self, io: &mut SyncIo, peer_id: PeerId, request: BlockRequest, block_set: BlockSet) { match request { BlockRequest::Headers { start, count, skip } => { self.request_headers_by_hash(io, peer_id, &start, count, skip, false, block_set); }, BlockRequest::Bodies { hashes } => { self.request_bodies(io, peer_id, hashes, block_set); }, BlockRequest::Receipts { hashes } => { self.request_receipts(io, peer_id, hashes, block_set); }, } } /// Find some headers or blocks to download for a peer. fn request_snapshot_data(&mut self, io: &mut SyncIo, peer_id: PeerId) { self.clear_peer_download(peer_id); // find chunk data to download if let Some(hash) = self.snapshot.needed_chunk() { if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { peer.asking_snapshot_data = Some(hash.clone()); } self.request_snapshot_chunk(io, peer_id, &hash); } } /// Clear all blocks/headers marked as being downloaded by a peer. fn clear_peer_download(&mut self, peer_id: PeerId) { if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { match peer.asking { PeerAsking::BlockHeaders => { if let Some(ref hash) = peer.asking_hash { self.new_blocks.clear_header_download(hash); if let Some(ref mut old) = self.old_blocks { old.clear_header_download(hash); } } }, PeerAsking::BlockBodies => { self.new_blocks.clear_body_download(&peer.asking_blocks); if let Some(ref mut old) = self.old_blocks { old.clear_body_download(&peer.asking_blocks); } }, PeerAsking::BlockReceipts => { self.new_blocks.clear_receipt_download(&peer.asking_blocks); if let Some(ref mut old) = self.old_blocks { old.clear_receipt_download(&peer.asking_blocks); } }, PeerAsking::SnapshotData => { if let Some(hash) = peer.asking_snapshot_data { self.snapshot.clear_chunk_download(&hash); } }, _ => (), } } } /// Checks if there are blocks fully downloaded that can be imported into the blockchain and does the import. fn collect_blocks(&mut self, io: &mut SyncIo, block_set: BlockSet) { match block_set { BlockSet::NewBlocks => { if self.new_blocks.collect_blocks(io, self.state == SyncState::NewBlocks) == Err(DownloaderImportError::Invalid) { self.restart(io); } }, BlockSet::OldBlocks => { if self.old_blocks.as_mut().map_or(false, |downloader| { downloader.collect_blocks(io, false) == Err(DownloaderImportError::Invalid) }) { self.restart(io); } else if self.old_blocks.as_ref().map_or(false, |downloader| { downloader.is_complete() }) { trace!(target: "sync", "Background block download is complete"); self.old_blocks = None; } } } } /// Request headers from a peer by block hash #[cfg_attr(feature="dev", allow(too_many_arguments))] fn request_headers_by_hash(&mut self, sync: &mut SyncIo, peer_id: PeerId, h: &H256, count: u64, skip: u64, reverse: bool, set: BlockSet) { trace!(target: "sync", "{} <- GetBlockHeaders: {} entries starting from {}, set = {:?}", peer_id, count, h, set); let mut rlp = RlpStream::new_list(4); rlp.append(h); rlp.append(&count); rlp.append(&skip); rlp.append(&if reverse {1u32} else {0u32}); self.send_request(sync, peer_id, PeerAsking::BlockHeaders, GET_BLOCK_HEADERS_PACKET, rlp.out()); let peer = self.peers.get_mut(&peer_id).expect("peer_id may originate either from on_packet, where it is already validated or from enumerating self.peers. qed"); peer.asking_hash = Some(h.clone()); peer.block_set = Some(set); } /// Request headers from a peer by block number #[cfg_attr(feature="dev", allow(too_many_arguments))] fn request_fork_header_by_number(&mut self, sync: &mut SyncIo, peer_id: PeerId, n: BlockNumber) { trace!(target: "sync", "{} <- GetForkHeader: at {}", peer_id, n); let mut rlp = RlpStream::new_list(4); rlp.append(&n); rlp.append(&1u32); rlp.append(&0u32); rlp.append(&0u32); self.send_request(sync, peer_id, PeerAsking::ForkHeader, GET_BLOCK_HEADERS_PACKET, rlp.out()); } /// Request snapshot manifest from a peer. fn request_snapshot_manifest(&mut self, sync: &mut SyncIo, peer_id: PeerId) { trace!(target: "sync", "{} <- GetSnapshotManifest", peer_id); let rlp = RlpStream::new_list(0); self.send_request(sync, peer_id, PeerAsking::SnapshotManifest, GET_SNAPSHOT_MANIFEST_PACKET, rlp.out()); } /// Request snapshot chunk from a peer. fn request_snapshot_chunk(&mut self, sync: &mut SyncIo, peer_id: PeerId, chunk: &H256) { trace!(target: "sync", "{} <- GetSnapshotData {:?}", peer_id, chunk); let mut rlp = RlpStream::new_list(1); rlp.append(chunk); self.send_request(sync, peer_id, PeerAsking::SnapshotData, GET_SNAPSHOT_DATA_PACKET, rlp.out()); } /// Request block bodies from a peer fn request_bodies(&mut self, sync: &mut SyncIo, peer_id: PeerId, hashes: Vec, set: BlockSet) { let mut rlp = RlpStream::new_list(hashes.len()); trace!(target: "sync", "{} <- GetBlockBodies: {} entries starting from {:?}, set = {:?}", peer_id, hashes.len(), hashes.first(), set); for h in &hashes { rlp.append(&h.clone()); } self.send_request(sync, peer_id, PeerAsking::BlockBodies, GET_BLOCK_BODIES_PACKET, rlp.out()); let peer = self.peers.get_mut(&peer_id).expect("peer_id may originate either from on_packet, where it is already validated or from enumerating self.peers. qed"); peer.asking_blocks = hashes; peer.block_set = Some(set); } /// Request block receipts from a peer fn request_receipts(&mut self, sync: &mut SyncIo, peer_id: PeerId, hashes: Vec, set: BlockSet) { let mut rlp = RlpStream::new_list(hashes.len()); trace!(target: "sync", "{} <- GetBlockReceipts: {} entries starting from {:?}, set = {:?