// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
#![feature(test)]
extern crate test;
extern crate triehash;
extern crate ethcore_util;
extern crate ethcore_bytes;
extern crate ethcore_bigint;
extern crate memorydb;
extern crate trie;
#[macro_use]
extern crate log;
extern crate hash;
use test::{Bencher, black_box};
use ethcore_bigint::hash::*;
use ethcore_bytes::*;
use trie::*;
use memorydb::*;
use triehash::*;
use hash::keccak;
fn random_word(alphabet: &[u8], min_count: usize, diff_count: usize, seed: &mut H256) -> Vec {
assert!(min_count + diff_count <= 32);
*seed = keccak(&seed);
let r = min_count + (seed[31] as usize % (diff_count + 1));
let mut ret: Vec = Vec::with_capacity(r);
for i in 0..r {
ret.push(alphabet[seed[i] as usize % alphabet.len()]);
}
ret
}
fn random_bytes(min_count: usize, diff_count: usize, seed: &mut H256) -> Vec {
assert!(min_count + diff_count <= 32);
*seed = keccak(&seed);
let r = min_count + (seed[31] as usize % (diff_count + 1));
seed[0..r].to_vec()
}
fn random_value(seed: &mut H256) -> Bytes {
*seed = keccak(&seed);
match seed[0] % 2 {
1 => vec![seed[31];1],
_ => seed.to_vec(),
}
}
#[bench]
fn trie_insertions_32_mir_1k(b: &mut Bencher) {
let st = StandardMap {
alphabet: Alphabet::All,
min_key: 32,
journal_key: 0,
value_mode: ValueMode::Mirror,
count: 1000,
};
let d = st.make();
let mut hash_count = 0usize;
b.iter(&mut ||{
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for i in d.iter() {
t.insert(&i.0, &i.1).unwrap();
}
hash_count = t.hash_count;
});
// println!("hash_count: {}", hash_count);
}
#[bench]
fn trie_iter(b: &mut Bencher) {
let st = StandardMap {
alphabet: Alphabet::All,
min_key: 32,
journal_key: 0,
value_mode: ValueMode::Mirror,
count: 1000,
};
let d = st.make();
let mut memdb = MemoryDB::new();
let mut root = H256::new();
{
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for i in d.iter() {
t.insert(&i.0, &i.1).unwrap();
}
}
b.iter(&mut ||{
let t = TrieDB::new(&memdb, &root).unwrap();
for n in t.iter().unwrap() {
black_box(n).unwrap();
}
});
}
#[bench]
fn triehash_insertions_32_mir_1k(b: &mut Bencher) {
let st = StandardMap {
alphabet: Alphabet::All,
min_key: 32,
journal_key: 0,
value_mode: ValueMode::Mirror,
count: 1000,
};
let d = st.make();
b.iter(&mut ||{
trie_root(d.clone()).clone();
});
}
#[bench]
fn trie_insertions_32_ran_1k(b: &mut Bencher) {
let st = StandardMap {
alphabet: Alphabet::All,
min_key: 32,
journal_key: 0,
value_mode: ValueMode::Random,
count: 1000,
};
let d = st.make();
let mut hash_count = 0usize;
let mut r = H256::new();
b.iter(&mut ||{
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for i in d.iter() {
t.insert(&i.0, &i.1).unwrap();
}
hash_count = t.hash_count;
r = t.root().clone();
});
// println!("result: {}", hash_count);
}
#[bench]
fn triehash_insertions_32_ran_1k(b: &mut Bencher) {
let st = StandardMap {
alphabet: Alphabet::All,
min_key: 32,
journal_key: 0,
value_mode: ValueMode::Random,
count: 1000,
};
let d = st.make();
b.iter(&mut ||{
trie_root(d.clone()).clone();
});
}
#[bench]
fn trie_insertions_six_high(b: &mut Bencher) {
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
let mut seed = H256::new();
for _ in 0..1000 {
let k = random_bytes(6, 0, &mut seed);
let v = random_value(&mut seed);
d.push((k, v))
}
b.iter(||{
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for i in d.iter() {
t.insert(&i.0, &i.1).unwrap();
}
})
}
#[bench]
fn triehash_insertions_six_high(b: &mut Bencher) {
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
let mut seed = H256::new();
for _ in 0..1000 {
let k = random_bytes(6, 0, &mut seed);
let v = random_value(&mut seed);
d.push((k, v))
}
b.iter(&||{
trie_root(d.clone());
})
}
#[bench]
fn trie_insertions_six_mid(b: &mut Bencher) {
let alphabet = b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_";
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
let mut seed = H256::new();
for _ in 0..1000 {
let k = random_word(alphabet, 6, 0, &mut seed);
let v = random_value(&mut seed);
d.push((k, v))
}
b.iter(||{
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for i in d.iter() {
t.insert(&i.0, &i.1).unwrap();
}
debug!("hash_count={:?}", t.hash_count);
})
}
#[bench]
fn triehash_insertions_six_mid(b: &mut Bencher) {
let alphabet = b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_";
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
let mut seed = H256::new();
for _ in 0..1000 {
let k = random_word(alphabet, 6, 0, &mut seed);
let v = random_value(&mut seed);
d.push((k, v))
}
b.iter(||{
trie_root(d.clone());
})
}
#[bench]
fn trie_insertions_random_mid(b: &mut Bencher) {
let alphabet = b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_";
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
let mut seed = H256::new();
for _ in 0..1000 {
let k = random_word(alphabet, 1, 5, &mut seed);
let v = random_value(&mut seed);
d.push((k, v))
}
b.iter(||{
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for i in d.iter() {
t.insert(&i.0, &i.1).unwrap();
}
})
}
#[bench]
fn triehash_insertions_random_mid(b: &mut Bencher) {
let alphabet = b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_";
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
let mut seed = H256::new();
for _ in 0..1000 {
let k = random_word(alphabet, 1, 5, &mut seed);
let v = random_value(&mut seed);
d.push((k, v))
}
b.iter(||{
trie_root(d.clone());
})
}
#[bench]
fn trie_insertions_six_low(b: &mut Bencher) {
let alphabet = b"abcdef";
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
let mut seed = H256::new();
for _ in 0..1000 {
let k = random_word(alphabet, 6, 0, &mut seed);
let v = random_value(&mut seed);
d.push((k, v))
}
b.iter(||{
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for i in d.iter() {
t.insert(&i.0, &i.1).unwrap();
}
})
}
#[bench]
fn triehash_insertions_six_low(b: &mut Bencher) {
let alphabet = b"abcdef";
let mut d: Vec<(Bytes, Bytes)> = Vec::new();
let mut seed = H256::new();
for _ in 0..1000 {
let k = random_word(alphabet, 6, 0, &mut seed);
let v = random_value(&mut seed);
d.push((k, v))
}
b.iter(||{
trie_root(d.clone());
})
}
#[bench]
fn keccakx10000(b: &mut Bencher) {
b.iter(||{
let mut seed = H256::new();
for _ in 0..10000 {
seed = keccak(&seed);
}
})
}