}", peer_id, hashes.len(), hashes.first(), set); for h in &hashes { rlp.append(&h.clone()); } self.send_request(sync, peer_id, PeerAsking::BlockReceipts, GET_RECEIPTS_PACKET, rlp.out()); let peer = self.peers.get_mut(&peer_id).expect("peer_id may originate either from on_packet, where it is already validated or from enumerating self.peers. qed"); peer.asking_blocks = hashes; peer.block_set = Some(set); } /// Reset peer status after request is complete. fn reset_peer_asking(&mut self, peer_id: PeerId, asking: PeerAsking) -> bool { if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { peer.expired = false; peer.block_set = None; if peer.asking != asking { trace!(target:"sync", "Asking {:?} while expected {:?}", peer.asking, asking); peer.asking = PeerAsking::Nothing; return false; } else { peer.asking = PeerAsking::Nothing; return true; } } return false; } /// Generic request sender fn send_request(&mut self, sync: &mut SyncIo, peer_id: PeerId, asking: PeerAsking, packet_id: PacketId, packet: Bytes) { if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { if peer.asking != PeerAsking::Nothing { warn!(target:"sync", "Asking {:?} while requesting {:?}", peer.asking, asking); } peer.asking = asking; peer.ask_time = time::precise_time_s(); let result = if packet_id >= ETH_PACKET_COUNT { sync.send_protocol(WARP_SYNC_PROTOCOL_ID, peer_id, packet_id, packet) } else { sync.send(peer_id, packet_id, packet) }; if let Err(e) = result { debug!(target:"sync", "Error sending request: {:?}", e); sync.disable_peer(peer_id); } } } /// Generic packet sender fn send_packet(&mut self, sync: &mut SyncIo, peer_id: PeerId, packet_id: PacketId, packet: Bytes) { if let Err(e) = sync.send(peer_id, packet_id, packet) { debug!(target:"sync", "Error sending packet: {:?}", e); sync.disable_peer(peer_id); } } /// Called when peer sends us new transactions fn on_peer_transactions(&mut self, io: &mut SyncIo, peer_id: PeerId, r: &UntrustedRlp) -> Result<(), PacketDecodeError> { // Accept transactions only when fully synced if !io.is_chain_queue_empty() || self.state != SyncState::Idle || self.state != SyncState::NewBlocks { trace!(target: "sync", "{} Ignoring transactions while syncing", peer_id); return Ok(()); } if !self.peers.get(&peer_id).map_or(false, |p| p.can_sync()) { trace!(target: "sync", "{} Ignoring transactions from unconfirmed/unknown peer", peer_id); } let mut item_count = r.item_count(); trace!(target: "sync", "{} -> Transactions ({} entries)", peer_id, item_count); item_count = min(item_count, MAX_TX_TO_IMPORT); let mut transactions = Vec::with_capacity(item_count); for i in 0 .. item_count { let rlp = try!(r.at(i)); if rlp.as_raw().len() > MAX_TRANSACTION_SIZE { debug!("Skipped oversized transaction of {} bytes", rlp.as_raw().len()); continue; } let tx = rlp.as_raw().to_vec(); transactions.push(tx); } io.chain().queue_transactions(transactions); Ok(()) } /// Send Status message fn send_status(&mut self, io: &mut SyncIo, peer: PeerId) -> Result<(), NetworkError> { let warp_protocol = io.protocol_version(&WARP_SYNC_PROTOCOL_ID, peer) != 0; let protocol = if warp_protocol { PROTOCOL_VERSION_1 } else { PROTOCOL_VERSION_63 }; trace!(target: "sync", "Sending status to {}, protocol version {}", peer, protocol); let mut packet = RlpStream::new_list(if warp_protocol { 7 } else { 5 }); let chain = io.chain().chain_info(); packet.append(&(protocol as u32)); packet.append(&self.network_id); packet.append(&chain.total_difficulty); packet.append(&chain.best_block_hash); packet.append(&chain.genesis_hash); if warp_protocol { let manifest = io.snapshot_service().manifest(); let block_number = manifest.as_ref().map_or(0, |m| m.block_number); let manifest_hash = manifest.map_or(H256::new(), |m| m.into_rlp().sha3()); packet.append(&manifest_hash); packet.append(&block_number); } io.respond(STATUS_PACKET, packet.out()) } /// Respond to GetBlockHeaders request fn return_block_headers(io: &SyncIo, r: &UntrustedRlp, peer_id: PeerId) -> RlpResponseResult { // Packet layout: // [ block: { P , B_32 }, maxHeaders: P, skip: P, reverse: P in { 0 , 1 } ] let max_headers: usize = try!(r.val_at(1)); let skip: usize = try!(r.val_at(2)); let reverse: bool = try!(r.val_at(3)); let last = io.chain().chain_info().best_block_number; let number = if try!(r.at(0)).size() == 32 { // id is a hash let hash: H256 = try!(r.val_at(0)); trace!(target: "sync", "{} -> GetBlockHeaders (hash: {}, max: {}, skip: {}, reverse:{})", peer_id, hash, max_headers, skip, reverse); match io.chain().block_header(BlockID::Hash(hash)) { Some(hdr) => { let number = From::from(HeaderView::new(&hdr).number()); debug_assert_eq!(HeaderView::new(&hdr).sha3(), hash); if max_headers == 1 || io.chain().block_hash(BlockID::Number(number)) != Some(hash) { // Non canonical header or single header requested // TODO: handle single-step reverse hashchains of non-canon hashes trace!(target:"sync", "Returning single header: {:?}", hash); let mut rlp = RlpStream::new_list(1); rlp.append_raw(&hdr, 1); return Ok(Some((BLOCK_HEADERS_PACKET, rlp))); } number } None => return Ok(Some((BLOCK_HEADERS_PACKET, RlpStream::new_list(0)))) //no such header, return nothing } } else { trace!(target: "sync", "{} -> GetBlockHeaders (number: {}, max: {}, skip: {}, reverse:{})", peer_id, try!(r.val_at::(0)), max_headers, skip, reverse); try!(r.val_at(0)) }; let mut number = if reverse { min(last, number) } else { max(0, number) }; let max_count = min(MAX_HEADERS_TO_SEND, max_headers); let mut count = 0; let mut data = Bytes::new(); let inc = (skip + 1) as BlockNumber; let overlay = io.chain_overlay().read(); while number <= last && count < max_count { if let Some(hdr) = overlay.get(&number) { trace!(target: "sync", "{}: Returning cached fork header", peer_id); data.extend(hdr); count += 1; } else if let Some(mut hdr) = io.chain().block_header(BlockID::Number(number)) { data.append(&mut hdr); count += 1; } else { // No required block. break; } if reverse { if number <= inc || number == 0 { break; } number -= inc; } else { number += inc; } } let mut rlp = RlpStream::new_list(count as usize); rlp.append_raw(&data, count as usize); trace!(target: "sync", "{} -> GetBlockHeaders: returned {} entries", peer_id, count); Ok(Some((BLOCK_HEADERS_PACKET, rlp))) } /// Respond to GetBlockBodies request fn return_block_bodies(io: &SyncIo, r: &UntrustedRlp, peer_id: PeerId) -> RlpResponseResult { let mut count = r.item_count(); if count == 0 { debug!(target: "sync", "Empty GetBlockBodies request, ignoring."); return Ok(None); } count = min(count, MAX_BODIES_TO_SEND); let mut added = 0usize; let mut data = Bytes::new(); for i in 0..count { if let Some(mut hdr) = io.chain().block_body(BlockID::Hash(try!(r.val_at::(i)))) { data.append(&mut hdr); added += 1; } } let mut rlp = RlpStream::new_list(added); rlp.append_raw(&data, added); trace!(target: "sync", "{} -> GetBlockBodies: returned {} entries", peer_id, added); Ok(Some((BLOCK_BODIES_PACKET, rlp))) } /// Respond to GetNodeData request fn return_node_data(io: &SyncIo, r: &UntrustedRlp, peer_id: PeerId) -> RlpResponseResult { let mut count = r.item_count(); trace!(target: "sync", "{} -> GetNodeData: {} entries", peer_id, count); if count == 0 { debug!(target: "sync", "Empty GetNodeData request, ignoring."); return Ok(None); } count = min(count, MAX_NODE_DATA_TO_SEND); let mut added = 0usize; let mut data = Bytes::new(); for i in 0..count { if let Some(mut hdr) = io.chain().state_data(&try!(r.val_at::(i))) { data.append(&mut hdr); added += 1; } } trace!(target: "sync", "{} -> GetNodeData: return {} entries", peer_id, added); let mut rlp = RlpStream::new_list(added); rlp.append_raw(&data, added); Ok(Some((NODE_DATA_PACKET, rlp))) } fn return_receipts(io: &SyncIo, rlp: &UntrustedRlp, peer_id: PeerId) -> RlpResponseResult { let mut count = rlp.item_count(); trace!(target: "sync", "{} -> GetReceipts: {} entries", peer_id, count); if count == 0 { debug!(target: "sync", "Empty GetReceipts request, ignoring."); return Ok(None); } count = min(count, MAX_RECEIPTS_HEADERS_TO_SEND); let mut added_headers = 0usize; let mut added_receipts = 0usize; let mut data = Bytes::new(); for i in 0..count { if let Some(mut receipts_bytes) = io.chain().block_receipts(&try!(rlp.val_at::(i))) { data.append(&mut receipts_bytes); added_receipts += receipts_bytes.len(); added_headers += 1; if added_receipts > MAX_RECEIPTS_TO_SEND { break; } } } let mut rlp_result = RlpStream::new_list(added_headers); rlp_result.append_raw(&data, added_headers); Ok(Some((RECEIPTS_PACKET, rlp_result))) } /// Respond to GetSnapshotManifest request fn return_snapshot_manifest(io: &SyncIo, r: &UntrustedRlp, peer_id: PeerId) -> RlpResponseResult { let count = r.item_count(); trace!(target: "sync", "{} -> GetSnapshotManifest", peer_id); if count != 0 { debug!(target: "sync", "Invalid GetSnapshotManifest request, ignoring."); return Ok(None); } let rlp = match io.snapshot_service().manifest() { Some(manifest) => { trace!(target: "sync", "{} <- SnapshotManifest", peer_id); let mut rlp = RlpStream::new_list(1); rlp.append_raw(&manifest.into_rlp(), 1); rlp }, None => { trace!(target: "sync", "{}: No manifest to return", peer_id); RlpStream::new_list(0) } }; Ok(Some((SNAPSHOT_MANIFEST_PACKET, rlp))) } /// Respond to GetSnapshotData request fn return_snapshot_data(io: &SyncIo, r: &UntrustedRlp, peer_id: PeerId) -> RlpResponseResult { let hash: H256 = try!(r.val_at(0)); trace!(target: "sync", "{} -> GetSnapshotData {:?}", peer_id, hash); let rlp = match io.snapshot_service().chunk(hash) { Some(data) => { let mut rlp = RlpStream::new_list(1); trace!(target: "sync", "{} <- SnapshotData", peer_id); rlp.append(&data); rlp }, None => { RlpStream::new_list(0) } }; Ok(Some((SNAPSHOT_DATA_PACKET, rlp))) } fn return_rlp(io: &mut SyncIo, rlp: &UntrustedRlp, peer: PeerId, rlp_func: FRlp, error_func: FError) -> Result<(), PacketDecodeError> where FRlp : Fn(&SyncIo, &UntrustedRlp, PeerId) -> RlpResponseResult, FError : FnOnce(NetworkError) -> String { let response = rlp_func(io, rlp, peer); match response { Err(e) => Err(e), Ok(Some((packet_id, rlp_stream))) => { io.respond(packet_id, rlp_stream.out()).unwrap_or_else( |e| debug!(target: "sync", "{:?}", error_func(e))); Ok(()) } _ => Ok(()) } } /// Dispatch incoming requests and responses pub fn dispatch_packet(sync: &RwLock, io: &mut SyncIo, peer: PeerId, packet_id: u8, data: &[u8]) { let rlp = UntrustedRlp::new(data); let result = match packet_id { GET_BLOCK_BODIES_PACKET => ChainSync::return_rlp(io, &rlp, peer, ChainSync::return_block_bodies, |e| format!("Error sending block bodies: {:?}", e)), GET_BLOCK_HEADERS_PACKET => ChainSync::return_rlp(io, &rlp, peer, ChainSync::return_block_headers, |e| format!("Error sending block headers: {:?}", e)), GET_RECEIPTS_PACKET => ChainSync::return_rlp(io, &rlp, peer, ChainSync::return_receipts, |e| format!("Error sending receipts: {:?}", e)), GET_NODE_DATA_PACKET => ChainSync::return_rlp(io, &rlp, peer, ChainSync::return_node_data, |e| format!("Error sending nodes: {:?}", e)), GET_SNAPSHOT_MANIFEST_PACKET => ChainSync::return_rlp(io, &rlp, peer, ChainSync::return_snapshot_manifest, |e| format!("Error sending snapshot manifest: {:?}", e)), GET_SNAPSHOT_DATA_PACKET => ChainSync::return_rlp(io, &rlp, peer, ChainSync::return_snapshot_data, |e| format!("Error sending snapshot data: {:?}", e)), _ => { sync.write().on_packet(io, peer, packet_id, data); Ok(()) } }; result.unwrap_or_else(|e| { debug!(target:"sync", "{} -> Malformed packet {} : {}", peer, packet_id, e); }) } pub fn on_packet(&mut self, io: &mut SyncIo, peer: PeerId, packet_id: u8, data: &[u8]) { if packet_id != STATUS_PACKET && !self.peers.contains_key(&peer) { debug!(target:"sync", "Unexpected packet from unregistered peer: {}:{}", peer, io.peer_info(peer)); return; } let rlp = UntrustedRlp::new(data); let result = match packet_id { STATUS_PACKET => self.on_peer_status(io, peer, &rlp), TRANSACTIONS_PACKET => self.on_peer_transactions(io, peer, &rlp), BLOCK_HEADERS_PACKET => self.on_peer_block_headers(io, peer, &rlp), BLOCK_BODIES_PACKET => self.on_peer_block_bodies(io, peer, &rlp), RECEIPTS_PACKET => self.on_peer_block_receipts(io, peer, &rlp), NEW_BLOCK_PACKET => self.on_peer_new_block(io, peer, &rlp), NEW_BLOCK_HASHES_PACKET => self.on_peer_new_hashes(io, peer, &rlp), SNAPSHOT_MANIFEST_PACKET => self.on_snapshot_manifest(io, peer, &rlp), SNAPSHOT_DATA_PACKET => self.on_snapshot_data(io, peer, &rlp), _ => { debug!(target: "sync", "{}: Unknown packet {}", peer, packet_id); Ok(()) } }; result.unwrap_or_else(|e| { debug!(target:"sync", "{} -> Malformed packet {} : {}", peer, packet_id, e); }) } #[cfg_attr(feature="dev", allow(match_same_arms))] pub fn maintain_peers(&mut self, io: &mut SyncIo) { let tick = time::precise_time_s(); let mut aborting = Vec::new(); for (peer_id, peer) in &self.peers { let timeout = match peer.asking { PeerAsking::BlockHeaders => (tick - peer.ask_time) > HEADERS_TIMEOUT_SEC, PeerAsking::BlockBodies => (tick - peer.ask_time) > BODIES_TIMEOUT_SEC, PeerAsking::BlockReceipts => (tick - peer.ask_time) > RECEIPTS_TIMEOUT_SEC, PeerAsking::Nothing => false, PeerAsking::ForkHeader => (tick - peer.ask_time) > FORK_HEADER_TIMEOUT_SEC, PeerAsking::SnapshotManifest => (tick - peer.ask_time) > SNAPSHOT_MANIFEST_TIMEOUT_SEC, PeerAsking::SnapshotData => (tick - peer.ask_time) > SNAPSHOT_DATA_TIMEOUT_SEC, }; if timeout { trace!(target:"sync", "Timeout {}", peer_id); io.disconnect_peer(*peer_id); aborting.push(*peer_id); } } for p in aborting { self.on_peer_aborting(io, p); } } fn check_resume(&mut self, io: &mut SyncIo) { if self.state == SyncState::Waiting && !io.chain().queue_info().is_full() && self.state == SyncState::Waiting { self.state = SyncState::Blocks; self.continue_sync(io); } else if self.state == SyncState::SnapshotWaiting && io.snapshot_service().status() == RestorationStatus::Inactive { trace!(target:"sync", "Snapshot restoration is complete"); self.restart(io); self.continue_sync(io); } } /// creates rlp to send for the tree defined by 'from' and 'to' hashes fn create_new_hashes_rlp(chain: &BlockChainClient, from: &H256, to: &H256) -> Option { match chain.tree_route(from, to) { Some(route) => { let uncles = chain.find_uncles(from).unwrap_or_else(Vec::new); match route.blocks.len() { 0 => None, _ => { let mut blocks = route.blocks; blocks.extend(uncles); let mut rlp_stream = RlpStream::new_list(blocks.len()); for block_hash in blocks { let mut hash_rlp = RlpStream::new_list(2); let number = HeaderView::new(&chain.block_header(BlockID::Hash(block_hash.clone())) .expect("chain.tree_route and chain.find_uncles only return hahses of blocks that are in the blockchain. qed.")).number(); hash_rlp.append(&block_hash); hash_rlp.append(&number); rlp_stream.append_raw(hash_rlp.as_raw(), 1); } Some(rlp_stream.out()) } } }, None => None } } /// creates latest block rlp for the given client fn create_latest_block_rlp(chain: &BlockChainClient) -> Bytes { let mut rlp_stream = RlpStream::new_list(2); rlp_stream.append_raw(&chain.block(BlockID::Hash(chain.chain_info().best_block_hash)).expect("Best block always exists"), 1); rlp_stream.append(&chain.chain_info().total_difficulty); rlp_stream.out() } /// creates latest block rlp for the given client fn create_new_block_rlp(chain: &BlockChainClient, hash: &H256) -> Bytes { let mut rlp_stream = RlpStream::new_list(2); rlp_stream.append_raw(&chain.block(BlockID::Hash(hash.clone())).expect("Block has just been sealed; qed"), 1); rlp_stream.append(&chain.block_total_difficulty(BlockID::Hash(hash.clone())).expect("Block has just been sealed; qed.")); rlp_stream.out() } /// returns peer ids that have less blocks than our chain fn get_lagging_peers(&mut self, chain_info: &BlockChainInfo, io: &SyncIo) -> Vec { let latest_hash = chain_info.best_block_hash; self.peers.iter_mut().filter_map(|(&id, ref mut peer_info)| match io.chain().block_status(BlockID::Hash(peer_info.latest_hash.clone())) { BlockStatus::InChain => { if peer_info.latest_hash != latest_hash { Some(id) } else { None } }, _ => None }) .collect::>() } fn select_random_lagging_peers(&mut self, peers: &[PeerId]) -> Vec { use rand::Rng; // take sqrt(x) peers let mut peers = peers.to_vec(); let mut count = (self.peers.len() as f64).powf(0.5).round() as usize; count = min(count, MAX_PEERS_PROPAGATION); count = max(count, MIN_PEERS_PROPAGATION); ::rand::thread_rng().shuffle(&mut peers); peers.truncate(count); peers } /// propagates latest block to lagging peers fn propagate_blocks(&mut self, chain_info: &BlockChainInfo, io: &mut SyncIo, sealed: &[H256], peers: &[PeerId]) -> usize { trace!(target: "sync", "Sending NewBlocks to {:?}", peers); let mut sent = 0; for peer_id in peers { if sealed.is_empty() { let rlp = ChainSync::create_latest_block_rlp(io.chain()); self.send_packet(io, *peer_id, NEW_BLOCK_PACKET, rlp); } else { for h in sealed { let rlp = ChainSync::create_new_block_rlp(io.chain(), h); self.send_packet(io, *peer_id, NEW_BLOCK_PACKET, rlp); } } if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { peer.latest_hash = chain_info.best_block_hash.clone(); } sent += 1; } sent } /// propagates new known hashes to all peers fn propagate_new_hashes(&mut self, chain_info: &BlockChainInfo, io: &mut SyncIo, peers: &[PeerId]) -> usize { trace!(target: "sync", "Sending NewHashes to {:?}", peers); let mut sent = 0; let last_parent = HeaderView::new(&io.chain().block_header(BlockID::Hash(chain_info.best_block_hash.clone())) .expect("Best block always exists")).parent_hash(); for peer_id in peers { sent += match ChainSync::create_new_hashes_rlp(io.chain(), &last_parent, &chain_info.best_block_hash) { Some(rlp) => { { if let Some(ref mut peer) = self.peers.get_mut(&peer_id) { peer.latest_hash = chain_info.best_block_hash.clone(); } } self.send_packet(io, *peer_id, NEW_BLOCK_HASHES_PACKET, rlp); 1 }, None => 0 } } sent } /// propagates new transactions to all peers pub fn propagate_new_transactions(&mut self, io: &mut SyncIo) -> usize { // Early out of nobody to send to. if self.peers.is_empty() { return 0; } let transactions = io.chain().pending_transactions(); if transactions.is_empty() { return 0; } let all_transactions_hashes = transactions.iter().map(|tx| tx.hash()).collect::>(); let all_transactions_rlp = { let mut packet = RlpStream::new_list(transactions.len()); for tx in &transactions { packet.append(tx); } packet.out() }; // sqrt(x)/x scaled to max u32 let fraction = (self.peers.len() as f64).powf(-0.5).mul(u32::max_value() as f64).round() as u32; let small = self.peers.len() < MIN_PEERS_PROPAGATION; let lucky_peers = self.peers.iter_mut() .filter(|_| small || ::rand::random::() < fraction) .take(MAX_PEERS_PROPAGATION) .filter_map(|(peer_id, mut peer_info)| { // Send all transactions if peer_info.last_sent_transactions.is_empty() { peer_info.last_sent_transactions = all_transactions_hashes.clone(); return Some((*peer_id, all_transactions_rlp.clone())); } // Get hashes of all transactions to send to this peer let to_send = all_transactions_hashes.difference(&peer_info.last_sent_transactions).cloned().collect::>(); if to_send.is_empty() { return None; } // Construct RLP let mut packet = RlpStream::new_list(to_send.len()); for tx in &transactions { if to_send.contains(&tx.hash()) { packet.append(tx); } } peer_info.last_sent_transactions = all_transactions_hashes.clone(); Some((*peer_id, packet.out())) }) .collect::>(); // Send RLPs let sent = lucky_peers.len(); if sent > 0 { for (peer_id, rlp) in lucky_peers.into_iter() { self.send_packet(io, peer_id, TRANSACTIONS_PACKET, rlp); } trace!(target: "sync", "Sent up to {} transactions to {} peers.", transactions.len(), sent); } sent } fn propagate_latest_blocks(&mut self, io: &mut SyncIo, sealed: &[H256]) { let chain_info = io.chain().chain_info(); if (((chain_info.best_block_number as i64) - (self.last_sent_block_number as i64)).abs() as BlockNumber) < MAX_PEER_LAG_PROPAGATION { let mut peers = self.get_lagging_peers(&chain_info, io); if sealed.is_empty() { let hashes = self.propagate_new_hashes(&chain_info, io, &peers); peers = self.select_random_lagging_peers(&peers); let blocks = self.propagate_blocks(&chain_info, io, sealed, &peers); if blocks != 0 || hashes != 0 { trace!(target: "sync", "Sent latest {} blocks and {} hashes to peers.", blocks, hashes); } } else { self.propagate_blocks(&chain_info, io, sealed, &peers); self.propagate_new_hashes(&chain_info, io, &peers); trace!(target: "sync", "Sent sealed block to all peers"); }; } self.propagate_new_transactions(io); self.last_sent_block_number = chain_info.best_block_number; } /// Maintain other peers. Send out any new blocks and transactions pub fn maintain_sync(&mut self, io: &mut SyncIo) { self.check_resume(io); } /// called when block is imported to chain - propagates the blocks and updates transactions sent to peers pub fn chain_new_blocks(&mut self, io: &mut SyncIo, _imported: &[H256], invalid: &[H256], _enacted: &[H256], _retracted: &[H256], sealed: &[H256]) { if io.is_chain_queue_empty() { self.propagate_latest_blocks(io, sealed); } if !invalid.is_empty() { trace!(target: "sync", "Bad blocks in the queue, restarting"); self.restart(io); } for peer_info in self.peers.values_mut() { peer_info.last_sent_transactions.clear(); } } } #[cfg(test)] mod tests { use tests::helpers::*; use tests::snapshot::TestSnapshotService; use super::*; use ::SyncConfig; use util::*; use rlp::*; use super::{PeerInfo, PeerAsking}; use ethcore::views::BlockView; use ethcore::header::*; use ethcore::client::*; use ethcore::miner::MinerService; fn get_dummy_block(order: u32, parent_hash: H256) -> Bytes { let mut header = Header::new(); header.set_gas_limit(0.into()); header.set_difficulty((order * 100).into()); header.set_timestamp((order * 10) as u64); header.set_number(order as u64); header.set_parent_hash(parent_hash); header.set_state_root(H256::zero()); let mut rlp = RlpStream::new_list(3); rlp.append(&header); rlp.append_raw(&::rlp::EMPTY_LIST_RLP, 1); rlp.append_raw(&::rlp::EMPTY_LIST_RLP, 1); rlp.out() } fn get_dummy_blocks(order: u32, parent_hash: H256) -> Bytes { let mut rlp = RlpStream::new_list(1); rlp.append_raw(&get_dummy_block(order, parent_hash), 1); let difficulty: U256 = (100 * order).into(); rlp.append(&difficulty); rlp.out() } fn get_dummy_hashes() -> Bytes { let mut rlp = RlpStream::new_list(5); for _ in 0..5 { let mut hash_d_rlp = RlpStream::new_list(2); let hash: H256 = H256::from(0u64); let diff: U256 = U256::from(1u64); hash_d_rlp.append(&hash); hash_d_rlp.append(&diff); rlp.append_raw(&hash_d_rlp.out(), 1); } rlp.out() } #[test] fn return_receipts_empty() { let mut client = TestBlockChainClient::new(); let mut queue = VecDeque::new(); let ss = TestSnapshotService::new(); let io = TestIo::new(&mut client, &ss, &mut queue, None); let result = ChainSync::return_receipts(&io, &UntrustedRlp::new(&[0xc0]), 0); assert!(result.is_ok()); } #[test] fn return_receipts() { let mut client = TestBlockChainClient::new(); let mut queue = VecDeque::new(); let sync = dummy_sync_with_peer(H256::new(), &client); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let mut receipt_list = RlpStream::new_list(4); receipt_list.append(&H256::from("0000000000000000000000000000000000000000000000005555555555555555")); receipt_list.append(&H256::from("ff00000000000000000000000000000000000000000000000000000000000000")); receipt_list.append(&H256::from("fff0000000000000000000000000000000000000000000000000000000000000")); receipt_list.append(&H256::from("aff0000000000000000000000000000000000000000000000000000000000000")); let receipts_request = receipt_list.out(); // it returns rlp ONLY for hashes started with "f" let result = ChainSync::return_receipts(&io, &UntrustedRlp::new(&receipts_request.clone()), 0); assert!(result.is_ok()); let rlp_result = result.unwrap(); assert!(rlp_result.is_some()); // the length of two rlp-encoded receipts assert_eq!(603, rlp_result.unwrap().1.out().len()); io.sender = Some(2usize); ChainSync::dispatch_packet(&RwLock::new(sync), &mut io, 0usize, super::GET_RECEIPTS_PACKET, &receipts_request); assert_eq!(1, io.queue.len()); } #[test] fn return_block_headers() { use ethcore::views::HeaderView; fn make_hash_req(h: &H256, count: usize, skip: usize, reverse: bool) -> Bytes { let mut rlp = RlpStream::new_list(4); rlp.append(h); rlp.append(&count); rlp.append(&skip); rlp.append(&if reverse {1u32} else {0u32}); rlp.out() } fn make_num_req(n: usize, count: usize, skip: usize, reverse: bool) -> Bytes { let mut rlp = RlpStream::new_list(4); rlp.append(&n); rlp.append(&count); rlp.append(&skip); rlp.append(&if reverse {1u32} else {0u32}); rlp.out() } fn to_header_vec(rlp: ::chain::RlpResponseResult) -> Vec { Rlp::new(&rlp.unwrap().unwrap().1.out()).iter().map(|r| r.as_raw().to_vec()).collect() } let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Nothing); let blocks: Vec<_> = (0 .. 100).map(|i| (&client as &BlockChainClient).block(BlockID::Number(i as BlockNumber)).unwrap()).collect(); let headers: Vec<_> = blocks.iter().map(|b| Rlp::new(b).at(0).as_raw().to_vec()).collect(); let hashes: Vec<_> = headers.iter().map(|h| HeaderView::new(h).sha3()).collect(); let mut queue = VecDeque::new(); let ss = TestSnapshotService::new(); let io = TestIo::new(&mut client, &ss, &mut queue, None); let unknown: H256 = H256::new(); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_hash_req(&unknown, 1, 0, false)), 0); assert!(to_header_vec(result).is_empty()); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_hash_req(&unknown, 1, 0, true)), 0); assert!(to_header_vec(result).is_empty()); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_hash_req(&hashes[2], 1, 0, true)), 0); assert_eq!(to_header_vec(result), vec![headers[2].clone()]); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_hash_req(&hashes[2], 1, 0, false)), 0); assert_eq!(to_header_vec(result), vec![headers[2].clone()]); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_hash_req(&hashes[50], 3, 5, false)), 0); assert_eq!(to_header_vec(result), vec![headers[50].clone(), headers[56].clone(), headers[62].clone()]); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_hash_req(&hashes[50], 3, 5, true)), 0); assert_eq!(to_header_vec(result), vec![headers[50].clone(), headers[44].clone(), headers[38].clone()]); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_num_req(2, 1, 0, true)), 0); assert_eq!(to_header_vec(result), vec![headers[2].clone()]); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_num_req(2, 1, 0, false)), 0); assert_eq!(to_header_vec(result), vec![headers[2].clone()]); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_num_req(50, 3, 5, false)), 0); assert_eq!(to_header_vec(result), vec![headers[50].clone(), headers[56].clone(), headers[62].clone()]); let result = ChainSync::return_block_headers(&io, &UntrustedRlp::new(&make_num_req(50, 3, 5, true)), 0); assert_eq!(to_header_vec(result), vec![headers[50].clone(), headers[44].clone(), headers[38].clone()]); } #[test] fn return_nodes() { let mut client = TestBlockChainClient::new(); let mut queue = VecDeque::new(); let sync = dummy_sync_with_peer(H256::new(), &client); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let mut node_list = RlpStream::new_list(3); node_list.append(&H256::from("0000000000000000000000000000000000000000000000005555555555555555")); node_list.append(&H256::from("ffffffffffffffffffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaa")); node_list.append(&H256::from("aff0000000000000000000000000000000000000000000000000000000000000")); let node_request = node_list.out(); // it returns rlp ONLY for hashes started with "f" let result = ChainSync::return_node_data(&io, &UntrustedRlp::new(&node_request.clone()), 0); assert!(result.is_ok()); let rlp_result = result.unwrap(); assert!(rlp_result.is_some()); // the length of one rlp-encoded hashe assert_eq!(34, rlp_result.unwrap().1.out().len()); io.sender = Some(2usize); ChainSync::dispatch_packet(&RwLock::new(sync), &mut io, 0usize, super::GET_NODE_DATA_PACKET, &node_request); assert_eq!(1, io.queue.len()); } fn dummy_sync_with_peer(peer_latest_hash: H256, client: &BlockChainClient) -> ChainSync { let mut sync = ChainSync::new(SyncConfig::default(), client); sync.peers.insert(0, PeerInfo { protocol_version: 0, genesis: H256::zero(), network_id: U256::zero(), latest_hash: peer_latest_hash, difficulty: None, asking: PeerAsking::Nothing, asking_blocks: Vec::new(), asking_hash: None, ask_time: 0f64, last_sent_transactions: HashSet::new(), expired: false, confirmation: super::ForkConfirmation::Confirmed, snapshot_number: None, snapshot_hash: None, asking_snapshot_data: None, block_set: None, }); sync } #[test] fn finds_lagging_peers() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(10), &client); let chain_info = client.chain_info(); let ss = TestSnapshotService::new(); let io = TestIo::new(&mut client, &ss, &mut queue, None); let lagging_peers = sync.get_lagging_peers(&chain_info, &io); assert_eq!(1, lagging_peers.len()) } #[test] fn calculates_tree_for_lagging_peer() { let mut client = TestBlockChainClient::new(); client.add_blocks(15, EachBlockWith::Uncle); let start = client.block_hash_delta_minus(4); let end = client.block_hash_delta_minus(2); // wrong way end -> start, should be None let rlp = ChainSync::create_new_hashes_rlp(&client, &end, &start); assert!(rlp.is_none()); let rlp = ChainSync::create_new_hashes_rlp(&client, &start, &end).unwrap(); // size of three rlp encoded hash-difficulty assert_eq!(107, rlp.len()); } #[test] fn sends_new_hashes_to_lagging_peer() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let chain_info = client.chain_info(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let peers = sync.get_lagging_peers(&chain_info, &io); let peer_count = sync.propagate_new_hashes(&chain_info, &mut io, &peers); // 1 message should be send assert_eq!(1, io.queue.len()); // 1 peer should be updated assert_eq!(1, peer_count); // NEW_BLOCK_HASHES_PACKET assert_eq!(0x01, io.queue[0].packet_id); } #[test] fn sends_latest_block_to_lagging_peer() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let chain_info = client.chain_info(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let peers = sync.get_lagging_peers(&chain_info, &io); let peer_count = sync.propagate_blocks(&chain_info, &mut io, &[], &peers); // 1 message should be send assert_eq!(1, io.queue.len()); // 1 peer should be updated assert_eq!(1, peer_count); // NEW_BLOCK_PACKET assert_eq!(0x07, io.queue[0].packet_id); } #[test] fn sends_sealed_block() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let hash = client.block_hash(BlockID::Number(99)).unwrap(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let chain_info = client.chain_info(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let peers = sync.get_lagging_peers(&chain_info, &io); let peer_count = sync.propagate_blocks(&chain_info, &mut io, &[hash.clone()], &peers); // 1 message should be send assert_eq!(1, io.queue.len()); // 1 peer should be updated assert_eq!(1, peer_count); // NEW_BLOCK_PACKET assert_eq!(0x07, io.queue[0].packet_id); } #[test] fn propagates_transactions() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); client.insert_transaction_to_queue(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(1), &client); let mut queue = VecDeque::new(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let peer_count = sync.propagate_new_transactions(&mut io); // Try to propagate same transactions for the second time let peer_count2 = sync.propagate_new_transactions(&mut io); // 1 message should be send assert_eq!(1, io.queue.len()); // 1 peer should be updated but only once assert_eq!(1, peer_count); assert_eq!(0, peer_count2); // TRANSACTIONS_PACKET assert_eq!(0x02, io.queue[0].packet_id); } #[test] fn propagates_transactions_again_after_new_block() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); client.insert_transaction_to_queue(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(1), &client); let mut queue = VecDeque::new(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let peer_count = sync.propagate_new_transactions(&mut io); sync.chain_new_blocks(&mut io, &[], &[], &[], &[], &[]); // Try to propagate same transactions for the second time let peer_count2 = sync.propagate_new_transactions(&mut io); // 2 message should be send assert_eq!(2, io.queue.len()); // 1 peer should be updated twice assert_eq!(1, peer_count); assert_eq!(1, peer_count2); // TRANSACTIONS_PACKET assert_eq!(0x02, io.queue[0].packet_id); assert_eq!(0x02, io.queue[1].packet_id); } #[test] fn propagates_transactions_without_alternating() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); client.insert_transaction_to_queue(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(1), &client); let mut queue = VecDeque::new(); let ss = TestSnapshotService::new(); // should sent some { let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let peer_count = sync.propagate_new_transactions(&mut io); assert_eq!(1, io.queue.len()); assert_eq!(1, peer_count); } // Insert some more client.insert_transaction_to_queue(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); // Propagate new transactions let peer_count2 = sync.propagate_new_transactions(&mut io); // And now the peer should have all transactions let peer_count3 = sync.propagate_new_transactions(&mut io); // 2 message should be send (in total) assert_eq!(2, io.queue.len()); // 1 peer should be updated but only once after inserting new transaction assert_eq!(1, peer_count2); assert_eq!(0, peer_count3); // TRANSACTIONS_PACKET assert_eq!(0x02, io.queue[0].packet_id); assert_eq!(0x02, io.queue[1].packet_id); } #[test] fn handles_peer_new_block_malformed() { let mut client = TestBlockChainClient::new(); client.add_blocks(10, EachBlockWith::Uncle); let block_data = get_dummy_block(11, client.chain_info().best_block_hash); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); //sync.have_common_block = true; let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let block = UntrustedRlp::new(&block_data); let result = sync.on_peer_new_block(&mut io, 0, &block); assert!(result.is_err()); } #[test] fn handles_peer_new_block() { let mut client = TestBlockChainClient::new(); client.add_blocks(10, EachBlockWith::Uncle); let block_data = get_dummy_blocks(11, client.chain_info().best_block_hash); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let block = UntrustedRlp::new(&block_data); let result = sync.on_peer_new_block(&mut io, 0, &block); assert!(result.is_ok()); } #[test] fn handles_peer_new_block_empty() { let mut client = TestBlockChainClient::new(); client.add_blocks(10, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let empty_data = vec![]; let block = UntrustedRlp::new(&empty_data); let result = sync.on_peer_new_block(&mut io, 0, &block); assert!(result.is_err()); } #[test] fn handles_peer_new_hashes() { let mut client = TestBlockChainClient::new(); client.add_blocks(10, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let hashes_data = get_dummy_hashes(); let hashes_rlp = UntrustedRlp::new(&hashes_data); let result = sync.on_peer_new_hashes(&mut io, 0, &hashes_rlp); assert!(result.is_ok()); } #[test] fn handles_peer_new_hashes_empty() { let mut client = TestBlockChainClient::new(); client.add_blocks(10, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let empty_hashes_data = vec![]; let hashes_rlp = UntrustedRlp::new(&empty_hashes_data); let result = sync.on_peer_new_hashes(&mut io, 0, &hashes_rlp); assert!(result.is_ok()); } // idea is that what we produce when propagading latest hashes should be accepted in // on_peer_new_hashes in our code as well #[test] fn hashes_rlp_mutually_acceptable() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let chain_info = client.chain_info(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let peers = sync.get_lagging_peers(&chain_info, &io); sync.propagate_new_hashes(&chain_info, &mut io, &peers); let data = &io.queue[0].data.clone(); let result = sync.on_peer_new_hashes(&mut io, 0, &UntrustedRlp::new(data)); assert!(result.is_ok()); } // idea is that what we produce when propagading latest block should be accepted in // on_peer_new_block in our code as well #[test] fn block_rlp_mutually_acceptable() { let mut client = TestBlockChainClient::new(); client.add_blocks(100, EachBlockWith::Uncle); let mut queue = VecDeque::new(); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let chain_info = client.chain_info(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); let peers = sync.get_lagging_peers(&chain_info, &io); sync.propagate_blocks(&chain_info, &mut io, &[], &peers); let data = &io.queue[0].data.clone(); let result = sync.on_peer_new_block(&mut io, 0, &UntrustedRlp::new(data)); assert!(result.is_ok()); } #[test] fn should_add_transactions_to_queue() { // given let mut client = TestBlockChainClient::new(); client.add_blocks(98, EachBlockWith::Uncle); client.add_blocks(1, EachBlockWith::UncleAndTransaction); client.add_blocks(1, EachBlockWith::Transaction); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let good_blocks = vec![client.block_hash_delta_minus(2)]; let retracted_blocks = vec![client.block_hash_delta_minus(1)]; // Add some balance to clients and reset nonces for h in &[good_blocks[0], retracted_blocks[0]] { let block = client.block(BlockID::Hash(*h)).unwrap(); let view = BlockView::new(&block); client.set_balance(view.transactions()[0].sender().unwrap(), U256::from(1_000_000_000)); client.set_nonce(view.transactions()[0].sender().unwrap(), U256::from(0)); } // when { let mut queue = VecDeque::new(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); io.chain.miner.chain_new_blocks(io.chain, &[], &[], &[], &good_blocks); sync.chain_new_blocks(&mut io, &[], &[], &[], &good_blocks, &[]); assert_eq!(io.chain.miner.status().transactions_in_future_queue, 0); assert_eq!(io.chain.miner.status().transactions_in_pending_queue, 1); } // We need to update nonce status (because we say that the block has been imported) for h in &[good_blocks[0]] { let block = client.block(BlockID::Hash(*h)).unwrap(); let view = BlockView::new(&block); client.set_nonce(view.transactions()[0].sender().unwrap(), U256::from(1)); } { let mut queue = VecDeque::new(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); io.chain.miner.chain_new_blocks(io.chain, &[], &[], &good_blocks, &retracted_blocks); sync.chain_new_blocks(&mut io, &[], &[], &good_blocks, &retracted_blocks, &[]); } // then let status = client.miner.status(); assert_eq!(status.transactions_in_pending_queue, 1); assert_eq!(status.transactions_in_future_queue, 0); } #[test] fn should_not_add_transactions_to_queue_if_not_synced() { // given let mut client = TestBlockChainClient::new(); client.add_blocks(98, EachBlockWith::Uncle); client.add_blocks(1, EachBlockWith::UncleAndTransaction); client.add_blocks(1, EachBlockWith::Transaction); let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client); let good_blocks = vec![client.block_hash_delta_minus(2)]; let retracted_blocks = vec![client.block_hash_delta_minus(1)]; let mut queue = VecDeque::new(); let ss = TestSnapshotService::new(); let mut io = TestIo::new(&mut client, &ss, &mut queue, None); // when sync.chain_new_blocks(&mut io, &[], &[], &[], &good_blocks, &[]); assert_eq!(io.chain.miner.status().transactions_in_future_queue, 0); assert_eq!(io.chain.miner.status().transactions_in_pending_queue, 0); sync.chain_new_blocks(&mut io, &[], &[], &good_blocks, &retracted_blocks, &[]); // then let status = io.chain.miner.status(); assert_eq!(status.transactions_in_pending_queue, 0); assert_eq!(status.transactions_in_future_queue, 0); } }